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Abstract — We propose a compact wideband multi-way power 

divider/combiner with planar structure for applications to RF 
power amplifiers (PAs). Uniform transmission lines in the 
conventional divider are replaced with non-uniform transmission 

lines (NTLs), which are governed by a truncated Fourier series. 
An optimization-driven framework is employed in even-mode 
analysis to obtain the coefficients of the NTLs considering 

predefined operating bands, whereas three isolation resistors are 
optimized in the odd-mode analysis to achieve optimal isolation 
and output port matching over the design bandwidth. For 

verification purposes, a 4–10 GHz 3-way divider is simulated, and 
measured. Simulations and measurements are in close proximity 
and show input/output ports matching of better than –10 dB and 

transmission of –4.9 ±1 dB across the design bandwidth. 

 
Index Terms — multi-way power divider, non-uniform 

transmission lines (NTLs), power amplifiers (PAs), power 

combiner, wideband Wilkinson power divider (WPD). 

I.  INTRODUCTION 

Power dividers/combiners are widely used fundamental front-

end components in a variety of microwave/millimeter wave 

systems, power amplifiers (PAs), mixers, and antenna feeding 

networks. PAs have applications that span wireless and radio 

communications equipment, phased array radar modules, unmanned 

aerial vehicles (UAVs), and electromagnetic compatibility (EMC) 

testing [1]-[5]. PAs can also be used in communication systems 

measurements such as tests of intermodulation, adjacent 

channel power, multi-tone, and high signal levels. However, 

PAs have limitations, especially for applications where a high 

RF amplification gain is required. To overcome this, a power 

combiner can be used to combine the individual powers from 

multiple lower power PAs. Such a network has the advantages 

of: 1) graceful degradation reliability characterized by the 

accommodation of the failure of a single PA without a total loss 

of the transceiver/transponder power [6], 2) it is less expensive 

and complex to manufacture moderate-power PAs than high-

power PAs, and 3) lower power PAs can be biased to operate in 

the linear region, resulting in the reduction of the intermodulation 

distortion and undesired harmonics. 

Many power dividers/combiners for large operating bandwidths, 

high efficiency, high isolation, and small size have been proposed 

in literature. The Wilkinson power divider (WPD) or combiner, 

proposed by E. Wilkinson in 1960 [7], is widely used in front-

end microwave subsystems due to its ease of design and 

fabrication, high isolation between its ports, as well as perfect 

matching at all ports. Port isolation is widely regarded as an 

asset in RF power combining, as it can be used to suppress odd 

mode instability between the combined amplifiers [8].  This 

alone often explains the preference of Wilkinson type combiners 

over other dividers/combiners in microwave PA networks. 

Accordingly, broadening the operating bandwidth while 

maintaining the same desired electrical features are of utmost 

importance. A variety of designs have been proposed [9]-[13], 

however, the major drawbacks are the increased physical size, the 

use of reactive components, and the bulky 3D geometries. 

In this paper, a general procedure to design and characterize 

a NTLs wideband multi-way planar Wilkinson power divider/ 

combiner is presented. The proposed device is modeled and 

simulated for equal-split division. Then, the input and output 

ports can be reversed to enable power combining rather than 

division. Thereafter, the phases of the transmission parameters 

are measured to verify in-phase functionality. 

The article is organized as follows: Section II discusses the 

design procedure of the proposed wideband NTL multi-way 

WPD. Simulations and measurements of a wideband 3-way 

prototype is presented in Section III. Finally, conclusions are 

given in Section IV. 

II. MULTI-WAY WPD DESIGN 

A schematic diagram of the proposed wideband equal-split 

NTL divider is shown in Fig. 1. The N-way divider can be 

reduced to its equivalent 2-way model [14]. Hence, the even-

odd mode analysis will be adopted. 

To reduce the N-way divider to its equivalent 2-way model 

illustrated in Fig. 2, the first branch is assumed to be the n-th 

branch with 1/N fraction of total input power, whereas the other 

branch is in turn the sum of power ratios of the rest of the N–1 

branches; or in other words, (N–1)/N. 
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Fig. 1. A Schematic diagram of a wideband NTL N-way WPD. 

