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Abstract—The Transport Layer Security (TLS) protocol is
designed to allow two parties, a client and a server, to commu-
nicate securely over an insecure network. However, when TLS
connections are proxied through an intermediate middlebox,
like a Content Delivery Network (CDN), the standard end-
to-end security guarantees of the protocol no longer apply.
In this paper, we investigate the security guarantees provided
by Keyless SSL, a CDN architecture currently deployed by
CloudFlare that composes two TLS 1.2 handshakes to obtain
a proxied TLS connection. We demonstrate new attacks that
show that Keyless SSL does not meet its intended security
goals. These attacks have been reported to CloudFlare and we
are in the process of discussing fixes.

We argue that proxied TLS handshakes require a new,
stronger, 3-party security definition. We present 3(S)ACCE-
security, a generalization of the 2-party ACCE security defini-
tion that has been used in several previous proofs for TLS.
We modify Keyless SSL and prove that our modifications
guarantee 3(S)ACCE-security, assuming ACCE-security for the
individual TLS 1.2 connections. We also propose a new design
for Keyless TLS 1.3 and prove that it achieves 3(S)ACCE-
security, assuming that the TLS 1.3 handshake implements
an authenticated 2-party key exchange. Notably, we show
that secure proxying in Keyless TLS 1.3 is computationally
lighter and requires simpler assumptions on the certificate
infrastructure than our proposed fix for Keyless SSL. Our
results indicate that proxied TLS architectures, as currently
used by a number of CDNs, may be vulnerable to subtle attacks
and deserve close attention.

1. Introduction

To protect sensitive data as it is communicated over an
insecure network, such as the Internet, we rely on crypto-
graphic protocols that implement secure channels. Tradition-
ally, such protocols combine an authenticated key-exchange
(AKE) phase that establishes channel keys with a subsequent

authenticated encryption (AE) phase. This second step uses
the computed keys to protect streams of messages between
honest endpoints from powerful adversaries, who are as-
sumed to control the network as well as any number of
malicious endpoints.

Transport Layer Security. The Transport Layer Security
(TLS) protocol is the most widely deployed secure-channel
protocol on the Internet. For example, connections between
modern web browsers and popular websites are secured
using HTTP over TLS (HTTPS). With increased concerns
over both mass surveillance and criminal activity on the
Internet, the use of TLS is slowly becoming mandatory for
many use cases, including the Web.1

TLS is designed to be used between a client and a
server, typically authenticated using public-key certificates.
In TLS, the initial AKE phase is called the handshake and
the subsequent AE phase is called the record. The handshake
protocol supports a number of modes, such as RSA key
transport, Diffie-Hellman key exchange, or pre-shared keys.
The record protocol also supports a variety of constructions,
including stream ciphers, block ciphers, and modern AE
with additional data (AEAD) schemes.

A series of papers have developed a precise cryp-
tographic specification for TLS, called authenticated and
confidential channel establishment (ACCE) [8], and proved
that various combinations of handshake and record modes
achieve this specification. A variant of ACCE, called
SACCE, applies to the common case where only the server
is authenticated, but the client remains anonymous [10].

On the other hand, a number of modes and constructions
used in TLS have also been shown to be insecure, resulting
in high-profile attacks on both the handshake and record
layers [1], [3]. The next version of TLS (1.3) is currently
being standardized, and it is designed to avoid many of the
pitfalls in earlier versions of the protocol.2 Early drafts of

1. See the latest HTTP/2 draft: http://http2.github.io/http2-spec/
2. See the latest TLS 1.3 draft at https://tlswg.github.io/tls13-spec/
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Figure 1: TLS in Classic CDNs (left-hand side);
Cloudflare’s Keyless SSL (right-hand side)

this new protocol have already been analyzed for security
in models similar to ACCE [6], [9], [11].

By systematically deploying TLS on all websites, by
eradicating obsolete cryptographic constructions, and by re-
lying on strong security theorems for modern versions of the
protocol, practitioners can significantly improve the security
of the Web. However, the use of end-to-end encryption
protocols like TLS raises new challenges for widely-used
security mechanisms and performance enhancements that
require third parties (proxies) between client and servers.

Content Delivery Networks. TLS connections may poten-
tially be used to transfer large amounts of data (e.g., movies
in streaming applications). If the content owner (the origin
server) and the receiver (the client) are situated geographi-
cally far away, data transfer will be slow, involving extensive
routing. To speed up such connections, content owners can
hire Content Delivery Networks (CDNs) that cache popular
content at edge servers located around the world and deliver
them to clients based on geographic proximity.

Deploying CDNs for public HTTP traffic is relatively
straight-forward. The origin server (e.g., example.com) de-
cides what content will be cached by the CDN and puts it on
some subdomain (e.g., cdn.example.com). The origin server
and the CDN use the DNS protocol to direct requests for
this subdomain to the nearest edge server. The client sees
a significant performance improvement, but is otherwise
unaware that it is not directly connected to the origin server.

For HTTPS connections, however, this is more problem-
atic. The client expects a direct secure channel to the origin
server, and redirection to an unknown edge server will be
seen as an attack. Consequently, the origin server and the
CDN need to agree on a way by which edge servers can
accept connections on behalf of the origin server.

In the classic case, the CDN generates a secret and
public-key pair and, on these, provisions a certificate on
behalf of certain domains of the origin server (e.g., for
cdn.example.com). This effectively allows the CDN’s edge
servers to impersonate the origin server, as depicted on the
left-hand side of Figure 1. This architecture works well for
simple origin servers who wish to delegate all TLS-related
operations to the CDN. The main risk is that any attack on
the edge server will expose the private key to an adversary
who can then impersonate the origin server, at least until
the corresponding certificate expires or is revoked.

To mitigate such risks, especially for “high-value” origin
servers who may require some CDN-based performance-

boost but do not want the CDN to handle long-term private
keys on their behalf, CloudFlare implemented a version of
proxied TLS called Keyless SSL [13]. A patent by Akamai
on this matter existed already [7], yet a solution had not
been deployed commercially before CloudFlare’s.

In this setup, depicted on the right-hand side of Figure 1,
edge servers do not get the certificate private key. Instead,
the client, edge server, and origin server must now engage
in a 3-party proxied handshake, where the client and edge
server still compute channel keys for the TLS connection,
but all private key operations are deferred to the origin
server. The informal security goals of this novel design
were outlined in [13] but they were not formally stated as a
cryptographic definition. In this paper, we provide the first
cryptographic analysis of Keyless SSL, in terms of a new
3-party security definition for proxied TLS connections.

3(S)ACCE-Security. We define 3(S)ACCE, a non-trivial
adaptation of traditional, 2-party ACCE security when the
handshake is run in the presence of middleboxes/middleware
(MW) such as CDN edge servers. Notably, the middlebox is
only authorised to access a subset of the server’s contents,
and it is a potentially malicious party. Our 3(S)ACCE model
captures the characteristics of several types of proxied hand-
shakes including classic CDNs and Keyless SSL.

Our notion of 3(S)ACCE encompasses four properties:
(i) entity authentication for both middleboxes and servers
(but not necessarily for clients); (ii) channel security for the
client-to-middlebox and for the middlebox-to-server link;
(iii) accountability, which says that if the client believes it
is speaking to a server, then that server is able to compute
the secret key for that session; (iv) content soundness,
which says that the middlebox may not forward content
that it has not been authorized to deliver by the server. All
these propoerties need to hold in the presence of network
attackers, malicious servers, and malicious middleboxes.

The first two properties are 3-party extensions of the
corresponding preoperties in 2-ACCE, but take into account
the possibility of malicious and compromised middleware.
Content soundness captures the notion that middleware is
authorized to deliver only specific sub-parts (e.g., subdo-
mains) of a server’s content. Accountability requires that
whenever a client identifies a server as its partner, that
server should be able to decrypt and hence audit channels
established between the client and middleware. This limits
what malicious middleware can do without the server’s
knowledge. Note that classical CDNs do not guarantee
accountability, since middleware may pose as the server
independently of the server. However, we advocate it as a
desirable security goal for proxied TLS architectures.

Our 3(S)ACCE-security definition is of independent in-
terest for other proxied secure channel architectures. It relies
on a novel notion of partnering in which one instance is
partnered either with one peer instance (when the connection
is not proxied), or with three other instances (for proxied
connections). However, the definition still has many limita-
tions. For example, it does not handle authenticated clients,
and it does not require forward secrecy. We leave such



extensions of our model for future work.

Breaking and Fixing Keyless SSL. We present two attacks
on Keyless SSL that break its intended security goals by
relying on malicious middleware. The key weakness we
expose and exploit is that Keyless SSL turns origin servers
into signing and decryption oracles for the private key.
These servers have no context for the values they are being
asked to decrypt or sign, and so they are not able to know
whether they correspond to a valid client session, or whether
they are valid TLS values at all. As a consequence, we
show that an attacker who can obtain an edge server’s
private key can decrypt all prior RSA-based connections to
any edge server, hence breaking channel security. We also
demonstrate a cross-protocol attack that enables an attacker
who compromises an edge server’s private key to set up a
long-term QUIC server impersonating the origin server.

We propose a modification of the original Keyless SSL
protocol that prevents these attacks and provably achieves
3(S)ACCE-security. Although close to the original archi-
tecture, our new protocol comes with several performance
drawbacks. First, we increase the computational workload of
the server whenever the latter aids the middlebox. Second,
in order to achieve accountability, the middlebox may not
use session resumption and will need the server to always
be online. Third, our proofs of entity authentication and
channel security require the use of an export key between the
middlebox and the server. Fourth, to fully provide content
soundness in the presence of malicious middleware, we need
to provision one certificate per middlebox. However, some
of these restrictions can be relaxed to obtain weaker guaran-
tees. For example, we can allow some session resumption at
the cost of losing some accountability, and we can reduce the
number of certificates if we assume a weaker threat model.

