University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori

Gerrits, MM, van der Wouden, EJ, Bax, DA, van Zwet, AA, van Vliet, AH, de Jong, A, Kusters, JG, Thijs, JC and Kuipers, EJ (2004) Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori Journal of Medical Microbiology, 53. pp. 1123-1128.

Full text not available from this repository.

Abstract

Almost 50 % of all Helicobacter pylori isolates are resistant to metronidazole, which reduces the efficacy of metronidazole-containing regimens, but does not make them completely ineffective. This discrepancy between in vitro metronidazole resistance and treatment outcome may partially be explained by changes in oxygen pressure in the gastric environment, as metronidazole-resistant (MtzR) H. pylori isolates become metronidazole-susceptible (MtzS) under low oxygen conditions in vitro. In H. pylori the rdxA and frxA genes encode reductases which are required for the activation of metronidazole, and inactivation of these genes results in metronidazole resistance. Here the role of inactivating mutations in these genes on the reversibility of metronidazole resistance under low oxygen conditions is established. Clinical H. pylori isolates containing mutations resulting in a truncated RdxA and/or FrxA protein were selected and incubated under anaerobic conditions, and the effect of these conditions on the MICs of metronidazole, amoxycillin, clarithromycin and tetracycline, and cell viability were determined. While anaerobiosis had no effect on amoxycillin, clarithromycin and tetracycline resistance, all isolates lost their metronidazole resistance when cultured under anaerobic conditions. This loss of metronidazole resistance also occurred in the presence of the protein synthesis inhibitor chloramphenicol. Thus, factor(s) that activate metronidazole under low oxygen tension are not specifically induced by low oxygen conditions, but are already present under microaerophilic conditions. As there were no significant differences in cell viability between the clinical isolates, it is likely that neither the rdxA nor the frxA gene participates in the reversibility of metronidazole resistance.

Item Type: Article
Subjects : Veterinary Medicine
Authors :
NameEmailORCID
Gerrits, MMUNSPECIFIEDUNSPECIFIED
van der Wouden, EJUNSPECIFIEDUNSPECIFIED
Bax, DAUNSPECIFIEDUNSPECIFIED
van Zwet, AAUNSPECIFIEDUNSPECIFIED
van Vliet, AHa.vanvliet@surrey.ac.ukUNSPECIFIED
de Jong, AUNSPECIFIEDUNSPECIFIED
Kusters, JGUNSPECIFIEDUNSPECIFIED
Thijs, JCUNSPECIFIEDUNSPECIFIED
Kuipers, EJUNSPECIFIEDUNSPECIFIED
Date : 1 November 2004
Identification Number : 10.1099/jmm.0.45701-0
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 10:47
Last Modified : 18 May 2017 12:43
URI: http://epubs.surrey.ac.uk/id/eprint/829200

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800