SUPPORTING INFORMATION

Novel triterpenoid derivatives from *Eucomis bicolor* Bak. (Hyacinthaceae: Hyacinthoideae)

Jaspreet K. Sihra, a Moses K. Langat, a,b Neil R. Crouch, b,c Jean-Marc Nuzillard, d Bertrand Plainchont d and Dulcie A. Mulholland, *, a,b

aDepartment of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK: d.mulholland@surrey.ac.uk. Tel +44 (0)1483 686751
bSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041, South Africa
cBiodiversity Economy Unit, South African National Biodiversity Institute, PO Box 52099, Berea Road 4007, Durban, South Africa.
dPharmacognosy Laboratory, University of Reims, Moulin de la House, BP 1039, 51687 Reims Cedex 2, France.

CONTENTS:

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.1 Structures of all compounds isolated from Eucomis bicolor</td>
<td>2-5</td>
</tr>
<tr>
<td>S.2 Flow charts showing isolation of compounds</td>
<td>6-7</td>
</tr>
<tr>
<td>S.3 Details for the LSD input file</td>
<td>8-10</td>
</tr>
<tr>
<td>S.4 NMR spectra for compounds 1-5 and 6Ac-14Ac</td>
<td>11-75</td>
</tr>
<tr>
<td>S.5 NCI 59 cell line screening results for: 5,7-dihydroxy-8-methoxy-3-(4’-methoxybenzyl)-4-chromanone (EB1), eucosterol (EB4), (23S)-17α,23-epoxy-3β,28,29-trihydrox-27-norlanost-8-en-24-one (EB5), 2Ac, 3, 4 and 5.</td>
<td>76-81</td>
</tr>
</tbody>
</table>
S.1 Structures of all compounds isolated from *Eucomis bicolor*.

Figure S1.1 Known compounds isolated from the dichloromethane extract (EB 1-7) and methanol extract (EB 8) of *Eucomis bicolor*

EB 1 = (R)-5,7-dihydroxy-8-methoxy-3-(4’-methoxybenzyl)-4-chromanone; EB 2 = 3,5,7-trihydroxy-3-(4’-methoxybenzyl)-4-chromanone; EB 3 = (R)-5,7-dihydroxy-3-(4’-methoxybenzyl)-4-chromanone; EB 4 = eucosterol; EB 5 = (17S,23S)-23,17-epoxy-3β,28,29-trihydroxy-27-norlanost-8-en-24-one; EB 6 = 15-deoxoeucosterol; EB 7 = 3-dehydro-15-deoxoeucosterol; EB 8 = (R)-5,7-dihydroxy-3-(4’-hydroxybenzyl)-4-chromanone.
Figure S 1.2: New compounds isolated from the dichloromethane extract of *Eucomis bicolor*.

Figure S 1.3: Monosaccharide triterpenoid derivatives isolated from the methanol extract of *Eucomis bicolor* (after acetylation of a complex mixture)

Figure S 1.3: Disaccharide triterpenoid derivatives isolated from the methanol extract of *Eucomis bicolor* (after acetylation of a complex mixture).

Figure S 1.4: Trisaccharide triterpenoid derivative isolated from the methanol extract of *Eucomis bicolor* after acetylation.

14Ac = (17S,23S)-29-acetoxy-23,17-epoxy-3β-[2′,3′,4′-tri-O-acetyl-β-D-glucopyranoside-(6′→1′′)-2″,3″,4″′-tri-O-acetyl-β-D-arabinopyranosyl-(3′→1′′′)-2″″,3″″,4″″′-tri-O-acetyl-β-D-xylopyranosyl]-27-norlanost-8-ene-15,24-dione.
S.2.1: Flow chart of the compounds isolated from the dichloromethane extract of *Eucomis bicolor* Bak.