We also present a new design for Keyless SSL applied
to the current draft of TLS 1.3 and prove it to be 3(S)ACCE-
secure. Interestingly, the complexity of the PKI, as well
as the computational burden on the server, can be much
reduced in the case of 3(S)ACCE-security over TLS 1.3.
Various middleboxes can share the same public key and the
same certificate. At the expense of some extra verifications
and a nonce generation, the server can be reduced to acting
as a signature oracle. Even our TLS 1.3 version, however,
precludes session resumption. In the full version, we show
how to attain 3(S)ACCE-security and allow session resump-
tion, if we allow the client to be aware that the handshake
is legitimately proxied.

Related Work. We discuss closely related work throughout
the paper. While there is a wealth of literature on the
cryptographic analysis of various versions and applications
of TLS [5], [6], [8]–[11], three-party TLS scenarios have not
received as much attention. We primarily refer to [13] for a
description and informal analysis of Keyless SSL. A differ-
ent proxying scenario is considered in mcTLS [12], which
modifies the TLS handshake so that clients and servers can
both explicitly grant read/write permissions to middleboxes.
In contrast, we only consider solutions that use unmodified
TLS handshakes between clients and middleboxes.

Our Contributions. In this paper, we investigate the secu-
rity of proxied 3-party TLS scenarios, focusing on the case
of Keyless SSL. We claim the following main contributions:

• we analyse the security of Keyless SSL against its
intended goals, revealing several attacks (Section 2);

• we introduce the 3(S)ACCE model as a security spec-
ification for proxied TLS handshakes (Section 4);

• we modify Keyless SSL and prove it to be 3(S)ACCE-
secure, at some cost to performance (Section 5);

• we design Keyless TLS 1.3, an efficient proxied hand-
shake architecture for TLS 1.3, and prove that it attains
3(S)ACCE-security (Section 6);

• in the full version, we describe a modular 3(S)ACCE-
secure protocol that can be instantiated with TLS 1.2
or TLS 1.3 and supports session resumption.

2. Proxied TLS Connections: Keyless SSL

The TLS protocol (formerly known as SSL) supports
many versions, extensions, and ciphersuites. Each TLS con-
nection begins with a handshake that negotiates the version
and other protocol parameters and then executes an authen-
ticated key exchange. In this section, we focus on the two
most commonly-used handshake modes of TLS 1.23

The RSA Handshake. In TLS-RSA, the client C sends a
nonce NC to the server S, which responds with its own
nonce NS and an RSA public-key certificate CertS . The
client then generates and sends a pre-master secret pmk
encrypted under the server’s public key. The server decrypts
pmk and the client and server both compute a master
secret msk using pmk and the two nonces. To complete
the handshake, both client and server use msk to MAC the
full handshake transcript and send (in an encrypted form)
these MACs to each other in finished messages (FinC ,FinS ).
These messages provide key confirmation, and also help
detect whether a network attacker has tampered with the
handshake messages. At the end of the handshake, both
client and server derive connection keys ck from msk and
the two nonces, and these keys are subsequently used for
authenticated encryption of application data in the record
phase. (In fact, these keys have already been used to encrypt
the finished messages.)

The TLS-RSA protocol is the oldest and most popular
handshake mode in TLS, but it has recently fallen out of
favour because it does not provide forward secrecy, which
means that if an adversary records a TLS-RSA connec-
tion and much later compromises the server’s private key,
it can decrypt the pmk, derive the connection keys, and
read all application data. This threat may seem unreal-
istic, but with new concerns about mass surveillance by
powerful adversaries, TLS-based applications increasingly
require forward secrecy by default. Moreover, TLS uses
an RSA encryption mode called RSA-PKCS#1v1.5, which
has proved vulnerable to a series of increasingly-effective
padding-oracle attacks, first described by Bleichenbacher,

3. See https://tools.ietf.org/html/rfc5246 for full details.
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Figure 2: The Keyless SSL architecture as implemented by Cloudflare: (blue+black) TLS-RSA; (red+black): TLS-DH.

that have proved hard to fix. For both these reasons, the
TLS working group is getting rid of RSA in TLS 1.3.

The DHE Handshake. In TLS-DHE, the client and server
first exchange nonces and the server certificate just like in
TLS-RSA. Then the server chooses a Diffie-Hellman group
(p, q, g) (represented by an elliptic curve or by an explicit
prime field) and generates a keypair (v, gv(mod p)). It signs
the nonces, the group, and its Diffie-Hellman public value
with its certificate private key and sends them to the client,
which then generates its own keypair (u, gu(mod p)). Both
client and server then compute the pre-master secret pmk
as guv (mod p). The rest of the protocol and computations
(msk, ck,FinC ,FinS ) proceed as in TLS-RSA.

The key advantage of TLS-DHE is that it does provide
forward secrecy as long as both parties use a strong Diffie-
Hellman group and generate fresh keypairs for each hand-
shake. Furthermore, the elliptic curve variant of TLS-DHE
is considered to be as fast (if not faster) than TLS-RSA.4

Proxied TLS in Keyless SSL. In proxied TLS, the client C
wants to connect to a server S and is instead redirected to a
geographically close CDN edge server (or middlebox) MW
that serves cached content from S . The server S trusts MW
enough to allow it to decrypt requests and encrypt responses
for this content. However, unlike in classical CDNs, S does
not want MW to impersonate it indefinitely; instead, S
wants to keep full control over its long-term private keys.

In both TLS-RSA and TLS-DHE, the server authenti-

4. TLS distinguishes between DH modes based on explicit primes from
those based on elliptic curves, but for the results in this paper, the difference
between the two is immaterial, and we refer to both as TLS-DHE.

cates by proving possession of its certificate private key,
using it to either decrypt some secret (TLS-RSA) or to sign
some value (TLS-DHE). The key observation of proxied
TLS, as developed by CloudFlare in Keyless SSL, is that
the middleware MW does not need to be given the server’s
private key as long as it can query the latter when it needs
a signature or decryption capabilities.

This leads to the design in Figure 2. The client C and
middleware MW execute a standard TLS-RSA or TLS-DHE
handshake, where MW uses S ’s certificate. In TLS-RSA,
C sends a client key-exchange message KEC containing the
encrypted pmk and MW forwards it to S ’s key server, which
decrypts and returns pmk to MW . In TLS-DHE, MW
generates the DHE keypair, composes the hashed value sv
to be signed, and sends it to S ’s key server, which signs and
returns the signature. All other computations are performed
by MW with no assistance from S .

The queries from MW to the key server S are performed
over a mutually-authenticated TLS channel. CloudFlare is-
sues a client certificate (with a distinguished issuer) to each
edge server MW , and a key server certificate to each S .

Keyless SSL is engineered for high performance. Most
of the computation can be performed by edge servers; the
key server can remain oblivious of the details of TLS. The
additional cost of proxying is reduced to a single round-trip
between the edge server and the key server. Furthermore,
by using session resumption, the edge server can use the
same master secret msk over many TLS connections with
the same client, without needing to recontact S.

Security Goals of Keyless SSL. The security goals for
Keyless SSL were informally described in [13], where the



authors observed that the addition of the third party MW
necessitated a few new security goals.

In classic 2-party TLS with server-only authentication,
as long as a server’s private key is kept secret, we expect
(i) server-to-client authentication, which says that the at-
tacker cannot impersonate the server or otherwise interfere
in handshakes between honest clients and the server, and
(ii) channel security, which says that the attacker cannot
read, alter, or insert application data on connections between
an honest client and an honest server. These goals must
hold in a threat model in which the attacker controls the
network and any number of dishonest clients and malicious
or compromised servers. Many variants of these goals have
been previously formalized and proved for TLS. In this
paper, we assume that classical TLS satisfies them.

In proxied TLS, the main new threat is that we need
to consider malicious or compromised middleboxes MW .
In “classic” CDNs, MW holds a long-term private key
identifying S , and MW uses it on S ’s behalf on the C–MW
side of the TLS-connections. So, any attack that leaks secrets
stored at MW (e.g., HeartBleed) could compromise this
private key and allow the adversary to then impersonate S .

In Keyless SSL, the server keeps the private key and it
may even store it securely in a hardware security module.
So, the real threat is from attackers who learn the private
key of some middlebox MW and use it to query the key-
server and thereby impersonate the server. The key goal is
that once the key-server learns of this compromise and de-
authorizes the middlebox’s certificate, the attacker should
no longer be able to interfere with connections.

To reflect this intuition, [13] presents three goals for
proxied TLS. The first two, key-server-to-client and edge-
server-to-client authentication, generalize the authentication
goals to three parties. The third generalizes channel security:

The adversary cannot read or insert messages on
the authenticated encryption channel between the
client and edge server, provided that the client and
edge server’s session keys were not compromised,
and the long-term private key of the origin server
that the client thinks it is talking to was not com-
promised, and no edge server’s private key was
compromised between the time when the client
sent its first message and accepts.

That is, the confidentiality and integrity of a proxied TLS
connection is guaranteed only if the server’s private key is
kept secret, and also only if all middleboxes’ private keys
are secret until the end of the handshake.

Are these new security definitions adequate? Does Key-
less SSL satisfy them? [13] presents informal arguments
about why these properties hold in Keyless SSL. In the rest
of this paper, we seek to answer these questions through
a detailed cryptographic analysis. But first, we show that
even with the informal definitions above, Keyless SSL is
vulnerable to important attacks.