 



 

 

 

 

 

 

 

Following the procedure presented in [14], Z0n is found to be 

equal to 103 Ω. Once the characteristic impedance of the n-th 

branch is determined, the process is iterated until the characteristic 

impedances of all the N original branches are obtained. In this 

context, the equivalent 2-way model is developed only once as 

the power is split equally between the N output ports (i.e., same 

characteristic impedances Z0n for all N branches). 

A. Even Mode Analysis 

The even mode equivalent circuit for the proposed N-way 

divider is shown in Fig. 3. The NTL has a length d with a varying 

characteristics impedance Z(z) and propagation constant β(z), 

and matches a source impedance Zs to a load impedance Zl. The 

isolation resistors R1j/2 (j=1,2,3) are terminated with an open 

circuit as a result of the symmetric excitation at the two 

equivalent output ports. To design the NTL, the magnitude of 

the reflection coefficient, |Γ|, should be zero (or very small) 

over the frequency range of interest. |Γ| at the input port is 

expressed in terms of Ze
in shown in Fig. 3, where Ze

in is 

calculated after obtaining the ABCD parameters of the NTL. 

 

 

 

 

 

 

 

 
 

The ABCD parameters of the wideband matching NTL are 

obtained by subdividing it into K=50 uniform short segments 

each of length Δz. The ABCD matrix of the whole NTL is 

obtained by multiplying the ABCD parameters of each section 

as follows [15]: 
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where the ABCD parameters of the ith segment are [15] (assuming 

lossless transmission lines): 

            Ai = Di = cos(Δθ) ,         (2.a) 
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where c is the speed of light and f is the center frequency of the 

design bandwidth. The effective dielectric constant, εeff, of each 

section is calculated using the well-known microstrip line 

formulas [15]. Furthermore, the non-uniform impedance profile 

is governed by a truncated Fourier series that is expressed as [16]: 
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where Z0n = (ZsZl)0.5, is the characteristic impedance of the WPD 

branch. Thus, an optimum designed NTL has its reflection 

coefficient magnitude over the frequency range of interest, with 

an increment of Δf as close as possible to zero. Therefore, the 

optimum values of the Fourier coefficients can be obtained 

through minimizing the following error function [17]: 
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The resulting Z(z) should be within reasonable fabrication 

tolerances to guarantee easy fabrication. As such, the following 

physical constraint is considered in the minimization of (4): 

 Zmin ≤ Z(z) ≤ Zmax         (6) 

To find the values of the coefficients (c0, ap, bp) that minimize 

the bound-constrained nonlinear error function in (4) across the 

desired bandwidth, MATLAB function “fmincon.m” is used. 

B. Odd Mode Analysis 

Figure 4 shows the equivalent odd-mode circuit of the 

proposed divider which is used to obtain the optimum values of 

the isolation resistors that achieve acceptable output ports 

isolation and matching conditions. Due to the asymmetric 

excitation of the output ports, each R1j/2 resistor will be 

terminated with a short circuit. 

 

 

 

 

 

 

 

 

 

 

 

After determining the optimum values of the Fourier series 

coefficients by following the procedure described previously, 

the NTL transformer is subdivided into 3 sections, and the 

ABCD matrix for each section is calculated by employing (1) 

and (2). Then, the total ABCD matrix of the whole network 

shown in Fig. 4 can be calculated as follows [17]: 
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Fig. 2. A 2-way equivalent model of the N-way WPD. 
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Fig. 3. 2-way equivalent even mode circuit of the proposed NTL 
N-way WPD. 
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Fig. 4. 2-way equivalent odd mode circuit of the proposed NTL 

N-way WPD. 
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The locations of the resistors are distributed uniformly. Finally, 

as illustrated in Fig. 4, the following equation can be written: 
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Setting V2 in (8) to zero, and solving for 1 1V I , one obtains: 
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For perfect output port matching, the following condition 

should be satisfied: 
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where fm (m = 1,2,…,M) denotes the frequencies at which (10) 

is calculated. In this context, Δf is chosen to be 0.2 GHz. So, for 

a perfect output ports matching over the desired range, the 

following error should be minimized [17]: 
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This optimization problem is solved keeping in mind that R11, 

R12, and R13 are the optimization variables to be determined. 