![Flow chart diagram]

- **SC** - small column-silica, 1 cm diameter, 2 ml fractions collected
- **SC-Sephadex** - small column-sephadex, 1cm diameter, 2 ml fractions collected
- **LC** - large column-silica, 5 cm diameter, 75 ml fractions collected
- **PTLC** - Preparative TLC
- **D** - DCM
- **M** - MeOH
- **Et** - Ethyl acetate
- **E** - Diethyl ether
S. 2.2 Flow chart of the compounds isolated from the methanol extract of *Eucomis bicolor* Bak.

Eucomis bicolor (104.87g)

- **LC/3% M**: 97% D
 - Fr 13-17
 - **LC/8% Et**: 92% D
 - Fr 4-5
 - **EB 8 (8.2 mg)**

- **Fr 115 (6Ac, 1.9 mg), Fr 58-51 (8Ac, 1.8 mg), Fr 34-35 (10Ac, 2.3 mg), Fr 21-22 (12Ac, 2.1 mg)**

- **LC/15% M**: 85% D
 - Fr 30-33
 - **SC/50% Et**: 50% D
 - Fr 12-16
 - **PTLC x 2/10% M**: 90% D
 - **No separation**
 - **SC-Sep/50% M**: 50% D
 - Fr 9-14
 - **Ac/SC/8%Et**: 92% D

- **Fr 115 (6Ac, 1.9 mg), Fr 58-51 (8Ac, 1.8 mg), Fr 34-35 (10Ac, 2.3 mg), Fr 21-22 (12Ac, 2.1 mg)**

- **LC/20% M**: 80% D
 - Fr 40-45
 - **SC/50% Et**: 50% D
 - Fr 20-24
 - **PTLC x 2/15% M**: 90% D
 - **No separation**
 - **SC-Sep/50% M**: 50% D
 - Fr 7-11
 - **Ac/SC/8%Et**: 92% D

- **Fr 101 (7Ac, 1.2 mg), Fr 43 (9Ac, 1.1 mg), Fr 19-20 (11Ac, 0.8 mg), Fr 10-11 (13Ac, 1.7 mg), Fr 123 (14Ac, 1.4 mg)**

- **Fr 4-5 (8.2 mg)**
S.3 Details for the LSD input file

; The LSD input file starts below the row of stars.
; The lines must be copied in a text editor
; such as textedit (Mac), gedit (Linux) or notepad++ (Windows)
; and saved as simple text.

; ***

; Compound 1
ELIM 1 4 ; 1 HMBC correlation can be 4J

; LSD atom numbering (Hs excepted)
MULT 1 C 2 0 ; Atom 1 is a C, is hybridized sp2, and has 0 H atom attached
MULT 2 C 2 0
MULT 3 C 2 0
MULT 4 C 2 0
MULT 5 C 3 0
MULT 6 C 3 0
MULT 7 C 3 1
MULT 8 C 3 0
MULT 9 C 3 1
MULT 10 C 3 1
MULT 11 C 3 2
MULT 12 C 3 2
MULT 13 C 3 2
MULT 14 C 3 2
MULT 15 C 3 0
MULT 16 C 3 2
MULT 17 C 3 3
MULT 18 C 3 2
MULT 19 C 3 2
MULT 20 C 3 2
MULT 21 C 3 2
MULT 22 C 3 3
MULT 23 C 3 3
MULT 24 C 3 3
MULT 25 C 3 3
MULT 26 O 2 0
MULT 27 O 2 0
MULT 28 O 3 0

SHIX 1 213.1 ; The chemical shift of C-1 is 213.1 ppm
SHIX 2 177.1
SHIX 3 135.8
SHIX 4 133.1
SHIX 5 98.4

; the SHIX commands are ignored by LSD
HSQC 1 1 ; see below about HMBC (11 18 21)
HSQC 2 2 ; idem
HSQC 3 3 ; idem
HSQC 4 4 ; idem
HSQC 5 5 ; idem
HSQC 6 6 ; idem
HSQC 7 7

; HMBC (11 18 21) 5
HSQC 14 14
HSQC 15 15 ; idem
HSQC 16 16
HSQC 17 17
HSQC 18 18 ; C-18 is bound to H-18 (even though there are two of them)
HSQC 19 19
HSQC 20 20
HSQC 21 21
HSQC 22 22
HSQC 23 23
HSQC 24 24
HSQC 25 25