A Middleware Attack on Keyless TLS-RSA. As discussed
earlier, TLS-RSA does not provide forward secrecy, so
if the server’s private key is compromised, the adversary

can decrypt previously recorded connections. In Keyless
SSL, if we assume that the server’s private key is kept
secret, we should normally not have to worry about forward
secrecy. However, we still need to consider compromised
middleware.

Suppose an attacker records all the messages in a proxied
TLS-RSA connection between C , MW , and S . Much later,
suppose that the attacker compromises the private key for
some middleware MW 0 that is authorized to query the key
server S. The attacker can use this private key to establish
a mutually-authenticated connection with S , it can ask S to
decrypt the encrypted pmk for any previous connection and
thereby decrypt its contents. This attack directly contradicts
the channel security property of [13] presented above, since
we only compromised the edge server after the connection
was complete5. The attack can either be read as a forward
secrecy attack (MW compromised after the connection is
complete) or a cross-middlebox attack (MW 0 is compro-
mised to break C ’s connection with MW ).

The attack is particularly worrisome for CDNs, implying
that an attacker who compromises an edge server in country
A will be able to decrypt all prior TLS-RSA conversations
recorded in any country B. This emphasizes the new risks of
proxied TLS: it strictly reduces the security of client-server
connections by increasing the attack surface to include mid-
dleboxes distributed around the world. We are in discussions
with CloudFlare to fix this attack; all fixes require the key
server to do more than just act as a decryption oracle.
For example, a minimal fix would be for the key server
to generate the server nonce NS and then, when the edge
server queries it with the two nonces and the encrypted pmk,
S directly derives msk and returns it. This ensures that a
compromised MW cannot make decryption queries on old
connections (since NS will be different).

A Cross-Protocol Attack on Keyless TLS-DHE. Proxied
TLS-DHE in Keyless SSL is vulnerable to a different attack,
which also exploits the oracle-access to the key server. The
key server is willing to sign any hashed value that the
middlebox MW provides. Note that the key server cannot
check, even if it were willing to do so, that the value it is
signing is the hash of a valid TLS-DHE server key exchange
message (KEMW ). This leads to a cross-protocol attack
between Keyless SSL and QUIC.

The QUIC protocol6 was proposed by Google as a faster
alternative to TLS 1.2 and it is transparently used (instead
of TLS) on most HTTPS connections from the Chrome
web browser to servers that support it. QUIC servers reuse
the same X.509 server certificates as TLS to execute a
handshake similar to TLS-DHE. However, instead of per-
connection signatures, QUIC requires each server to sign
a long-term server configuration message SCFG that con-
tains a semi-static Diffie-Hellman key. Once a client has
obtained and cached a signed SCFG, it can use it for many

5. The authors of [13] acknowledged this attack and are seeking to fix
their definition.

6. See https://www.chromium.org/quic.



connections to the server, without needing any new server
signatures, until the configuration expires.

The format of the signed value in QUIC is distinct from
that of TLS. For example, the signed value begins with the
ASCII string "QUIC server config signature".
This value is first hashed using SHA-256, then signed e.g.,
using ECDSA. The key observation that leads to our attack
is that once the signed values in QUIC or TLS are hashed,
the key server cannot tell the difference between them.

Suppose the attacker has compromised the private key
of some middlebox MW . It then composes a QUIC SCFG
message containing its own Diffie-Hellman public value and
a large expiry time (264� 1 seconds). It sends this message
to the key server, which will sign it thinking it is for a
TLS-DHE handshake. The attacker can now pretend to be
a QUIC server for S until the configuration expires, even
though S never intended to support QUIC. De-authorizing
the middlebox does not stop this attack.

The flaw in Keyless SSL that enables this attack is
that the key server blindly signs messages without checking
them. For example, the attack is prevented if MW provides
the client nonce and key exchange value to the key server
S , and S generates the server nonce and compiles the value
to-be-signed before hashing and signing it.

The Problem with Session Resumption. Once a client has
established a TLS session with a server, it does not have to
redo the full handshake on new connections. Instead, it can
rely on an abbreviated handshake, commonly called session
resumption, that relies on the client and server storing
the master secret msk and other parameters of previously
established sessions. A variant called session tickets allows
servers to offload session storage to clients.

The extensive use of session resumption in modern
web browsers is crucial to the efficiency of Keyless SSL,
implying that for a majority of connections, the edge server
need not contact the key server. However, resumption also
allows an adversary who has compromised an edge server
to create a session ticket with a long expiry time, and then
impersonate the server on resumed connections until the
session expires, even if the edge server is de-authorized
immediately. This attack is hard to prevent without changing
the way web browsers work; thus, for strong security against
malicious middleboxes, we forbid session resumption in
proxied TLS, except in special cases.

Towards a Stronger Security Definition. We have de-
scribed two concrete attacks that break the intended security
goals of Keyless SSL. These attacks have been acknowl-
edged by CloudFlare, and we are working on fixes. Before
fixing Keyless SSL, however, it is worth asking if the
original goals were the right ones in the first place, or
whether they are too weak and need to be strengthened.

The channel security definition from [13] quoted above
only applies if none of the middlebox private keys is com-
promised. Suppose an honest client managed to connect
to an uncompromised middlebox MW in country A. The
definition says that this connection is not guaranteed to be
secure if the attacker can compromise some edge server

MW 0 in any country B. However, it seems valuable to
strengthen the goals to require security for connections to
honest middleboxes even if other middleboxes were com-
promised.

The authentication goals in [13] are also quite weak.
The client authenticates the key server, the edge server
authenticates the key server, but there is no guarantee that
the client and edge server agree on the identity of the key
server. That is, the definitions allow the case where the client
thinks it is connected to S via MW but MW thinks it
is connected to S 0. In the CDN context, MW would then
be serving content from S 0 (instead of S ) to C , and this
becomes a serious attack which is not forbidden by the
authentication goals.

More generally, extending two-party secure channel def-
initions to three-party scenarios like proxied TLS requires
close attention or it may leave gaps that miss new attacks.
Over the next two sections, we explore and present a formal
definition for proxied TLS that attempts to close these gaps.

3. Background: ACCE for 2-party TLS

An authenticated key-exchange (AKE) protocol is said
to be secure if a MiM (man-in-the-middle) adversary can-
not distinguish the established session-keys from random
keys [2]. However, TLS 1.2 handshakes do not meet this
security definition since the channel keys are used to encrypt
the finished messages, prior to the end of the key exchange.
This provides a real-from-random distinguishing oracle for
the MiM attacker. After years of struggling to find a defini-
tion that captures the channel-security of TLS, researchers
developed the notion of ACCE-security [8], which requires
that the keys generated by the TLS handshake can safely be
used for authenticated encryption in the record layer.

In this section, we briefly describe the ACCE security
model (which we call 2-ACCE), using the notations of
Brzuska et al. [5] for more details, see our full version.

Parties and instances. The 2-ACCE model considers a set
P of parties, which can be either clients C 2 C or servers
S 2 S. Parties are associated with private keys sk and their
corresponding, certified public keys pk. The adversary can
interact with parties in concurrent or sequential executions,
called sessions, associated with single party instances. We
denote by ⇡m

i

the m-th instance (execution) of party P
i

.
Each instance is associated with the following attributes:

� the instance’s secret, resp. public keys ⇡m

i

.sk := sk
i

and ⇡m

i

.pk := pk
i

of P
i

. In unilaterally-authenticated
handshakes, clients have no such parameters, thus we
set ⇡m

i

.sk = ⇡m

i

.pk := ?.
� the role of P

i

as either the initiator or responder of
the protocol, ⇡m

i

.⇢ 2 {init, resp}.
� the session identifier, ⇡m

i

.sid of an instance, set to ?
for non-existent sessions.

� the partner identifier, ⇡m

i

.pid set to ? for non-existent
sessions. This attribute stores either a party identifier
P
j

, indicating the party that P
i

believes it is running



the protocol with (in unilateral authentication, clients
are associated with a label “Client”).

� the acceptance-flag ⇡m

i

.↵, originally set to ? while
the session is ongoing, but which turns to 1 or 0 as the
party accepts or rejects the partner’s authentication.

� the channel-key, ⇡m

i

.ck, which is set to ? at the begin-
ning of the session, and becomes a non-null bitstring
once ⇡m

i

ends in an accepting state.
� the left-or-right bit ⇡m

i

.b, sampled at random when
the instance is generated. This bit is used in the key-
indistinguishability and channel-security games.

� the transcript ⇡m

i

.⌧ of the instance, containing the
suite of messages received and sent by this instance,
as well as all public information known to all parties.

The definition of 2-ACCE security heavily relies on the
notion of partnering. Two instances ⇡m

i

and ⇡n

j

are said to
be partnered if ⇡m

i

.sid = ⇡n

j

.sid 6= ?.

