X-ray Photoelectron Spectroscopy Analyses of dicarboxylic acids – Part II - butanedioic acid anhydrous.

SECTION A - Authors

José Ferreira (CORRESPONDING AUTHOR, jose.ferreira@surrey.ac.uk), Gustavo F Trindade, Rene Tshulu, John F Watts, Mark Baker
University of Surrey, The Surface Analysis Laboratory, FEPS mail stop A1, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

SECTION A - Overview

A-3. Abstract: X-ray photoelectron spectroscopy (XPS) was carried out to analyse a commercially available butanedioic acid (succinic acid) powder. XPS spectra were obtained using incident monochromatic Al Ka radiation at 1486.6 eV. A survey spectrum together with O 1s and C 1s core level spectra are presented. The presence of characteristic carbon and oxygen photoelectrons peaks allows the use these results as a reference for dicarboxylic acids.

A-3a. Introduction: Butanedioic acid (succinic acid) is considered one of the most promising compounds for chemical production purposes as it is derived from renewable resources. It can be used to produce biopolymers such as polyesters, polyamides, and poly (ester amides). However, in order to make the industrial use of butanedioic acid economically favourable, it is still necessary to improve its purification through fermentation methods [1-4].

The potential of butanedioic acid for the production of bio-based polymers has been reported by the U.S. Department of Energy in 2004, which established butanedioic acid as one of the top 12 building block chemicals derived from renewable resources [4]. Its main applications are in the production of polymers, food, pharmaceuticals, fibres, biodegradable solvents, lubricating oils, cosmetics, agriculture, alkyl resins and coatings (known as succinates) [5].

In recent years there has been a substantial research effort in the corrosion field focussed on developing “green” corrosion inhibitors, which are protective and environmentally friendly [5-10]. Some studies have investigated the influence of organic compounds on the corrosion of metal substrates in acid. Most organic inhibitors form a protective coating by adsorption to the metal surface. The use of butanedioic acid for the passivation of different metal substrates has been little explored, indicating an opportunity for new developments in this area [6-10].

In order to understand the interaction between dicarboxylic acids and metallic substrates, characterisation of the pure compounds is required. The present work presents X-ray photoelectron spectra of a butanedioic acid standard powder. It is the second part of a series of three papers presenting results for standard dicarboxylic acids with varying chain lengths: propanedioic, butanedioic and pentanedioic.

Dicarboxylic acids and their respective salts are rather unstable and known to undergo damage when exposed to X-rays, hence there was always a compromise between quality of spectra and level of damage, as reported for calcium oxalate by Salvi et. al [11]. The use of a 50 eV pass energy required a lower acquisition time to achieve a reasonable signal-to-noise ratio. For the same reason, the channel width was chosen to be 0.2 eV rather than the typical value of 0.1 eV. The acquisition time was 101 s. In addition to the spectra recorded under standard acquisition conditions, ‘snapshot’ spectra (acquisition time 1 s) of the C 1s and O 1s peaks are also presented to give an indication of a spectrum expected from an undamaged surface. The molecular structure of butanedioic acid (Figure 1) contains three carboxyl group carbons and one aliphatic carbon, and thus is expected to yield two C 1s photoelectron peaks at binding energies around 289 eV (COOH) and 285 eV (C-C/H) [12] with an intensity ratio of 1:1. The observed (COO)/(C-C/H) intensity ratio from the C 1s snapshot scan is slightly lower (see Table 1) due to the additional presence of adventitious carbon contamination on the surface at 285 eV. For the results using standard acquisition parameters, two extra peaks were observed at 286.8 eV and 290.5 eV, associated with X-ray beam degradation. These peaks have been labelled as decomposition products (DP1 and DP2). The O 1s scan is expected to have two peaks at around 532 eV (C=O) and 533 (C=O) in equal proportions. Since the adventitious carbon contamination does not affect this O 1s peak intensity, the snapshot data showed two peaks at 532.0 and 533.3 eV with a 1:1 intensity ratio. For the results using standard acquisition parameters, an extra peak was observed at 534.1 eV (DP1), associated with X-ray beam degradation effects.
A-6a. # of digitally submitted specimen spectra for SSS publication: 5

A-6b. # of digitally submitted specimen spectra for electronic database only:

A-6c. # of digitally submitted calibration spectra: 3

A-7. Publish Auger Derivative Spectra: -

A-11. Acknowledgements: The authors wish to thank the funding agencies National Counsel of Technological and Scientific Development - CNPq (process 200490/2014-1) and the Coordination for the Improvement of Higher Education Personnel - CAPES (project: 11995-13-0).