COSY 7 9 ; H-7 and H-9 correlate in the COSY spectrum (strong intensity, 3J)
COSY 7 20
COSY 10 12
COSY 13 14
COSY 23 10
COSY 25 9

BOND 1 26 ; C=O ketone
BOND 2 27 ; C=O lactone
BOND 2 28 ; C-O lactone
BOND 5 28 ; O-C lactone
BOND 3 4 ; C=C

HMBC 1 13 ; C-1 correlates with H-13 in the HMBC spectrum
HMBC 1 9
HMBC 1 14
HMBC 1 25

HMBC 2 12
HMBC 2 10
HMBC 2 12

HMBC 3 20 ; low intensity
HMBC 3 16 ; idem
HMBC 3 17

HMBC 4 14 ; idem
HMBC 4 19 ; idem
HMBC 4 24

; C-5 correlates with H-11 or H-18 or H-21
; This should be written HMBC 5 (11 18 21).

; The LSD syntax does not allow it, sorry.
; This is equivalent to HMBC (11 18 21) 5
; because of the numbering of Hs according to Cs using HSQC data.
; this forces to "invent" an H-5 that does not exist
; and explains why a few quaternary Cs (among which C-5)
; are declared in the HSQC section.
Therefore:
HMBC (11 18 21) 5
HMBC 5 12
HMBC 5 16
HMBC 5 23
HMBC 5 22

HMBC 7 9
HMBC (14 18) 7
HMBC 7 20
HMBC 7 24
HMBC 7 25

HMBC 8 19
HMBC (11 18 21) 8
HMBC 8 19
HMBC (16 20) 8
HMBC 8 17
HMBC 8 22

HMBC 9 13
HMBC (11 18 21) 9
HMBC 9 7
HMBC 9 25

HMBC 10 12
HMBC (11 18 21) 10
HMBC 10 12
HMBC 10 23

HMBC 11 16

HMBC 12 10
HMBC 12 23
HMBC 13 14	HMBC 19 22
HMBC 14 13	HMBC 20 9
HMBC 14 24	HMBC (14 18) 20
HMBC 15 13	HMBC 20 7
HMBC 15 14	HMBC 21 19
HMBC 15 20	
HMBC 15 7	
HMBC 15 24	HMBC 22 19
HMBC (11 18 21) 16	HMBC 23 12
HMBC 16 17	HMBC 23 10
HMBC 17 16	HMBC 24 14
HMBC 18 20	HMBC 24 7
HMBC 20 7	
HMBC 21 19	
HMBC 22 19	
HMBC 23 12	
HMBC 23 10	
HMBC 24 14	
HMBC 24 7	

QUAT L1 ; L1 is the list of quaternary carbons
LIST L2 17 22 24 ; L2 is the list of the indexes of methyl singlets
PROP L2 1 L1 ; each singlet methyl has exactly one quaternary carbon as neighbor

CH L3 ; L3 is the list of methine carbons
LIST L4 23 25 ; L4 is the list of the indexes of methyl doublets
PROP L4 1 L3 ; each doublet methyl has exactly one methine carbon as neighbor
NMR spectra for compounds 1-5 and 6Ac-14Ac. (See Figures S1.1, S 1.2, S 1.3 and S 1.4 for names and structures).
Spectrum S.3.1.2: FTIR spectrum for compound 1

Spectrum S.3.1.3: 1H NMR spectrum for compound 1 in CDCl$_3$
Spectrum S.3.1.4: 13C NMR spectrum for compound 1 in CDCl$_3$

Spectrum S.3.1.5: DEPT spectrum for compound 1 in CDCl$_3$
Spectrum S.3.1.6: HSQCDEPT spectrum for compound 1 in CDCl₃

Spectrum S.3.1.7: HMBC spectrum for compound 1 in CDCl₃
Spectrum S.3.2.1: Mass spectrum for compound 2Ac