Games and adversarial queries. In the 2-ACCE game,
the adversary interacts with parties by calling oracles and
making queries. It can generate new instances of P

i

by call-
ing the NewSession(P

i

, ⇢, pid) oracle. It can send messages
by calling the Send(⇡m

i

,M) oracle. It can learn the party’s
secret keys via Corrupt(P

i

) queries, and it can learn channel
keys (for accepting instances) by querying Reveal(⇡m

i

). A
Test(⇡m

i

) query outputs either the real channel keys ⇡m

i

.ck
computed by the accepting instance ⇡m

i

or random keys of
the same size. As opposed to standard AKE security, in the
2-ACCE game, the adversary is also given access to two or-
acles, Encrypt(⇡m

i

, l,M0,M1, H) and Decrypt(⇡m

i

, C,H),
which allow some access to the secure channel established
by two instances. The output of both these oracles depends
on the hidden bit ⇡m

i

.b for any instance ⇡m

i

.
The adversary’s advantage to win is defined in terms of

its success in two security games, namely entity authentica-
tion and channel security, the latter of which is subject to
the following freshness definition.
Session freshness. A session ⇡m

i

is fresh with intended
partner P

j

, if, upon the last query of the adversary A,
the uncorrupted instance ⇡m

i

has finished its session in an
accepting state, with ⇡m

i

.pid = P
j

, for an uncorrupted P
j

,
such that no Reveal query was made on ⇡m

i

,⇡n

j

.
2-ACCE Entity Authentication (EA). In the EA game, the
adversary queries the first four oracles above and its goal
is to make one instance, ⇡m

i

of an uncorrupted P
i

accept
maliciously. That is, ⇡m

i

must end in an accepting state,
with partner ID P

j

, also uncorrupted, such that no other
unique instance of P

j

partnering ⇡m

i

exists. The adversary’s
advantage in this game is its winning probability.
2-ACCE Security of the Channel (SC). In this game, the
adversary A can use all the oracles except Test and must
output, for a fresh instance ⇡m

i

, the bit ⇡m

i

.b of that in-
stance. The adversary’s advantage is the absolute difference
between its winning probability and 1

2 .

An additional assumption. Ideally, since we construct the
proxied handshake from a single, unilaterally authenticated

TLS negotiation (between the client and the middleware),
and a mutually-authenticated one (between the middleware
and the server), we would want to reduce the security of our
schemes only to the basic 2-SACCE and 2-ACCE games,
respectively. The two differ only in their Entity Authenti-
cation property, with 2-SACCE restricting the adversary’s
winning condition to client instances ⇡m

i

only.
However, for technical reasons, we need to rely on a

slightly different security notion, in which clients are also
issued certificates. We associate party instances with a bit
denoted flag, called a mode-flag, which is set to 0 by default.
If the client receives a known, constant message denoted
prompt.flag from the server, then his flag bit is set to 1, and
the client is expected to authenticate. If the flag is 0, the
protocol is run with server-only authentication. In practice,
the prompt.flag message for TLS is the Certificate Request
message sent by the server to the client7. The standard 2-
(S)ACCE matching-conversation definitions (which we did
not include here) can be adapted trivially to capture that
partnering instances must have matching mode-flags’ values.
In addition, the EA game incorporates these mode-flags as
follows:
Mixed-2-ACCE Entity Authentication (mEA). In the
mEA game, the adversary queries the first four oracles
above and its goal is to make one instance, ⇡m

i

of an
uncorrupted P

i

accept maliciously. That is, ⇡m

i

must end
in an accepting state, with partner ID P

j

also uncorrupted,
such that no other unique instance of P

j

partnering ⇡m

i

exists. Furthermore, let flagm
i

denote the mode-flag for the
instance ⇡m

i

. Furthermore, if flagm
i

= 0, then P
i

must be
a client only. The adversary’s advantage in this game is its
winning probability.

Proving 2-ACCE for TLS. The first ACCE-definition for
TLS came with a 2-ACCE-security proof for TLS-DHE in
[8]. This was followed by the systematic analysis of TLS
1.2 by [10], but strictly in a two-party setting. In fact, [4]
describes an attack which involves using the TLS handshake
between three parties, one of which is malicious. Although
it is not known whether TLS 1.2 is mEA-secure as adapted
above, this assumption seems quite reasonable, given its
unilateral and respectively mutual security proofs. In this
paper, we also use the recent result of Brzuska et al. [5], who
proved that for mutually-authenticated TLS-like protocols
(including TLS), deriving an export key from the master
secret via a pseudorandom function yields a session key
that is indistinguishable from random. In addition, a recent
result also proved the AKE security for TLS 1.3 keys (thus
implying 2-ACCE security); though this result holds for an
earlier draft of TLS 1.3, we still assume TLS 1.3 to have
this property [6].

4. ACCE with 3 parties: 3(S)ACCE

The attacks presented in Section 2 show that proxied
TLS is difficult to get right, even if the individual channels

7. The fact that this message is encrypted in TLS 1.3 does not matter in
our analysis, since the reduction is such that the right flag is used within.



are 2-ACCE secure. Furthermore, we saw that generalizing
2-party security to 3 parties requires care. We now present
3(S)ACCE, our security definition for proxied handshakes.

An overview. Our framework captures several types of
architectures in a generic interaction model. We consider
a PKI in which middleware and servers have registered
credentials, but clients do not. Any secure channel the client
establishes is only unilaterally authenticated. Middleware re-
ceive credentials for content-delivery upon registering with
the content owner. This models both architectures in which
the middleware impersonates the server for content-delivery
(e.g., CDNs) and those in which it uses its own credentials.
Our notions of partnering and freshness capture both the
designs in which the middleware can independently compute
the session keys (as in CDNs) and those in which the
middleware needs the server’s help for some computations
(like in Keyless SSL).

Apart from extending classical 2-ACCE entity authen-
tication and channel security, we require two additional
properties: accountability and content soundness.

Accountability. In CDN-ing over TLS, the middleware
impersonates servers to clients that are oblivious of this fact.
To protect against malicious or compromised middleboxes,
the server must have the power to detect and de-authorize
such middleboxes. Accountability requires that the server
should be able to compute the channel keys used by the
client and the middlebox. With this key, the server can audit
the behaviour of the middlebox and take action against it,
thus becoming accountable for any damage to the client.

Content soundness. Servers may authorize CDN middle-
boxes to deliver some of their contents. Content soundness
requires that no malicious middlebox may serve content that
it is not authorized to deliver. Typically, servers can achieve
this by distributing content within separate subdomains with
their own certificates, and authorizing middleboxes to serve
content for specific subdomains. This demands a more ex-
tensive certificate infrastructure at the server. We explicitly
note that we do not take into consideration websites with
“public” content, i.e., in our model, a middleware can only
obtain content from an issuing server. In that sense, we also
rule out (most) phishing attacks.

4.1. Attributes and Partnering

We extend the 2-ACCE setting to three parties, by adding
a set MW of middleware entities to the existing sets of
clients and servers. We instantiate parties as before, but
extend the model to include new attributes as follows.

Names and certificates. In 2-ACCE infrastructures, if one
party authenticates by means of, e.g., a certificate, then that
certificate will point to the right partner (unless an imperson-
ation has occurred). In CDNs and Keyless SSL, however, the
infrastructure allows entity impersonation to some extent.
To capture the fact that one party may effectively compute
keys based on another party’s certificate, we no longer as-
sociate pid values with parties, but with names (for instance

the common name –CN– entry in X.509 certificates). We
assume that each certificate has a unique name associated
to it. Since we still consider only unilaterally-authenticated
handshakes for clients, we continue to use the generic label
“Client00 to indicate partnering clients.

We thus define, for each 3(S)ACCE party P
i

, two new
attributes: a name P

i

.name and a set of certificates the party
may use, denoted as P

i

.CertSet.

Pre-channel keys. In some proxying architectures, the mid-
dleware can only compute channel keys for middleware-
client sessions with a server’s assistance. In Keyless SSL,
the server must compute any values requiring the secret
key associated with the server’s certified public key. We
model this as follows. We assume that server instances,
and middleware instances partnered with server instances
may compute a local value, which allows the middlebox to
compute the channel keys ck for a session it runs with the
client. We call this value a pre-channel key and denote it
as a new attribute ⇡n

j

.pck. For example, for Keyless SSL
running in RSA mode, ⇡ .pck = pmk, whereas for the DHE
mode, ⇡ .pck = (p, g,KES ,CertS ,PSign) (see Figure 2).

More formally, let PCK be the set of all pre-channel
keys, ⇧ the set of all possible transcripts ⌧ , and CK the
set of all channel keys. We are interested in protocols for
which a function ' : PCK ⇥ ⇧ ! CK, taking as input
a pre-channel key pck and a (handshake) transcript ⌧ and
outputting a channel key ck, can be defined. We require
that 8pck, pck0 2 PCK, 8⇡,⇡0 2 ⇧ we have that if
'(pck,⇡)='(pck0,⇡0), then ⇡=⇡0 (i.e., that the projection
of ' on ⇧ be injective).

The notion of pre-channel keys is crucial in identifying
all partnering instances of a given instance. Whenever the
middleware can compute all session keys independently of
the server, the classical 2-ACCE instance partnering holds.
However, when the server needs to aid the middlebox and
the pre-channel key is required, four instances are partnered
instead of two.

Owned and proxied content. Another important aspect of
proxying TLS connections is related to content. We associate
to each server P

j

2 S the content it owns, denoted ⌦j

(which the adversary could choose). We assume that a con-
tent consists of unitary elements !

i

2 ⌦j (e.g., subdomains
or single web-pages). Recall that we do not consider public
contents, i.e., the attacker may only retrieve a content by
demanding it from a server which owns it. We assume that
each handshake is meant to deliver a single content unit.

Middleware can receive (and then deliver) server-content
in two steps. First the middlebox registers with a server for
a given content, receiving credentials that identify it as a
legitimate distributer of that content. Secondly, the middle-
ware must execute a handshake with the correct server, then
– upon succcessful mutual authentication and verification
of registration for the content – the latter is delivered. We
restrict the delivery to one content per handshake, sent
as a response to a “Contentrequest,!” message from the
middleware.



We assume that clients can verify whether a content
they receive in the record layer matches the certificate they
received during the handshake8.

Party Attributes. We require the following additional at-
tributes for our formalization, for each party P

i

:
� the party’s name P

i

.name, linked to (possibly multi-
ple) certificates. This value is unique per middleware
or server, and is set to the label “Client00 for all clients.

� an indexed set P
i

.CertSet of certificates held locally
by P

i

, for which P
i

stores the associated public keys
that are certified, and possibly also the corresponding
secret keys. This is only true for middleware and
servers; for clients, the certificate set is empty.