Submission Publication & Review Info

A-12. Publication Notes for Editors:

A-13. Comments on WCF:

A-14. Digital Data Format:

Suggested Reviewers

A-15a. Reviewer 1: Prof. Herman Terryn. Delft University of Technology. hterryn@vub.ac.be

A-15b. Reviewer 2: Dr. Peyman Taheri. Delft University of Technology. P.Taheri@tudelft.nl

A-15c. Reviewer 3: Dr Nick Birbilis Monash University nick.birbilis@monash.edu

Keywords: butanediolic acid, succinic acid, carboxyl group, XPS, organic acid, dicarboxylic acid

Major Elements in Spectra: C, O

Minor Elements in Spectra:

SECTION A - REFERENCES

SECTION B - SPECIMEN DESCRIPTION

Specimen #: 1

B-1. Host Material: \(H_\text{6C}_4O_4\) powder

B-3a. Material Designation Code: 203-740-4

B-3b. Material Designating Organization: European Community

B-4. Host Composition: \(H_\text{6C}_3O_4\)

B-5. Chemical Name: butanedioic acid

B-6. Specimen Manufacturer/Supplier: Sigma-Aldrich

B-7. Specimen Form: Powder

B-8. Lot Number: SLBH9358

B-9. Structural Formula: see figure for structural formula

B-10. Homogeneity: Homogeneous

B-11. Phase: Powder

B-12. Crystallinity: Polycrystalline

B-13. Electrical Characteristics: Dielectric
B-14. Material Family: **Organic Compound**

B-15. Special Material Classes: **Powder**

B-16. History and Significance: **See introduction**

B-17. As Received Condition: **Powder form in plastic container**

B-18. Analyzed Region:

B-19. Ex Situ Preparation and Mounting: Four technical repeats of the sample were mounted on pre-cleaned (isopropanol and acetone) metal stubs. The stubs contain a small hole (1mm diameter). The powder was sprinkled into the stub hole with no pressure applied. No adhesive was used.

B-20. In Situ Preparation: Immediately after mounting, the sample was moved to the prep chamber and kept in there for 12 hours in order to achieve optimal working pressure.

B-21. Specimen Temperature During Analysis (Kelvin): **300**

B-22. Maximum Chamber Pressure During Analysis (in Pa): **1.2\times10^{-7}**

B-23. Pre-Analysis Beam Exposures: To minimise beam damage, different areas were analysed for each high resolution scan (C1s and O1s, including snapshots). In order to guarantee that the different technical repeats and areas were compatible, a quick check with a 1s snapshot of the C1s peak was performed in a neighbour area prior to each measurement.

B-24. Charge Control Conditions and Procedures: Flood gun was used for charge neutralisation. Electron energy -2.5 V
Extractor 40 V
Emission 400 uA
The binding energy values were corrected for C 1s at 285 eV.

SECTION C - INSTRUMENT DESCRIPTION

C-1. Spectrometer Manufacturer: **Thermo Scientific**

C-2. Manufacturer Model #: **Theta Probe**

C-2a. Short identifying name for instrument: **Theta Probe**

C-3. Analyzer Type: **SSA**

C-4. Non-Standard Analyzer or Lens:

C-5. Acceptance Angle from Analyzer Axis (degrees): **60**

C-6. Analyzer Mode: **constant pass energy**

C-7. Instrument Throughput Function: **other**

C-8. Instrument Throughput Function Comment: The transmission function is calculated from a cubic polynomial fit to a plot of LOG (Peak Area * XSF/PE) vs. LOG (RR). RR = KE/PE (Retard Ratio = Kinetic Energy/Pass Energy). XSF is a term to account
for the difference in absolute sensitivities at the Ag MNN and Ag 3d peaks.

