1 **Figure captions**

2 **Figure 1.** Effect of ZVI dose on DCAcAm formation from the reduction of CAP (Fig. 1a), FLO (Fig. 1b), and THA (Fig. 1c) by ZVI (Conditions: pH = 6.0 ± 0.2; initial CAPs conc. = 30.0 ± 1.0 μM; water temperature = 25.0 ± 0.5 °C). Fig. 1d compares DCAcAm yields from the reduction of CAPs by ZVI (5.0 g/L) and by chlorination.

3 **Figure 2.** Effect of pH on DCAcAm formation from the reduction of CAP (Fig. 2a), FLO (Fig. 2b), and THA (Fig. 2c) by ZVI (Conditions: ZVI dose = 1.0 g/L; initial CAPs conc. = 30 ± 1.0 μM; water temperature = 25 ± 0.5 °C).

4 **Figure 3.** Effect of temperature on DCAcAm formation from the reduction of CAPs by ZVI over 1 h (Fig. 3a) and 12 h (Fig. 3b) (Conditions: pH = 6.0 ± 0.2; ZVI dose = 1.0 g/L; initial CAPs conc. = 30.0 ± 1.0 μM).

5 **Figure 4.** DCAcAm formation from the reduction of CAP (Fig. 4a and 4b), FLO (Fig. 4c and 4d), and THA (Fig. 4e and 4f) by ZVI in the presence and absence of HA (Conditions: pH = 6 ± 0.2; ZVI dose = 1.0 g/L; initial CAPs conc. = 30.0 ± 1.0 μM; water temperature = 25 ± 0.5 °C). Fig. 4b, 4d, and 4f show a linear relationship between the DCAcAm yields formed from three CAPs after 12 h and the initial CAP concentration.

6 **Figure 5.** DCAcAm formation from the ZVI reduction of CAP (Fig. 5a), FLO (Fig. 5b), and THA (Fig. 5c) spiked at different concentrations (0, 1.5 ± 0.1, 3.0 ± 0.1, 6.0 ± 0.2, 15.0 ± 0.5, and 30.0 ± 1.0 μM) in raw water “A”, raw water “B”, and laboratory-grade water (Conditions: pH = 6 ± 0.2; ZVI dose = 5.0 g/L; water temperature = 25 ± 0.5 °C; The three CAPs were undetected in the two selected waters).
Figure 1. Effect of ZVI dose on DCACAm formation from the reduction of CAP (Fig. 1a), FLO (Fig. 1b), and THA (Fig. 1c) by ZVI (Conditions: pH = 6.0 ± 0.2; initial CAPs conc. = 30.0 ± 1.0 μM; water temperature = 25.0 ± 0.5 °C). Fig.1d compares DCACAm yields from the reduction of CAPs by ZVI (5.0 g/L) and by chlorination.
Figure 2. Effect of pH on DCAcAm formation from the reduction of CAP (Fig. 2a), FLO (Fig. 2b), and THA (Fig. 2c) by ZVI (Conditions: ZVI dose = 1.0 g/L; initial CAPs conc. = 30 ± 1.0 μM; water temperature = 25 ± 0.5 °C).
Figure 3

Figure 3. Effect of temperature on DCAcAm formation from the reduction of CAPs by ZVI over 1 h (Fig. 3a) and 12 h (Fig. 3b) (Conditions: pH = 6.0 ± 0.2; ZVI dose = 1.0 g/L; initial CAPs conc. = 30.0 ± 1.0 μM).
Figure 4. DCAcAm formation from the reduction of CAP (Fig. 4a and 4b), FLO (Fig. 4c and 4d), and THA (Fig. 4e and 4f) by ZVI in the presence and absence of HA (Conditions: pH=6 ± 0.2; ZVI dose = 1.0 g/L; initial CAPs conc. = 30.0 ± 1.0 μM; water temperature = 25 ± 0.5 °C). Fig. 4b, 4d, and 4f show a linear relationship between the DCAcAm yields formed from three CAPs after 12 h and the initial CAP concentration.
Figure 5. DCAcAm formation from the ZVI reduction of CAP (Fig. 5a), FLO (Fig. 5b), and THA (Fig. 5c) spiked at different concentrations (0, 1.5 ± 0.1, 3.0 ± 0.1, 6.0 ± 0.2, 15.0 ± 0.5, and 30.0 ± 1.0 μM) in raw water “A”, raw water “B”, and laboratory-grade water (Conditions: pH = 6 ± 0.2; ZVI dose = 5.0 g/L; water temperature = 25 ± 0.5 °C; The three CAPs were undetected in the two selected waters).