� an indexed set P
i

.PKSet of public keys, containing
certified public keys held locally by P

i

(either a mid-
dleware or a server), such that the k-th public key of
that party, P

i

.Cert
k

, is certified in the k-th certificate.
This set is empty for all clients.

� an indexed set P
i

.SKSet of secret keys held locally
by P

i

, defined analogously as P
i

.PKSet. For any secret
keys that P

i

does not have, P
i

stores ? instead.
� a set P

i

.Contents of contents to which P
i

has access.
For a server P

j

, we denote its content by ⌦j . For
middlewares P

k

, we denote its entire registered content
with server P

j

by ⌦k

j

. For clients, this set is empty.
� a hashtable P

j

.Contracts held locally by servers P
j

,
for which the entries are of the form (P

k

,⌦k

j

) with
P
k

2MW and ⌦k

j

is the subcontent P
k

registered with
P
j

. This table is used by the server so that it forwards
only registered contents to appropriate middleware.

� a list of instances P
i

.Instances, to keep track of all
existing instances of this party.

Party-Instance Attributes. We proceed to extend the
attribute-set of each party-instance ⇡m

i

as follows:
� the instance parameters ⇡m

i

.par consisting of: a cer-
tificate, the corresponding public key, and the match-
ing private key from the sets P

i

.CertSet,P
i

.PKSet,
P
i

.SKSet. Clients have no such values; servers always
have non-? values; and middleware may have the
private key set to ?.

� the partner identifier ⇡m

i

.pid, which will be set to a
party name (rather than a party).

� a pre-channel key ⇡m

i

.pck such that ⇡m

i

.pck 2 PCK,
set to ? for clients and for middleware instances whose
partner identifier is set to “Client”. Only accepting
instances of servers or middleware partnering a server
have a non-? pre-channel key.

� a record-layer transcript ⇡m

i

.rec⌧ , which is non-?
only for accepting instances that have already computed
a channel key ⇡m

i

.ck. The record-layer transcript stores
plaintext messages that a party encrypts and sends to
its partner, or that the party decrypted from its partner.

8. This is modelled by means of an additional function with a Boolean
output, which we describe in more detail in our full version.

4.2. Partnering and Freshness

Beyond simply tracing partners based on the session
identifier sid, as in 2-ACCE, the design of Keyless SSL
induces a dependency between a client-middleware session
and an associated middleware-server session. In the lat-
ter, the server aids the middlebox to compute its client-
middlebox channel key. The two sessions (and four in-
stances) contain information about each other, and thus
should be partnered.

We define 3(S)ACCE partnering for a given instance ⇡m

i

of a party P
i

in terms of two sets. The first of these, denoted
⇡m

i

.PSet, stores the parties that are partnered with ⇡m

i

(e.g.,
in Keyless SSL, a client, a middleware, and a server). The
second set, denoted ⇡m

i

.InstSet, stores instances partnered
wtih ⇡m

i

. For ease of notation, both sets include the input
party P

i

and instance ⇡m

i

. The partner-instances ⇡m

i

.InstSet
and partner-parties ⇡m

i

.PSet of an instance ⇡m

i

are defined
constructively by Algorithm 1.

Algorithm 1 covers all the possible configurations
of proxied handshakes: client–server, client–middleware,
client–middleware–server, middleware–server. If middle-
boxes impersonate servers, as in CDNs, we denote this by
MW (S). If the middleware uses its own credentials, we
use MW (MW ). We assume that the middleware always
does the latter when interacting with the server, and do not
specify this explicitly. To give the reader an intuition, we
summarize all the possibilities in Figure 3. The rows are
designed such that, for each entry, the partnering is defined
from the viewpoint of one fixed party-instance involved in
the link (this party is underlined).

Say we want to determine the partnering for a specific
client instance ⇡m

i

. This instance can be in one of the
following communication scenarios: (1) speaking to a server
in a direct “C–S” link; (2) speaking to a middleware that
authenticates as itself, i.e., a “C – MW(MW)” link; (3)
speaking to a middleware that impersonates a server, but
computes keys independently: “C – MW(S)” ; (4). speaking
to a middleware impersonating a server, needing the latter’s
assistance, as in Keyless SSL:“C – MW – S”. These are the
first four rows in Figure 3.

To show how Algorithm 1 operates, take as an example
row 3. As discussed, P

i

, is a client, and its partner identifier
will be the name of some party P

j

2 S. Thus, the algorithm
enters the IF on line 2, but not the IF on line 3 (essentially
demanding that there be “matching conversation” between
⇡m

i

and a server instance). We enter the ELSE on line
14. Via line 15, we find the middleware that is actually
partnering P

i

, which is a middleware P
k

, for an instance
⇡`

k

. Since the middleware does not need the server’s aid
to authenticate to the client, the pre-channel keys will not
be used; this makes us skip line 17, and we output the
partnering sets in line 37.

Now analyse the situation in row 4. The algorithm
behaves as above, but now we do enter the IF on line
17. At that point, we find the matching middleware-server
instances which will compute the pre-channel key for the
session between ⇡m

i

,⇡`

k

. These are: an instance of that same



middleware P
k

and an instance of the server who is the
purported partner of ⇡m

i

. In line 18 we add that party to the
partnering instance-set of ⇡m

i

, and these values are returned
in line 37.

The other cases follow similarly.
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Figure 3: Algorithm 1 Coverage of 3-Party
Communication Settings

Session freshness in 3(S)ACCE: We adapt the 2-ACCE
notion of freshness to 3(S)ACCE as follows.

3(S)ACCE Freshness. An instance ⇡m

i

of P
i

is fresh with
intended partner P

j

if the following conditions hold:
• ⇡m

i

.↵ = 1 with ⇡m

i

.pid = P
j

.name.
• All parties in ⇡m

i

.PSet are uncorrupted. Note that this
includes P

i

itself.
• No Reveal query was made to any instance in
⇡m

i

.InstSet, which includes ⇡m

i

itself.

Correctness in 3(S)ACCE. We extend the definition of
2-ACCE correctness in terms of the partnering algorithm
above. We demand that, for any instance ⇡m

i

ending in an
accepting state with partnering instance-set ⇡m

i

.InstSet and
partnering party-set ⇡m

i

.PSet, the following conditions hold.
1) If |⇡m

i

.InstSet| = 2, then both instances in ⇡m

i

.InstSet
compute the same channel key ck.

2) Consider the case of |⇡m

i

.InstSet| = 4. Let ⇡n

j

,⇡`

k

2
⇡m

i

.InstSet for P
i

,P
j

2 ⇡m

i

.PSet, such that ⇡m

i

,⇡n

j

share a session identifier. Then, the following holds:
a). Any instances in ⇡m

i

.InstSet sharing session ID
compute the same channel key:
• ⇡m

i

and ⇡n

j

compute the same channel key x, i.e.,
⇡n

j

.ck= ⇡m

i

.ck and x:=⇡m

i

.ck;
• the other two instances in ⇡m

i

.InstSet (i.e., ⇡`

k

and ⇡m

i

.InstSet \ {⇡m

i

,⇡n

j

,⇡`

k

}) compute the
same channel key x0;

b). Moreover, the pre-channel key computed in the
middleware-server session must be consistent with
that of the client-middleware channel key. Thus,

• If P
i

or P
j

is a client, then x = '(⇡`

k

.pck,⇡m

i

.⌧).
• If neither P

i

nor P
j

is a client, it holds that x0 =
'(⇡m

i

.pck,⇡`

k

.⌧).

4.3. Adversarial Interactions

In Section 4.4 we define four security notions, which
together constitute the definition of 3(S)ACCE-security. As
in 2-ACCE security, each notion is defined in terms of a
security game. The adversary has access to oracles that are
adapted from standard 2-ACCE. We also need an additional
party-registration oracle. Due to lack of space, we simplify
the descriptions of the oracle somewhat, leaving a complete
description to the full paper.

2-ACCE-like Oracles. In the 3(S)ACCE games, most of the
2-ACCE oracles remain unchanged (we review them below,
underlining any different input they might take), and we
modify the NewSession oracle as follows:
� NewSession(P

i

, ⇢, real.pid, int.pid, content): This
query creates a new session ⇡m

i

executed by party P
i

with the role ⇢. The input values real.pid and int.pid
indicate the real partner of ⇡m

i

, and resp. its intended
partner. The value content indicates a content for
which the session will be run. The oracle creates ⇡m

i

,
sets it in running state, then sets ⇡m

i

.↵ := ? and
⇡m

i

.⇢ := ⇢. We continue as follows:
- If P

i

2 C, then real.pid is the true partner of ⇡m

i

and
int.pid is the intended partner, the owner of content
content. The oracle checks that real.pid, int.pid con-
tain at most one middleware and one server, and that
if real.pid is a server, then real.pid= int.pid. If all this
verifies, ⇡m

i

is instantiated with ⇡m

i

.par := (?,?,?)
(it will have no certificates, no public, or secret keys).
Furthermore if P

i

is the initiator, the oracle outputs
the protocol’s first message.

- For P
i

2 MW , int.pid indicates whether P
i

acts
as itself (with its own certificate) or it legitimately
impersonates a server it registered with. If int.pid =
P
i

, then we set ⇡m

i

.par := (Cert
i

, pk
i

, sk
i

) (its own
credentials); else, if int.pid = P

j

2 S, the owner of
content, then real.pid 2 C and ⇡m

i

.par contains the
parameters output by the RegParty query for P

i

and
P
j

. If the middleware executes the protocol with a
server, then content = ?. If P

i

is the initiator, then
the first protocol message is also output.