Spectrum S.3.2.2: FTIR spectrum for compound 2Ac
Spectrum S.3.2.3: 1H NMR spectrum for compound 2Ac in CDCl$_3$

Spectrum S.3.2.4: 13C NMR spectrum for compound 2Ac in CDCl$_3$
Spectrum S.3.2.5: DEPT spectrum for compound 2Ac in CDCl$_3$

Spectrum S.3.2.6: HSQCDEPT spectrum for compound 2Ac in CDCl$_3$
Spectrum S.3.2.7: HMBC spectrum for compound 2Ac in CDCl₃

Spectrum S.3.2.8: COSY spectrum for compound 2Ac in CDCl₃
Spectrum S.3.2.9: NOESY spectrum for compound 2Ac in CDCl₃

Spectrum S.3.3.1: Mass spectrum for compound 3
Spectrum S.3.3.2: FTIR spectrum for compound 3

Spectrum S.3.3.3: 1H NMR spectrum for compound 3 in CDCl$_3$
Spectrum S.3.3.4: 13C NMR spectrum for compound 3 in CDCl$_3$.

Spectrum S.3.3.5: DEPT spectrum for compound 3 in CDCl$_3$.
Spectrum S.3.3.6: HSQCDEPT spectrum for compound 3 in CDCl₃

Spectrum S.3.3.7: HMBC spectrum for compound 3 in CDCl₃
Spectrum S.3.3.9: COSY spectrum for compound 3 in CDCl₃

Spectrum S.3.3.9: NOESY spectrum for compound 3 in CDCl₃
Spectrum S.3.4.1: Mass spectrum for compound 4

Spectrum S.3.4.2: FTIR spectrum for compound 4
Spectrum S.3.4.3: 1H NMR spectrum for compound 4 in CDCl$_3$
Spectrum S.3.4.4: DEPT spectrum for compound 4 in CDCl₃

Spectrum S.3.4.6: HSQCDEPT spectrum for compound 4 in CDCl₃
Spectrum S.3.4.7: HMBC spectrum for compound 4 in CDCl₃
Spectrum S.3.5.1: Mass spectrum for compound 5

Spectrum S.3.5.2: FTIR spectrum for compound 5
Spectrum S.3.5.4: 13C NMR spectrum for compound 5 in CDCl$_3$

Spectrum S.3.5.5: DEPT spectrum for compound 5 in CDCl$_3$
Spectrum S.3.5.6: HSQCDEPT spectrum for compound 5 in CDCl₃

Spectrum S.3.5.7: HMBC spectrum for compound 5 in CDCl₃
Spectrum S3.5.8: COSY spectrum for compound 5 in CDCl₃

Spectrum S3.5.9: NOESY spectrum for compound 5 in CDCl₃
Spectrum S3.6.2: FTIR spectrum for compound 6Ac

Spectrum S3.6.1: Mass spectrum for compound 6Ac
Spectrum S3.6.5: DEPT spectrum for compound 6Ac in CDCl₃

Spectrum S3.6.6: HSQCDEPT spectrum for compound 6Ac in CDCl₃
Spectrum S3.6.7: HMBC spectrum for compound 6Ac in CDCl3.

Spectrum S3.6.8: COSY spectrum for compound 6Ac in CDCl3.
Spectrum S3.6.9: NOESY spectrum for compound 6Ac in CDCl₃

Spectrum S3.7.1: Mass spectrum for compound 7Ac
Spectrum S.3.7.2: FTIR spectrum for compound 7Ac

Spectrum S.3.7.3: 1H NMR spectrum for compound 7Ac in CDCl$_3$
Spectrum S.3.7.4: 1C NMR spectrum for compound 7Ac in CDCl$_3$

Spectrum S.3.7.5: DEPT spectrum for compound 7Ac in CDCl$_3$
Spectrum S.3.7.8: COSY spectrum for compound 7Ac in CDCl₃