C-10. Excitation Source Window or Filter: None

C-11. Detector Description: Multi-channel plate detector

C-12. Number of Detector Elements: 128

C-12a. Was an Ion Gun Used? no

C-13a. Ion Gun Manufacturer:

C-13b. Ion Gun Model #:

C-14. Sputtering Current Measurement Method:

Ion Gun Operating Parameters

C-15a. Energy (in eV):

C-15b. Current Value:

C-15c. Current Units:

C-15d. Sputter Species:

C-15e. Sputter Charge:

C-16. Ion Gun Spot Size (um):

Ion Gun Raster Parameters (normal to source):

C-17a. Was Ion Gun rastered?

C-17b. X-Raster (um):

C-17c. Y-Raster (um):

C-18. Sputtering Comments:

C-19a. Emission Angle (Θ_e): 53

C-19b. Incident Angle (Ψ_i): 30

C-19c. Source-to-Analyzer Angle (Θ_s): 67.4

C-19d. Specimen Azimuthal Angle (Φ_{sp}): 70

C-19e. Sputter Source Incident Angle (Ψ_{ig}):
C-19f. Sputter Source Polar Angle (\(\theta_{ig}\)):

C-19g. Sputter Source Azimuth Angle (\(\phi_{ig}\)):

C-20. Angular Geometry Comments:
SECTION D - CALIBRATION INFORMATION

Analyzer Calibration Table

<table>
<thead>
<tr>
<th>Seq #</th>
<th>Spectrum #</th>
<th>Element</th>
<th>Peak Transition</th>
<th>Peak Energy (eV)</th>
<th>Peak FWHM</th>
<th>Peak Amplitude</th>
<th>Sensitivity Factor</th>
<th>Concentration</th>
<th>Peak Assignment</th>
<th>Peak Assignment Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3097</td>
<td>Au</td>
<td>4f_{7/2}</td>
<td>83.69</td>
<td>0.62</td>
<td>566</td>
<td>2.8</td>
<td>100</td>
<td>gold</td>
<td>metal</td>
</tr>
<tr>
<td>2</td>
<td>3098</td>
<td>Ag</td>
<td>3d_{5/2}</td>
<td>368.16</td>
<td>0.52</td>
<td>4808</td>
<td>3.1</td>
<td>100</td>
<td>silver</td>
<td>metal</td>
</tr>
<tr>
<td>3</td>
<td>3099</td>
<td>Cu</td>
<td>2p_{3/2}</td>
<td>932.61</td>
<td>0.81</td>
<td>6827</td>
<td>4.2</td>
<td>100</td>
<td>copper</td>
<td>metal</td>
</tr>
</tbody>
</table>

SECTION E - VARIABLE INSTRUMENT PARAMETERS

E-1. Param Set #: 1

E-1a. Technique: XPS

E-1b. Describe Technique if you selected ‘other’ above:

Excitation Source Parameters

ES-1. Source Label: Al Ka, monochromated

ES-2. Describe Source if you selected ‘other’ above:

E-2. Source Energy (eV): 1486.6

E-3a. Strength: 300

E-3b. Strength Unit: watts

Excitation Source Beam

E-4a. Source Beam Size, X Value (um): 50

E-4b. Source Beam Size, Y Value (um): 50

E-5. Was the Source rastered? No

Excitation Source Beam Size at Specimen Surface

E-6a. Source Size at Specimen Surface, X (um): 400
E-6b. Source Size at Specimen Surface, Y (um): 400

E-7. Raster Frame Rate (Hz):

E-8. Analyzer Resolution:

E-8a. Analyzer Resolution Unit: eV (constant pass energy)

E-9. Analyzer Constants: 50

E-9a. Choose eV for pass energy, otherwise blank: eV

Analyzer Widths

E-10a. Analyzer Widths, X Value (um): 800

E-10b. Analyzer Widths, Y Value (um): 800

E-10c. Was the Analyzer Width constant with energy? yes

E-10d. Analyzer Widths, at Energy (eV):

Analyzer Angular Acceptance Widths

E-11a. Analyzer Angular Acceptance Width, X Angle (degrees): 30

E-11b. Analyzer Acceptance Width, Y Angle (degrees): 30

E-11c. Was the Analyzer Angular Acceptance Width constant with energy? yes

E-11d. Analyzer Angular Acceptance Width, at Energy (eV):

E-1. Param Set #: 2

E-1a. Technique: XPS

E-1b. Describe Technique if you selected 'other' above:

Excitation Source Parameters

ES-1. Source Label: Al Ka, monochromated

ES-2. Describe Source if you selected 'other' above:

E-2. Source Energy (eV): 1486.6

E-3a. Strength: 300

E-3b. Strength Unit: watts

Excitation Source Beam
E-4a. Source Beam Size, X Value (um): 50
E-4b. Source Beam Size, Y Value (um): 50
E-5. Was the Source rastered? No

Excitation Source Beam Size at Specimen Surface
E-6a. Source Size at Specimen Surface, X (um): 400
E-6b. Source Size at Specimen Surface, Y (um): 400
E-7. Raster Frame Rate (Hz):
E-8. Analyzer Resolution:
E-8a. Analyzer Resolution Unit: eV (constant pass energy)
E-9. Analyzer Constants: 221.28
E-9a. Choose eV for pass energy, otherwise blank: eV

Analyzer Widths
E-10a. Analyzer Widths, X Value (um): 800
E-10b. Analyzer Widths, Y Value (um): 800
E-10c. Was the Analyzer Width constant with energy? yes
E-10d. Analyzer Widths, at Energy (eV):

Analyzer Angular Acceptance Widths
E-11a. Analyzer Angular Acceptance Width, X Angle (degrees): 30
E-11b. Analyzer Acceptance Width, Y Angle (degrees): 30
E-11c. Was the Analyzer Angular Acceptance Width constant with energy? yes
E-11d. Analyzer Angular Acceptance Width, at Energy (eV):
SECTION F - SPECTRA