- If P
i

2 S , then the real.pid = int.pid 2 {C,MW}.
Then ⇡m

i

.par consists of the server’s own credentials.
If the server is the initiator, then the first message is
generated.

� Send(⇡m

i

,M): This is the classical 2-ACCE query,
through which the adversary can send a message M to
⇡m

i

, receiving a response M 0 or a fixed error message
? (if the instance does not exist).

� Corrupt(P
i

): This query returns all the secret keys
stored by P

i

’s.



Algorithm 1 Partnering in 3-party ACCE

Require: The input is a party instance ⇡m
i (ending in accepting

state).
Ensure: The output are two sets ⇡m

i .PSet and ⇡m
i .InstSet.

1: Set ⇡m
i .PSet := {Pi} and ⇡m

i .InstSet := {⇡m
i }.

2: if (⇡m
i .pid = Pj .name | for some Pj 2 {MW,S}) then

3: if (9 unique ⇡n
j s. that ⇡m

i .sid = ⇡n
j .sid and ⇡n

j .pid =
Pi.name) then

4: Do ⇡m
i .PSet  ⇡m

i .PSet [ {Pj} and ⇡m
i .InstSet  

⇡m
i .InstSet [ {⇡n

j }
5: if (Pi 2MW and ⇡m

i .pck 6= ?) then
6: Find Pk 2 C s.that 9⇡p

i ,⇡
`
k with ⇡`

k.sid = ⇡p
i .sid and

⇡`
k.ck = ⇡p

i .ck = '(⇡m
i .pck,⇡`

k.⌧)
7: Do ⇡m

i .PSet ⇡m
i .PSet [ {Pk} and ⇡m

i .InstSet 
⇡m
i .InstSet [ {⇡p

i ,⇡
`
k}

8: end if
9: if (Pj 2MW and ⇡n

j .pck 6= ?) then
10: Find Pk 2 C s.t. 9⇡p

j ,⇡
`
k with ⇡`

k.sid = ⇡p
j .sid and

⇡`
k.ck = ⇡p

j .ck = '(⇡n
j .pck,⇡

`
k.⌧)

11: Do ⇡m
i .PSet ⇡m

i .PSet [ {Pk} and ⇡m
i .InstSet 

⇡m
i .InstSet [ {⇡p

j ,⇡
`
k}

12: end if
13: Return ⇡m

i .PSet and ⇡m
i .InstSet.

14: else
15: Find unique Pk,⇡

`
k s.that ⇡`

k.sid = ⇡m
i .sid

16: Do ⇡m
i .PSet ⇡m

i .PSet[{Pj ,Pk} and ⇡m
i .InstSet 

⇡m
i .InstSet [ {⇡`

k}
17: if 9⇡p

k,⇡
n
j s.t. ⇡p

k.sid = ⇡n
j .sid and ⇡m

i .ck = ⇡`
k.ck =

'(⇡n
j .pck,⇡

m
i .⌧) then

18: Do ⇡m
i .InstSet ⇡m

i .InstSet [ {⇡p
k,⇡

n
j }

19: end if
20: end if
21: else
22: Find unique Pj ,⇡

n
j s.that ⇡m

i .sid = ⇡n
j .sid

23: Do ⇡m
i .PSet  ⇡m

i .PSet [ {Pj} and ⇡m
i .InstSet  

⇡m
i .InstSet [ {⇡n

j }
24: if Pi 2 S then
25: Return ⇡m

i .PSet,⇡m
i .InstSet

26: else
27: if ⇡n

j .pid = Pk.name for Pk 2 S then
28: Do ⇡m

i .PSet ⇡m
i .PSet [ {Pk}

29: if 9 ⇡`
k of party Pk s.t. ⇡n

j .ck = '(⇡`
k.pck,⇡

n
j .⌧)

then
30: Find unique ⇡p

i such that ⇡p
i .sid = ⇡`

k.sid
31: Do ⇡m

i .InstSet ⇡m
i .InstSet [ {⇡p

i ,⇡
`
k}

32: Return ⇡m
i .PSet,⇡m

i .InstSet
33: end if
34: end if
35: end if
36: end if
37: Return ⇡m

i .PSet,⇡m
i .InstSet

� Reveal(⇡m

i

): This query returns the channel key ⇡m

i

.ck
of an instance ⇡m

i

ending in an accepting state. The
revealed bit of the session is set to 1.

� Enc(⇡m

i

, l,M0,M1, H): This is a left-or-right oracle,
encrypting a bit M

b

where b = ⇡m

i

.b with header H ,
for a ciphertext length l, with the channel keys of an
accepting instance ⇡m

i

.
� Dec(⇡m

i

, C,H): This query only decrypts the input
ciphertext C for a given header H on behalf of an
accepting instance ⇡m

i

.ck if, and only if, the ciphertext
was generated by the adversary and if ⇡m

i

.b.

New Oracles. We also require a new party-registration
oracle, as described below.

• RegParty(P
i

,⌦, dest): taking as input a party P
i

, a
content ⌦ (possibly set to a special symbol ?), and
a so-called destination dest 2 {“MW00, “Server00} [ S.
This query works in three modes.
� The server mode, with input (P

i

,⌦, “Server00).
This query registers P

i

as a server (unless this has
been done before), outputting, for each subcontent
! 2 ⌦, a tuple consisting of a secret key, a public
key, and a certificate for that public key on the
server’s name. The content ⌦ is added to the server’s
already-registered content. The adversary receives
the certificates and public keys.

� The middleware mode, with input (P
i

,?, “MW00).
The query registers P

i

as middleware, outputting a
single secret key, public key, and certificate for that

public key associated with P
i

’s name (the latter two
are also output to the adversary).

� The contract mode, with input (P
i

,⌦,P
j

) and P
i

2
MW , P

j

2 S, both registered parties such that ⌦ ✓
⌦j (the requested content is a subset of the server’s
content). This oracle registers locally in the server’s
hashtable P

j

.Contracts the entry P
j

,⌦, and it adds
⌦ to the middleware’s content ⌦i

j

. Then a set of
secret keys, public keys, and certificates are given to
P
i

(one tuple of keys with the certificate per sub-
content). In some cases, the secret key may be set
to ?. All the public information is also given to the
adversary.

4.4. 3(S)ACCE

3(S)ACCE-security consists of four properties: entity
authentication, channel security, accountability, and content
soundness.

For each game, the PPT adversary A plays against a
challenger, interacting with various party instances sequen-
tially or concurrently by the oracles above. We quantify
attacks in terms of the number NP of parties in the system
(i.e., the number of clients NC , the number of servers NS ,
and the number of middleboxes NMW ), the number q

n

of NewSession queries that the adversary makes, and the
number t of the total of queries made by the A. The time-
complexity of the adversary is determined by t and q

n

.



Entity Authentication (EA). In the entity authentication
game, the adversary A can query the new oracle RegParty
and traditional 2-ACCE oracles. Finally, A ends the game
by outputting a special string “Finished” to its challenger.
The adversary wins the EA game if there exists a party in-
stance ⇡m

i

maliciously accepting a partner P
j

2 {S,MW},
according to the following definition.

Winning condition – EA game. An instance ⇡m

i

of some
party P

i

is said to maliciously accept with partner P
j

2
{S,MW} if the following holds:

• ⇡m

i

.↵ = 1 with ⇡m

i

.pid = P
j

.name 6= “Client00;
• No party in ⇡m

i

.PSet is corrupted, no party in
⇡m

i

.InstSet was queried in Reveal queries;
• There exists no unique ⇡n

j

2 P
j

.Instances such that
⇡n

j

.sid = ⇡m

i

.sid;
• If P

i

2 C, there exists no party P
k

2MW such that:
RegParty(P

k

, ·,P
j

) has been queried, and there exists
an instance ⇡`

k

2 ⇡m

i

.InstSet.

The adversary’s advantage, denoted AdvEA⇧ (A), is de-
fined as its winning probability i.e.:

AdvEA⇧ (A) := P[A wins the EA game],

where the probability is taken over the random coins of all
the NP parties in the system.

Channel Security (CS). In the channel security game, the
adversary A can use all the oracles (including RegParty)
adaptively, and finally outputs a tuple consisting of a fresh
party instance ⇡j

i

(in the sense of Definition 4.2) and a bit
b0. The winning condition is defined below:

Winning Conditions – CS Game. An adversary A breaks the
channel security of a 3(S)ACCE protocol, if it terminates the
channel security game with a tuple (⇡j

i

, b0) such that:
• ⇡m

i

is fresh with partner P
j

;
• ⇡m

i

.b = b0.

The advantage of the adversary A is defined as follows:

AdvSC⇧ (A) :=
��P[A wins the SC game]� 1

2

��,

where the probability is taken over the random coins of all
the NP parties in the system.

Accountability (Acc). In the accountability game the ad-
versary may arbitrarily use all the oracles in the previous
section, finally halting by outputting a “Finished” string to
its challenger. We say A wins if there exists an instance ⇡m

i

of a client P
i

such that the following condition applies.

Winning Conditions – Acc. An adversary A breaks the ac-
countability for instance ⇡m

i

of P
i

2 C, if the following
holds simultaneously:
(a) ⇡m

i

.↵ = 1 such that ⇡m

i

.pid = P
j

.name for an uncor-
rupted P

j

2 S;
(b) There exists no instance ⇡n

j

2 P
j

.Instances such that
⇡n

j

.ck = ⇡m

i

.ck;
(c) There exists no probabilistic algorithm Sim (polyno-

mial in the security parameter) which given the view

of P
j

(namely all instances ⇡n

j

2 P
j

.Instances with all
their attributes), outputs ⇡m

i

.ck.

The adversary’s advantage is defined as its winning
probability, i.e.:

AdvAcc⇧ (A) := P[A wins the Acc game],

where the probability is taken over the random coins of all
the NP parties in the system.