Spectrum S.3.7.9: NOESY spectrum for compound 7Ac in CDCl₃
Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name: 1406_data_pulver_12/MSS 10984b_55_01_44084.d
Method: 2.5min_cat_sample_eros_Naf_11-10-10.m
Sample Name: MSS 10984b
Comment:

Acquisition Date: 25/06/2012 17:15:42
Operator: Mass Spec
Instrument / Ser#: microTOF 512

Acquisition Parameter
Source Type: ESI
Focus: Not active
Scan Begin: 100 m/z
Scan End: 1000 m/z
Ion Polarity: Positive
Set Nebulizer: 2.0 Bar
Set Capillary: 4500 V
Set Dry Heater: 181 °C
Set Dry Gas: 10.0 l/min
Set Divert Valve: Source
Set End Plate Offset: -500 V

This is the measured mass spectrum of your compound.

Spectrum S3.8.1: Mass spectrum for compound 8Ac

Spectrum S3.8.2: FTIR spectrum for compound 8A
Spectrum S3.8.3: 1H NMR spectrum for compound 8Ac in CDCl₃

Spectrum S3.8.4: 13C NMR spectrum for compound 8Ac in CDCl₃
Spectrum S3.8.5: DEPT spectrum for compound 8Ac in CDCl₃

Spectrum S3.8.6: HSQCDEPT spectrum for compound 8Ac in CDCl₃
Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name: 5000-Data-12/MSS 10983b_15_01_445683.d
Method: 2.5min_cal_sample_pos_Naf_Mid_mass.m
Sample Name: MSS 10983b
Comment:

Acquisition Info
Acquisition Date: 25/06/2012 17:12:12
Operator: Mass Spec
Instrument: Sent microTOF 92

Acquisition Parameter
Source Type: ESI
Flow: Not active
Scan Begin: 100 m/z
Scan End: 1500 m/z
Ion Polarity: Positive
Set Nebulizer: 2.0 Bar
Set Capillary: 4500 V
Set End Plate Offset: -500 V
Set Dry Heater: 180 °C
Set Dry Gas: 10.0 l/min
Set Divert Valve: Source

Spectrum S3.9.1: Mass spectrum for compound 9Ac

Spectrum S3.9.3: 1H NMR spectrum for compound 9Ac in CDCl₃
Spectrum S3.9.4: 13C NMR spectrum for compound 9Ac in CDCl$_3$

Spectrum S3.9.5: DEPT spectrum for compound 9Ac in CDCl$_3$
Spectrum S3.9.6: HSQCDEPT spectrum for compound 9Ac in CDCl₃

Spectrum S3.9.7: HMBC spectrum for compound 9Ac in CDCl₃
Spectrum S3.9.8: COSY spectrum for compound 9Ac in CDCl₃

Spectrum S3.9.9: NOESY spectrum for compound 9Ac in CDCl₃
Spectrum S3.10.1: Mass spectrum for compound 10Ac

Spectrum S3.10.2: FTIR spectrum for compound 10Ac
Spectrum S3.10.3: 1H NMR spectrum for compound 10Ac in CDCl$_3$.

Spectrum S3.10.4: 13C NMR spectrum for compound 10Ac in CDCl$_3$.
Spectrum S3.10.5: DEPT spectrum for compound 10Ac in CDCl₃

Spectrum S3.10.6: HSQCDEPT spectrum for compound 10Ac in CDCl₃
Spectrum S3.10.9: NOESY spectrum for compound 10Ac in CDCl₃

Mass Spectrum SmartFormula Report

<table>
<thead>
<tr>
<th>Analysis Info</th>
<th>Acquisition Date</th>
<th>Mass Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Name</td>
<td>25/06/2012 17:05:15</td>
<td>92</td>
</tr>
<tr>
<td>Method</td>
<td>Operator</td>
<td>Instrument / Source</td>
</tr>
<tr>
<td>2.5min_calc_sample_pos_Not_Met_mass.m</td>
<td>Mass Spec.</td>
<td>microOTOF</td>
</tr>
<tr>
<td>Sample Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS5 10990b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acquisition Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>ESI</td>
</tr>
<tr>
<td>Focus</td>
<td>Not active</td>
</tr>
<tr>
<td>Scan Begin</td>
<td>100 m/z</td>
</tr>
<tr>
<td>Scan End</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Set Nebulizer</td>
<td>2.0 Bar</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>180 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>10.0 l/min</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Source</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>4500 V</td>
</tr>
</tbody>
</table>

This is the measured mass spectrum of your compound.