III. SIMULATIONS AND MEASUREMENTS 

In this section, based on the design procedure presented in II, 

a design example of a 3-way equal split WPD with fractional 

bandwidth of 86% is simulated, fabricated and measured. The 

design example is carried out using RO4003C substrate with a 

thickness of 0.813 mm, relative permittivity of 3.55, and loss 

tangent of 0.0027. The length of each NTL transformer of the 

proposed WPD is set to 10 mm. The characteristic impedance 

of the conventional 3-way WPD arm, Z0n, is calculated in II and 

is found to be equal 103 Ω. Figure 5 shows a photograph of the 

fabricated power divider. 

 

 

 

 

 

 

 

 

 

 

 

Simulations were obtained using HFSS, which is a full-wave 

EM simulator, whereas measurements were made with an HP 

8720B vector network analyzer (VNA). Short-open-load-thru 

calibration was performed to the two ports of the VNA using a 

3.5 mm HP/Agilent 85052A mechanical calibration kit. First, 

port 1 of the VNA was connected to an open-circuit standard 

and calibrated. Then, it was connected to a short-circuit 

standard and calibrated. Finally, it was connected to a 

broadband 50 Ω matched load for load calibration. The same 

process was repeated for port 2 of the VNA. Thru calibration 

was made by connecting the two VNA ports together to 

compensate for the losses due to cables and connectors.  

After a two-port calibration was performed, input/output 

matching parameters of the proposed divider/combiner were 

measured by connecting VNA port 1 to the divider’s port of 

interest, while terminating the remaining ports with a matched load. 

Transmission parameters were measured by connecting VNA 

port 1 to the input port of the proposed divider and VNA port 2 

to one of the output ports; whereas the rest of the divider’s ports 

were terminated with a matched load. Figures 6 and 7 illustrate 

the resulting simulated and measured scattering parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

As shown in Fig. 6, simulation and measurement results of 

the input port matching are below –12 dB over the 4–10 GHz band, 
 

Fig. 5. Photograph of the fabricated 3-way WPD structure. 

 

 
Fig. 6. Simulated and measured S-parameters of the proposed divider. 

 
Fig. 7. Simulated and measured S-parameters of the proposed divider. 



whereas the transmission parameters are equal to –4.9±1 dB over 

the assigned band. Output ports matching and isolation parameters 

are in good agreement and are all below –11 dB over the assigned 

band as shown in Fig. 7. The small discrepancies between simulated 

and measured results are thought to be due to the fabrication process 

and measurement errors. 

Measured group delays of the fabricated divider are depicted 

in Fig. 8. Measured results show almost a constant response of 

0.18 ns for both S21 and S31 over the 4–10 GHz band (group delay 

of S41 = group delay of S21 due to structural symmetry). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 9 shows the measured magnitude and phase imbalances 

for the proposed equal-split in-phase divider. Measured magnitude 

imbalance equals to ±0.37 dB, whereas the phase imbalance is 

±5.4° over the design bandwidth. Such results indicate an 

excellent symmetry of the fabricated layout and hence the 

proposed device can operate as a power combiner as desired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

This paper presented a general design of N-way wideband 

power divider/combiner that can be used in PAs which are a 

fundamental component in a variety of wireless communication 

systems. A combining technique was used to reduce the N-way 

divider to its equivalent 2-way model. Then, the even and odd 

mode analysis were used to obtain the NTLs and the optimized 

values of the isolation resistors, respectively. For verification 

purposes, 3-way power divider/combiner with fractional bandwidth 

of 86% was fabricated and measured. The good agreement 

between both simulation and measurement results over the 

assigned frequency band proves the validity of the design procedure. 
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Fig. 9. Measured magnitude and phase imbalances of the proposed 
3-way divider. 

 
Fig. 8. Measured group delays of the proposed 3-way divider. 