Content Soundness (CSound). In the content soundness
game, the adversary A queries the oracles arbitrarily, and
ends the game with a “Finished” message. The adversary
wins if there exist: a client instance ⇡m

i

and a content !
such that A breaks soundness in the definition below.

Winning Conditions – CSound. An adversary A breaks
soundness of an arbitrarily fixed context ! an 3(S)ACCE
protocol if there exists a client-instance ⇡m

i

2 P
i

.Instances
for P

i

2 C and ⇡m

i

.↵ = 1, and there exists no server-
instance ⇡`

u

of a party P
u

2 S such that: ⇡m

i

.pid =
P
u

.name, ! 2 ⌦u, and ⇡m

i

.sid = ⇡`

u

.sid, and the following
conditions simultaneously hold:

• ! 2 ⇡m

i

.rec⌧ and ! received by ⇡m

i

;
• there exists no instance ⇡p

k

of a party P
k

such that
⇡m

i

.sid = ⇡p

k

.sid and, by defining ⌦
k

:= {!̂ :
RegParty(P

k

,⌦, ·) queried and !̂ 2 ⌦}, it holds that
! 2 ⌦

k

;
• any party P

x

such that RegParty(P
x

,⌦, ·) was queried,
with ! 2 ⌦, P

x

is uncorrupted.
• furthermore, no party P

y

such that
RegParty(P

y

,⌦, “Server00) was queried, with
! 2 ⌦, is corrupted.

The adversary’s advantage is defined as its winning
probability, i.e.:

AdvCSound⇧ (A) := P[A wins the CSound game],

where the probability is taken over the random coins of all
the NP parties in the system.

5. Fixing Keyless SSL

Keyless SSL is not 3(S)ACCE-secure. The attack on
TLS-RSA in Section 2 breaks our channel security def-
inition, since a malicious middlebox MW 0 can decrypt
connections to an honest middlebox MW . Similarly, a mali-
cious middlebox can confuse a honest middlebox about the
identity of the server, breaking entity authentication. Session
resumption breaks accountability.

5.1. Achieving 3(S)ACCE-security for Keyless SSL

We introduce an 3(S)ACCE-secure variant of Keyless
SSL called 3(S)ACCE-K-SSL, depicted in Figure 4. In the
following description, we focus mainly on the differences
between this variant and the original Keyless SSL protocol.

A more extensive PKI. In the original Keyless SSL archi-
tecture, whenever a middlebox registers with the server, for



any content, the server forwards the same certificate, which
we denote as CertMW ,S . However, in order to ensure content
soundness and entity authentication, we need servers to issue
one public key (with a corresponding certificate) for each
subcontent ! and for each middlebox authorized to deliver
that subcontent. We denote a certificate associated with a
server P

j

which is used by a middlebox P
k

for some content
! as Cert!Pk,Pj

.

The protocol description. The key new elements of our
protocol (see Figure 4) are as follows.
An export key ek. We begin by describing the handshake
between the middlebox and the server. In Keyless SSL this
is a generic 2-ACCE-secure protocol; in our design we use a
TLS handshake, and then compute an export key ek, which
is computed as the result of a pseudorandom function G
which is independent of the one used in the TLS handshake
itself. We key this function with the master secret used in
the TLS handshake between the middlebox and the server,
and use it on input the nonces used in that session. For
this type of protocol, Brzuska et al. [5] proved that ek is
indistinguishable from random from any party other than
the two protocol participants.
The key share KEMW . In the traditional Keyless TLS-DHE
architecture, the middlebox always generates its own key
share KEMW and sends a hash of that and other values to
the appropriate server to certify. In our new design, it is
the server that generates the key share. This is essential in
order to achieve accountability: if the middleware were able
to generate msk, it could use session resumption in a future
session, thus winning the accountability game. Note that
the server has already run a handshake with the middlebox
at this point, and the server has verified the identity of its
partner. The middlebox forwards the content ! requested
by the client and the two session nonces used in the client-
middlebox session; then the server generates the signature
of the public key certified in Cert!MW ,S .
Computing the channel key. In DHE mode, the server now
holds the private DH exponent to the key share KEMW .
After the middlebox receives (in its session with the client)
the client’s key share KEC and the Finished message FinC
(encrypted as in AEck(FinC )), it transmits the entire session
transcript ⌧ to the server. The latter verifies: that the nonces
in the transcript are those received earlier; that the certificate
used by the middlebox in that transcript is the correct one,
and finally, that the client’s Finished message once decrypted
at this server’s end is as expected (note that the server can
compute pmk, msk, and the channel key ck locally). Finally,
the server also computes the Finished message FinS on
behalf of the middlebox, which it encrypts and authenticates.

In TLS-RSA mode, the client chooses pmk and sends
it to the middlebox, encrypted with the received certified
public key. The middlebox forwards the entire session tran-
script up to, and including, the client’s encrypted Finished
message. The server checks that the certificate is compatible
with the querying middlebox’ authentication information
(certificate). Then it obtains pmk by decrypting under the
secret key corresponding to the certificate the middlebox

forwarded. After computing msk and ck, the server verifies
the validity of the client’s Finished message. Upon success-
ful verification, the server computes and sends the encrypted
Finished message the client expects from the middlebox.
Blinding the key. In both modes, the server will first blind
the computed channel key ck with the export key ek, thus
sending the encrypted Finished message and ek � ck to
the middlebox, who will recover the value ck and use the
Finished message. In particular, the blinding is necessary
in the security proof in order to reduce the security of our
variant to the 2-(S)ACCE security of TLS (we will need to
simulate the encrypted messages so that they are consistent
with what the adversary expects).

The security statement. We now state an informal security
statement, referring the interested reader to the full version
for the exact security bounds.We begin by noting that,
following the results of Brzuska et al. [5], if G is a PRF that
is independent from the key-derivating PRF used in TLS,
then the keys ek computed by the middlebox and the server
are indistinguishable from random. Furthermore, the TLS
1.2 protocol with unilateral authentication was proved to
attain 2-SACCE security by Krawczyk et al. [10]; they also
proved the same protocol was 2-ACCE-secure. For techni-
cal reasons, we also require a less-than-ideal assumption,
namely, that P and P 0 are, essentially, the same protocol,
one in the SACCE setting, the other, in the ACCE setting,
as also requested in Section 3.
Theorem 1. Let ⇧ be the 3(S)ACCE-K-SSL variant. We

denote by P be the unilaterally-authenticated TLS 1.2
handshake, by P 0, the mutually-authenticated TLS 1.2
handhsake, and by  , the transformation of P 0 to an
AKE protocol by the computation of the export key ek.
If the following conditions hold:

- If P is a 2-SACCE-secure protocol, P 0 is a 2-ACCE-
protocol such that P and P 0 are together mEA-secure
w.r.t. mEA-game (i.e., P and P 0 have entity authenti-
cation w.r.t. the adversary in the mEA-game, and they
can be obtained from one another via the mode-flag
flag defined in the mEA-game)9, and  (P 0) yields
pseudorandom keys;

- For TLS-DHE: if the hash function H is collision-
resistant and the signature scheme used to generate
PSign is unforgeable;

- For TLS-RSA: if P guarantees channel security;
Then ⇧ guarantees 3(S)ACCE-security10.

5.2. Efficiency vs. Security

Our 3(S)ACCE-K-SSL proposal has several disadvan-
tages in terms of efficiency with respect to Keyless SSL.

9. Using mEA-security instead of the standard EA-security implies the
following restriction. Instead of being free to choose two different 2-
(S)ACCE protocols, we work in a setting where by picking one protocol
P we also fix P 0 and vice versa.

10. In fact, we need fewer assumptions to prove accountability and
content soundness, since these are defined from the point of view of the
client only.



Client Middleware Server

HTTPS req. for !2⌦S

 ����������!
Generate NC R{0, 1}8·28

Generate N⇤MW
Compute msk⇤, ck⇤

Compute ek  Gmsk⇤(N
⇤
MW ,N⇤S ).

Mutually-authenticated TLS ������������!
Generate N⇤S
Compute msk⇤, ck⇤

Compute ek  Gmsk⇤(N
⇤
MW ,N⇤S ).

NC�������! Req. pars for !
===========) Generate NS R{0, 1}8·28

Set NMW  NS

NS(===========
Check Cert!MW,S

NMW ,Cert!MW,S ������� NC===========)

Check PSign over NC ,NMW ,KEMW

KEMW ,PSign ������� Check PSign over NC ,NMW ,KES

KEMW  KES

KES ,PSign(===========
Generate v RZp

Compute KES  (pkgkgv mod p)
sv  H(NCkNMW kKES ) and
PSign Signsk(sv)
Retain NC ,NMW ,KES ,PSignGenerate u RZp

Compute KEC  gu (mod p)
Compute pmk (KEMW )u mod p

KEC�������!

Compute KEC  Encpk(pmk)
Compute pmk R{0, 1}46·8

KEC�������!
Compute msk, ck, FinC , �C such

that:
msk PRFpmk(L1,NCkNMW )
ck PRFmsk(L2,NMW kNC )

FinC  PRFmsk(L3, ⌧)

AEck(FinC )�������!
⌧ :=⌧[NC ,AEck(FinC )]

===========) Check ⌧

Check Cert!MW ,S

Decrypt and Check FinC .

Decrypt and Check FinS .
AEck(FinS ) ������� Store ck := ek � kblind

kblind,AEck(FinS )(==========
Compute pmk, msk, ck as the client.

Compute kblind  ck� ek and
FinS  PRFmsk(L4, ⌧)

Record layer messages
AEck(�)(======) Record layer messages

Figure 4: An 3(S)ACCE-secure variant of Keyless SSL. (blue+black) TLS-RSA; (red+black): TLS-DHE.