Spectrum S3.11.1: Mass spectrum for compound 11Ac
Spectrum S3.11.2: FTIR spectrum for compound 11Ac

Spectrum S3.11.3: 1H NMR spectrum for compound 11Ac in CDCl$_3$
Spectrum S.3.11.4: 13C NMR spectrum for compound 11Ac in CDCl$_3$

Spectrum S.3.11.5: DEPT spectrum for compound 11Ac in CDCl$_3$
Spectrum S.3.11.6: HSQCDEPT spectrum for compound 11Ac in CDCl₃

Spectrum S.3.11.7: HMBC spectrum for compound 11Ac in CDCl₃
Spectrum S.3.11.6: COSY spectrum for compound II Ac in CDCl₃

Spectrum S.3.11.9: NOESY spectrum for compound II Ac in CDCl₃
Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name: Z:\Sep 11MSS09703_19_01_32461.d
Method: 2.5min_old_sample_pos_Hif_11-10-10.m
Sample Name: MSS09703
Comment:

Acquisition Date: 16/09/2011 10:58 am
Operator: Mass Spec
Instrument/Seq: hiTOF 92

Acquisition Parameter
Source Type: ESI
Focus: Not active
Scan Begin: 100 m/z
Scan End: 1600 m/z
Ion polarity: Positive
Set Nebulizer: 2.0 Bar
Set Dry Heater: 190 °C
Set Dry Gas: 13.0 l/min
Set End Plate Offset: -500 V
Set Ejector Valve: Source

This is the measured mass spectrum of your compound.

Theoretical isotope model: C_6H_6NaO_15: [867.4147]

<table>
<thead>
<tr>
<th>Meas. m/z</th>
<th># Formula</th>
<th>m/z err [ppm]</th>
<th>Mean err [ppm]</th>
<th>mdb</th>
<th>e'</th>
<th>Conf</th>
<th>mSigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>867.4147</td>
<td>1 C_65H_64NaO_15</td>
<td>+1.1</td>
<td>+1.9</td>
<td>13.5</td>
<td>even</td>
<td>50.49</td>
<td></td>
</tr>
</tbody>
</table>

Spectrum S.3.12.1: Mass spectrum for compound 12Ac

Spectrum S.3.12.2: FTIR spectrum for compound 12Ac
Spectrum S3.12.3: 1H NMR spectrum for compound 12Ac in CDCl$_3$.
Spectrum S3.12.4: 13C NMR spectrum for compound 12Ac in CDCl$_3$

Spectrum S3.12.5: DEPT spectrum for compound 12Ac in CDCl$_3$
Spectrum S3.12.6: HSQCDEPT spectrum for compound 12Ac in CDCl₃

Spectrum S3.12.7: HMBC spectrum for compound 12Ac in CDCl₃
Spectrum S3.12.8: COSY spectrum for compound 12Ac in CDCl₃

Spectrum S3.12.9: NOESY spectrum for compound 12Ac in CDCl₃
Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name: UnofDat Jun 12 MSS 10982_55_01_43046.d
Method: 2.5 min_cal_sample_pos_Nat_Mid_mass.m
Sample Name: MSS 10982
Comment:

Acquisition Info
Acquisition Date: 22/06/2012 14:13:50
Operator: Mass Spec
Instrument / Ser#: microTOF 92

Acquisition Parameter
Source Type: ESI
Focus: Not active
Scan Begin: 100 m/z
Scan End: 1500 m/z
Scan Rate: 5000 V
Set Capillary: -4500 V
Set End Plate Offset: -500 V
Set Nebulizer: 2.0 Bar
Set Dry Heater: 100 °C
Set Dry Gas: 10.0 L/min
Set Divert valve: Source

This is the measured mass spectrum of your compound.