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Spectrum 1</th>
<th>Spectrum 2</th>
<th>Spectrum 3</th>
<th>Spectrum 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum #</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>This spectrum is from which Part B Specimen?</td>
<td>1 - H$_6$C$_4$O$_4$ powder</td>
<td>1 - H$_6$C$_4$O$_4$ powder</td>
<td>1 - H$_6$C$_4$O$_4$ powder</td>
<td>1 - H$_6$C$_4$O$_4$ powder</td>
</tr>
<tr>
<td>Suggested Publication Status:</td>
<td>Print in SSS</td>
<td>Print in SSS</td>
<td>Print in SSS</td>
<td>Print in SSS</td>
</tr>
<tr>
<td>Spectrum Data File Name</td>
<td>2-succinic acid survey.txt</td>
<td>2-succinic acid C1s snapshot.tx</td>
<td>2-succinic acid O1s snapshot.tx</td>
<td>2- succinic acid C1s.txt</td>
</tr>
<tr>
<td>Data File Comment:</td>
<td>Shifted data are on "Survey" tab of additional .xls file</td>
<td>Shifted and peak-fitted data are on tab "Snapshot 285 eV" of additional .xls file</td>
<td>Shifted and peak-fitted data are on tab "Snapshot 532 eV" of additional .xls file</td>
<td>Shifted and peak-fitted data are on tab "C1s peak fitting" of additional .xls file</td>
</tr>
<tr>
<td>Spectrum Figure Image File Name:</td>
<td>survey.png</td>
<td>C1s snapshot.png</td>
<td>O1s snapshot.png</td>
<td>C1s.png</td>
</tr>
<tr>
<td>Specimen or Calibration Spectrum:</td>
<td>specimen</td>
<td>specimen</td>
<td>specimen</td>
<td>specimen</td>
</tr>
<tr>
<td>Parameter Set # Used</td>
<td>1 - Al Ka, monochromated</td>
<td>2 - Al Ka, monochromated</td>
<td>2 - Al Ka, monochromated</td>
<td>1 - Al Ka, monochromated</td>
</tr>
<tr>
<td>Spectrum Date</td>
<td>2016-09-12</td>
<td>2016-09-12</td>
<td>2016-10-24</td>
<td>2016-09-12</td>
</tr>
<tr>
<td>Species/Transitions:</td>
<td>O O1s, C C1s</td>
<td>C C1s</td>
<td>O O 1s</td>
<td>C C1s</td>
</tr>
<tr>
<td>Spectral Region Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscissa Label</td>
<td>binding energy</td>
<td>binding energy</td>
<td>binding energy</td>
<td>binding energy</td>
</tr>
<tr>
<td>Abscissa Starting Value (eV):</td>
<td>1350</td>
<td>295.41</td>
<td>542.10</td>
<td>298</td>
</tr>
<tr>
<td>Abscissa Increment Value:</td>
<td>0.4</td>
<td>0.188</td>
<td>0.188</td>
<td>0.2</td>
</tr>
<tr>
<td>Ordinate Label:</td>
<td>Intensity</td>
<td>Intensity</td>
<td>Intensity</td>
<td>Intensity</td>
</tr>
<tr>
<td>Ordinate Units:</td>
<td>counts/sec</td>
<td>Counts/s</td>
<td>Counts/s</td>
<td>counts/sec</td>
</tr>
<tr>
<td>Field Name</td>
<td>Spectrum 1</td>
<td>Spectrum 2</td>
<td>Spectrum 3</td>
<td>Spectrum 4</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Number of Data Channels:</td>
<td>3401</td>
<td>112</td>
<td>112</td>
<td>101</td>
</tr>
<tr>
<td>Number of Scans:</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Signal Mode:</td>
<td>pulse</td>
<td>pulse</td>
<td>pulse</td>
<td>pulse</td>
</tr>
<tr>
<td>Detector Width (eV):</td>
<td>0.4</td>
<td>0.188</td>
<td>0.188</td>
<td>0.2</td>
</tr>
<tr>
<td>Total Signal Accumulation Time (sec):</td>
<td>510.15</td>
<td>1</td>
<td>1</td>
<td>101.5</td>
</tr>
<tr>
<td>Total Elapsed Time (sec):</td>
<td>1025</td>
<td>1</td>
<td>1</td>
<td>304.475</td>
</tr>
<tr>
<td>Is 'raw data' signal intensity corrected?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Signal Intensity Correction Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Modulation Method:</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Peak-to-peak amplitude of Modulation (eV):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Frequency of Reference Signal (Hz):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Constant of Lock-in Amplifier Used (sec):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Spectrum 5</td>
<td>Spectrum 6</td>
<td>Spectrum 7</td>
<td>Spectrum 8</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Spectrum #</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>This spectrum is from which</td>
<td>1 - H\textsubscript{6}C\textsubscript{4}O\textsubscript{4} powder</td>
<td>*** No Section B - Specimens selected! ***</td>
<td>*** No Section B - Specimens selected! ***</td>
<td>*** No Section B - Specimens selected! ***</td>
</tr>
<tr>
<td>Part B Specimen?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggested Publication Status:</td>
<td>Print in SSS</td>
<td>Database Only</td>
<td>Database Only</td>
<td>Database Only</td>
</tr>
<tr>
<td>Spectrum Data File Name</td>
<td>2- succinic acid O1s.txt</td>
<td>Au calibration.txt</td>
<td>Ag calibration.txt</td>
<td>Cu calibration.txt</td>
</tr>
<tr>
<td>Data File Comment:</td>
<td>Shifted and peak-fitted data are on tab "O1s peak fitting" of additional .xls file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum Figure Image File Name</td>
<td>O1s.png</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen or Calibration Spectrum:</td>
<td>specimen</td>
<td>calibration</td>
<td>calibration</td>
<td>calibration</td>
</tr>
<tr>
<td>Parameter Set # Used</td>
<td>1 - Al Ka, monochromated</td>
</tr>
<tr>
<td>Species/Transitions:</td>
<td>O O1s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Region Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscissa Label</td>
<td>binding energy</td>
<td>binding energy</td>
<td>binding energy</td>
<td>binding energy</td>
</tr>
<tr>
<td>Abscissa Starting Value (eV):</td>
<td>541</td>
<td>89</td>
<td>373</td>
<td>937</td>
</tr>
<tr>
<td>Abscissa Increment Value:</td>
<td>0.2</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ordinate Label:</td>
<td>Intensity</td>
<td>Intensity</td>
<td>Intensity</td>
<td>Intensity</td>
</tr>
<tr>
<td>Ordinate Units:</td>
<td>counts/sec</td>
<td>Counts/sec</td>
<td>Counts/sec</td>
<td>Counts/sec</td>
</tr>
<tr>
<td>Number of Data Channels:</td>
<td>101</td>
<td>501</td>
<td>501</td>
<td>401</td>
</tr>
<tr>
<td>Number of Scans:</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
SECTION H - ANALYSIS METHODS

H-1. Energy Scale Correction:
The binding energy values were corrected for C 1s at 285.0 eV

H-2. Recommended Energy-Scale Shift:
- **Survey**: +1.12 eV
- C 1s Snapshot: +1.125 eV
- O 1s Snapshot: +1.501 eV
- C 1s: +1.2 eV
- O 1s: +1.2 eV

H-3. Intensity Scale Correction:
H-4. Peak Shape and Background Methods: The Smart background is derived from the Shirley background but iteratively adjusts the background position so that the background does not go above the data curve.