First, the server is involved more heavily in client-
middleware handshakes. In fact, in 3(S)ACCE-K-SSL the
middlebox is practically reduced to relaying the handshake
between the client and the server. Most of our modifications
are meant to achieve accountability. In particular, we must
both allow the server to compute the master secret and
channel keys, and at the same time prevent the middleware
from calculating those values itself (otherwise the msk can
be used for session resumption). In addition to computing
msk, ck, the server must also verify the client Finished
message, and generate and encrypt FinS on behalf of the
middlebox.

Second, we disallow session resumption. An alternative
is to relax the accountability definition requiring servers to
only be able to compute the msk for each client-middleware
session (and not directly the channel key ck). Using TLS
1.2 session resumption is compatible with this relaxation;
however, we cannot recommend using it, since it weakens
security against malicious middleboxes. We also discourage
the use of TLS-RSA in Keyless SSL, as this mode is
inherently not forward secure; although TLS-DHE involves
more exchanges with the server, it offers a better protection
against malicious middleware and corruptions.

Third, we need to compute the export key ek to blind
the channel-key transmission. In the proofs, this allows
us to simulate the record-layer transcript to an adversary,
even when the reduction does not know ck. Although not
computationally-heavy, this step does deviate from the stan-

dard TLS 1.2 handshake.
Fourth, we also require a very large certificate infras-

tructure, with one public key/certificate per middlebox, per
content. A way to reduce that number is to ensure, on the
server side, that no content can be delivered by more than
one middlebox. This could, however, significantly decrease
the efficiency of the CDN.

Our design represents one set of trade-offs that favors
security over efficiency. Other designs may choose a dif-
ferent balance. For example, if we want to prevent just
the attacks in Section 2 without attaining full 3(S)ACCE-
security, smaller changes are probably adequate.

6. Keyless TLS 1.3

Surprisingly, using TLS 1.3 instead of 1.2 allows us
to significantly reduce the PKI and the computational bur-
den on server-side computation. Indeed, in this section we
present our take on Keyless TLS 1.3 and outline its advan-
tages and security guarantees.

A lighter PKI. In Keyless TLS 1.3 the middlebox is back to
using servers as signature oracles, but with additional veri-
fications. Since the server is generating the nonce and since
the nonces and certificates are signed at each handshake, we
reduce the infrastructure to one certificate (and public key)
per content; this key can, however, be shared by several
middleboxes. Moreover, if a server misbehaves and tries to



re-use the discrete logarithm of some value KEMW , as long
as the honest middleware generates a fresh key exchange
value at every session, this is sufficient to guarantee security
for new instances.

Keyless TLS 1.3. We present our protocol in Figure 5. Due
to space restrictions, we do not detail all the computation
required for the key-derivation of TLS 1.3, but mention that,
in the absence of a pre-shared key PSK, the Diffie Hellman
value guv mod p, the session nonces, and the intermediate
transcript, including the auxiliary information aux which is
provided by the client and the middlebox, are sufficient to
allow both the server and the middlebox to go through the
key scheduling, thus outputting all the necessary keys. An
interesting development is that in TLS 1.3, the option to
resume or not a session is reflected in the signature provided
by the server; consequently, as long as the server never
signs a message allowing for resumption, we can allow the
middleware to compute all the session keys. This is not
possible for TLS 1.2, in which the signature does not contain
this data.

We list only the more significant of the session keys,
listed in our protocol depiction. The handshake traffic keys
HTK are used to authenticate and encrypt handshake-
information. The client, and respectively server finished keys
CFK, SFK are used to compute the Finished messages. Fi-
nally, the traffic keys TK secure the record-layer messages.
We note that all these keys are independent of each other,
and they all depend on the full transcript.

Note that TLS 1.3 guarantees AKE security for the traffic
keys [6], [9]. Moreover, if the AEAD primitive attains real-
from-random indistinguishability for the plaintexts, then the
composition of the two also yields the same security; this
allows us to dispense with the export key ek. We let the
middlebox generate its key share, but request that it sends
the discrete logarithm of that value along, which enables
the server to compute guv(mod p), which allows this party
to eventually compute all the session keys. After verifying
that the discrete logarithm is correct, and ensuring that the
middlebox will accept neither resumption, nor pre-shared
keys (this is reflected in the variable aux), the server will
generate a new nonce and compute a signature over a hash
of the two nonces, the two key-exchange shares, and the
auxiliary material. This signature enters the calculation of
all the key material (as part of the transcript). Given the
server’s nonce and signature, the middlebox can compute the
relevant keys, encrypt its certificate, the received signature,
and the Finished message with the handshake traffic keys.
The client verifies the material it has received from the
middlebox and, if all verifications pass, it generates and
sends its own encrypted Finished message.

The two parties will then use the traffic keys to secure
record-layer transmissions.

Key Updates and Resumption. Whilst our definition of
accountability only stretches as far as the traffic keys, TLS
1.3 introduces the concept of updating record-layer keys.
Thus, the two partners may agree to update their old record-
layer keys TK

m

to TK
m+1 by a transformation requiring

only knowledge gained during the handshake. Therefore,
the server not only has accountability for the first traffic
key TK0, but also for all future updates of that key.

Whereas updating keys poses no problems, session re-
sumption still does. In the case of two-party TLS 1.3,
session resumption seems so far to provide acceptable guar-
antees [6]; however, for the three-party case, it could prove
more problematic and should not be adopted before being
extensively studied.

Security statement. We give only an informal security state-
ment here, and leave the fully formalized theorem, with the
exact bounds, for the full version of this paper. The standard,
unilaterally-authenticated TLS 1.3 handshake was proved to
provide 2-S-AKE-security, and, for uncompromised session
keys, the composition of TLS 1.3 with its chosen AEAD
cipher guarantees that the MiM adversary cannot distinguish
between ciphertexts generated on a real message, and those
generated for a random message [6], [9]. The TLS 1.3
handshake with mutual authentication guarantees 2-AKE-
security and the same authenticated encryption guarantee.
Theorem 2. Let ⇧ be the Keyless TLS 1.3 protocol pre-

sented in this section. We denote by P the unilaterally-
authenticated TLS 1.3 handshake, and by P 0, the
mutually-authenticated one. If the following conditions
hold:

- P guarantees 2-S-AKE-security and the security of the
constructed channel (as described above);
P 0 guarantees 2-AKE-security and channel security;
P and P 0 can be obtained from one another via the
mode-flag flag in the mEA-game;
P and P 0 guarantee mEA-security;

- H is a collision-resistant hash function;
- the signature-scheme used to generate PSign is un-

forgeable;
then ⇧ guarantees 3(S)ACCE-security.

7. In perspective: proxying over TLS

Content delivery networks, such as CloudFlare, now
serve a significant proportion of HTTPS traffic on behalf of
millions of high-profile websites. However, the performance
gains offered by CDNs must be balanced against new se-
curity threats. CDNs offer a tempting target for powerful
adversaries, especially in the context of mass surveillance:
by stealing the private keys from a single edge server, an
attacker can impersonate millions of websites, and decrypt
any previously recorded TLS-RSA connections.

Proxied TLS architectures such as Keyless SSL seek to
mitigate the impact of edge server compromise, but such
designs need to be cryptographically analyzed against strong
threat models. In this paper, we introduced the notion of
3(S)ACCE-security that tries to formally capture the guaran-
tees that a proxied handshake should provide. Our definition
aims to protect clients even though they are oblivious that
any proxying is taking place. Instead, we make the origin
server accountable for auditing the behavior of the edge



Client Middleware Server

HTTPS req. for !2⌦S

 ����������! Mutually-authenticated TLS 1.3 ����������������!
Generate NC R{0, 1}8⇤32
Generate u RZp

Choose KEC  (pkgkgu mod p)

NC ,KEC����������! Choose v RZp

Set KEMW  gv (mod p)

NC ,KEC ,!,v,aux,KEMW=============)

NS ,PSign(=============

Check: no resumption, no PSK mode
Check: KEMW = gv (mod p)
Generate NS R{0, 1}8⇤20
Find Cert!MW ,S

Set PSign := Signsk(h) with
h H(NC ,KEC ,NS ,KEMW ,Cert!MW ,S , aux)

NMW ,KEMW �����������
Verify PSign and Set NMW  NS

Compute HTK,CFK, SFK,TK
FinMW  MACSFK(H(⌧[NC ,{PSign}HTK]))

AEHTK(Cert
!
MW ,S ,PSign) ������������

AEHTK(FinMW ) ������������
Compute HTK,TK,CFK, SFK
Get Cert!MW ,S , verify, get pk
Verify PSign
Decrypt and check FinMW

FinC  MACCFK(⌧[NC ,{FinMW }HTK])

AEHTK(FinC )�����������! Decrypt and check FinC

Record layer messages (TK)
AETK(�)(=======) Record layer messages (TK)

Figure 5: A 3(S)ACCE-secure variant with TLS 1.3. We denote by aux the non-explicit auxiliary information we consider,
such as ciphersuites, TLS version number, and extensions.

server, and for detecting and de-authorizing compromised
edge servers. Admittedly, this stronger security comes at
the cost of more computation and more computation at the
origin server. We show that new protocol designs, such a
TLS 1.3 can enable both efficient and secure designs.

To fully protect clients’ privacy, we believe that clients
should be made aware of proxying, so they can decide
whether they want a faster but less secure connection to
a CDN or a slower but more secure connection directly
to the origin server. Designing and analyzing new CDN
architectures where both clients and servers collaborate to
protect against malicious middleboxes (e.g., see [12]) is a
promising direction for future research.
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