Theoretical Isotope Model: C 54 H 76 Na D 21 + 1083.48

<table>
<thead>
<tr>
<th>Mass, m/z</th>
<th># Formula</th>
<th>m/z</th>
<th>err [ppm]</th>
<th>Mean err [ppm]</th>
<th>ndb</th>
<th>e-</th>
<th>Conf</th>
<th>mSigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1083.4739</td>
<td>C 54 H 76 Na D 21</td>
<td>1083.4771</td>
<td>3.0</td>
<td>16.5</td>
<td>even</td>
<td>102.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spectrum S3.13.3: 1H NMR spectrum for compound 13Ac in CDCl$_3$.

Spectrum S3.13.4: 13C NMR spectrum for compound 13Ac in CDCl$_3$.
Spectrum S3.13.5: DEPT spectrum for compound 13Ac in CDCl₃

Spectrum S3.13.6: HSQCDEPT spectrum for compound 13Ac in CDCl₃
Spectrum S3.13.7: HMBC spectrum for compound 13Ac in CDCl₃

Spectrum S3.13.8: COSY spectrum for compound 13Ac in CDCl₃
Spectrum S3.14.2: FTIR spectrum for compound 14Ac

Spectrum S3.14.3: 1H NMR spectrum for compound 14Ac in CDCl3
Spectrum S3.14.4: 13C NMR spectrum for compound 14Ac in CDCl$_3$

Spectrum S3.14.5: DEPT spectrum for compound 14Ac in CDCl$_3$
Spectrum S3.14.8: COSY spectrum for compound 14Ac in CDCl₃

Spectrum S3.14.9: NOESY spectrum for compound 14Ac in CDCl₃
S.5 NCI 59 CELL SCREENING DATA FOR COMPOUNDS

The following compounds were submitted to the NCI-59 Panel:

5,7-dihydroxy-8-methoxy-3-(4′-methoxybenzyl)-4-chromanone (EB1), eucosterol (EB4), (23S)-17α,23-epoxy-3β,28,29-trihydroxy-27-norlanost-8-en-24-one (EB5), 2Ac, 3, 4 and 5.

Structures are provided in S.1

Figure S.4.1: Single dose screen report for compound EB1
Figure S.4.2: Single dose screen report for compound EB4
Figure S.4.3: Single dose screen report for compound EB5
Figure S.4.4: Single dose screen report for compound 2Ac