H-5. Quantitation Method: Relative % intensities (using respective sensitivity factors) on Avantage software

SECTION I - Units for Spectral Features Quantitative fields

I-1. Peak Amplitude Method: peak area

I-2. Peak Amplitude Units: eV x counts/sec

I-3. Concentration Units: atomic percent

I-4. Comments to Spectral Features Table:

Table of Spectral Features

<table>
<thead>
<tr>
<th>Seq #</th>
<th>Spectrum #</th>
<th>Element</th>
<th>Peak Transition</th>
<th>Peak Energy (eV)</th>
<th>Peak FWHM</th>
<th>Peak Amplitude</th>
<th>Sensitivity Factor</th>
<th>Concentration</th>
<th>Peak Assignment</th>
<th>Peak Assignment Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3100</td>
<td>C</td>
<td>1s</td>
<td>285.0</td>
<td>2.18</td>
<td>151.18</td>
<td>0.25</td>
<td>51.41</td>
<td>C-C/C-H</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3100</td>
<td>C</td>
<td>1s</td>
<td>288.8</td>
<td>2.09</td>
<td>142.74</td>
<td>0.25</td>
<td>48.59</td>
<td>-COOH</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3101</td>
<td>O</td>
<td>1s</td>
<td>532.0</td>
<td>2.4</td>
<td>449.79</td>
<td>0.66</td>
<td>50.28</td>
<td>C=O</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3101</td>
<td>O</td>
<td>1s</td>
<td>533.4</td>
<td>2.4</td>
<td>444.54</td>
<td>0.66</td>
<td>49.72</td>
<td>C-OH</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3096</td>
<td>C</td>
<td>1s</td>
<td>285.0</td>
<td>1.54</td>
<td>2883.18</td>
<td>0.25</td>
<td>41.94</td>
<td>C-C/C-H</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3096</td>
<td>C</td>
<td>1s</td>
<td>286.6</td>
<td>1.59</td>
<td>378.41</td>
<td>0.25</td>
<td>9.49</td>
<td>DP1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3096</td>
<td>C</td>
<td>1s</td>
<td>288.9</td>
<td>1.4</td>
<td>2543.08</td>
<td>0.25</td>
<td>37.02</td>
<td>-COOH</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3096</td>
<td>C</td>
<td>1s</td>
<td>290.3</td>
<td>1.83</td>
<td>793.53</td>
<td>0.25</td>
<td>11.55</td>
<td>DP2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3095</td>
<td>O</td>
<td>1s</td>
<td>532.0</td>
<td>1.67</td>
<td>9555.29</td>
<td>0.66</td>
<td>58.31</td>
<td>C=O</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3095</td>
<td>O</td>
<td>1s</td>
<td>533.2</td>
<td>1.47</td>
<td>5769.14</td>
<td>0.66</td>
<td>35.21</td>
<td>C-OH</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3095</td>
<td>O</td>
<td>1s</td>
<td>534.4</td>
<td>1.74</td>
<td>1060.9</td>
<td>0.66</td>
<td>6.48</td>
<td>DP2</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE IMAGE FILES

This submission has 5 spectrum records with associated image files.

Spectrum No 1: survey.png
Spectrum No 2: C1s snapshot.png
Spectrum No 3: O1s snapshot.png
Spectrum No 4: C1s.png
Spectrum No 5: O1s.png
O1s snapshot.png

[Image of a diagram showing X-ray Photoelectron Spectroscopy analyses of dicarboxylic acids, with peaks labeled COOH and C-C/C-H.]
C1s.png
O1s.png

![X-ray Photoelectron Spectroscopy Analyses of dicarboxylic acid...](WCF ID 290)

Surface Science Spectra - Submission # 16-022(20161102) www.PublishInSSS.com