<table>
<thead>
<tr>
<th>Panel/Cell Line</th>
<th>Growth Percent</th>
<th>Mean Growth Percent - Growth Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCRF-CEM</td>
<td>93.48</td>
<td></td>
</tr>
<tr>
<td>HL-60(Rl)</td>
<td>67.23</td>
<td></td>
</tr>
<tr>
<td>K-562</td>
<td>73.93</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-435</td>
<td>92.69</td>
<td></td>
</tr>
<tr>
<td>RPMI-8226</td>
<td>86.23</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>64.88</td>
<td></td>
</tr>
<tr>
<td>Non-Small Cell Lung Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A549/ATCC</td>
<td>99.05</td>
<td></td>
</tr>
<tr>
<td>BEKV</td>
<td>103.86</td>
<td></td>
</tr>
<tr>
<td>HOP-62</td>
<td>92.69</td>
<td></td>
</tr>
<tr>
<td>HOP-92</td>
<td>77.02</td>
<td></td>
</tr>
<tr>
<td>NCI-H226</td>
<td>103.38</td>
<td></td>
</tr>
<tr>
<td>NCI-H23</td>
<td>52.45</td>
<td></td>
</tr>
<tr>
<td>NCI-H460</td>
<td>105.12</td>
<td></td>
</tr>
<tr>
<td>NCI-H522</td>
<td>84.08</td>
<td></td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLO 205</td>
<td>92.44</td>
<td></td>
</tr>
<tr>
<td>HCT-116</td>
<td>92.44</td>
<td></td>
</tr>
<tr>
<td>HCT-15</td>
<td>107.16</td>
<td></td>
</tr>
<tr>
<td>HT29</td>
<td>99.10</td>
<td></td>
</tr>
<tr>
<td>SW-620</td>
<td>102.03</td>
<td></td>
</tr>
<tr>
<td>SW-620</td>
<td>102.43</td>
<td></td>
</tr>
<tr>
<td>CNS Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-295</td>
<td>104.60</td>
<td></td>
</tr>
<tr>
<td>SF-295</td>
<td>99.92</td>
<td></td>
</tr>
<tr>
<td>SF-539</td>
<td>108.47</td>
<td></td>
</tr>
<tr>
<td>SNB-19</td>
<td>92.11</td>
<td></td>
</tr>
<tr>
<td>U2OS</td>
<td>96.10</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOX IVI</td>
<td>93.05</td>
<td></td>
</tr>
<tr>
<td>MALME-3M</td>
<td>100.49</td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>110.75</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-435</td>
<td>103.00</td>
<td></td>
</tr>
<tr>
<td>SK-MEL-1-2</td>
<td>98.86</td>
<td></td>
</tr>
<tr>
<td>SK-MEL-28</td>
<td>94.48</td>
<td></td>
</tr>
<tr>
<td>SK-MEL-5</td>
<td>93.77</td>
<td></td>
</tr>
<tr>
<td>UACC-257</td>
<td>94.46</td>
<td></td>
</tr>
<tr>
<td>UACC-62</td>
<td>92.81</td>
<td></td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU812</td>
<td>95.42</td>
<td></td>
</tr>
<tr>
<td>OVCAR-3</td>
<td>105.88</td>
<td></td>
</tr>
<tr>
<td>OVCAR-4</td>
<td>101.58</td>
<td></td>
</tr>
<tr>
<td>OVCAR-5</td>
<td>106.62</td>
<td></td>
</tr>
<tr>
<td>OVCAR-8</td>
<td>101.93</td>
<td></td>
</tr>
<tr>
<td>NCIH989-RES</td>
<td>97.79</td>
<td></td>
</tr>
<tr>
<td>SKOV-3</td>
<td>95.28</td>
<td></td>
</tr>
<tr>
<td>Renal Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>769-2</td>
<td>107.92</td>
<td></td>
</tr>
<tr>
<td>A498</td>
<td>81.77</td>
<td></td>
</tr>
<tr>
<td>ACHR</td>
<td>22.66</td>
<td></td>
</tr>
<tr>
<td>CAM-1</td>
<td>88.85</td>
<td></td>
</tr>
<tr>
<td>DAF-32</td>
<td>107.11</td>
<td></td>
</tr>
<tr>
<td>5N12C</td>
<td>101.38</td>
<td></td>
</tr>
<tr>
<td>T-10</td>
<td>106.91</td>
<td></td>
</tr>
<tr>
<td>UO-31</td>
<td>60.54</td>
<td></td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC-3</td>
<td>76.67</td>
<td></td>
</tr>
<tr>
<td>DU-145</td>
<td>110.47</td>
<td></td>
</tr>
<tr>
<td>Breast Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF7</td>
<td>92.96</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-231/ATCC</td>
<td>107.27</td>
<td></td>
</tr>
<tr>
<td>HS-578T</td>
<td>94.33</td>
<td></td>
</tr>
<tr>
<td>BT-549</td>
<td>110.94</td>
<td></td>
</tr>
<tr>
<td>T-470</td>
<td>90.31</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>91.52</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>96.09</td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td>31.21</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>45.95</td>
<td></td>
</tr>
</tbody>
</table>

The graph shows the growth percent and mean growth percent for various cell lines treated with compound 2Ac.
Figure S.4.5: Single dose screen report for compound 3
Figure S.4.6: Single dose screen report for compound 5