Charge transport optimization in CZT ring-drift detectors

This content has been downloaded from IOPscience. Please scroll down to see the full text.

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.227.27.116
This content was downloaded on 10/07/2016 at 10:38

Please note that terms and conditions apply.
Charge transport optimization in CZT ring-drift detectors

V Boothman¹, A Alruhaili¹, V Perumal¹, P Sellin¹, A Lohstroh¹, K Sawhney² and S Kachanov²

¹ Department of Physics, University of Surrey, Surrey GU2 7XH, UK
² Harwell Science and Innovation Campus, Diamond Light Source, Chilton, Oxfordshire OX11 0QX, UK

E-mail: vb00070@surrey.ac.uk, paul.sellin@surrey.ac.uk, annika.lohstroh@surrey.ac.uk, kawal.sawhney@diamond.ac.uk and slava.kachkanov@diamond.ac.uk

Received 28 June 2015, revised 24 September 2015
Accepted for publication 28 September 2015
Published 3 November 2015

Abstract
Ring-drift design has been applied to large (7.5 mm × 7.5 mm × 2.3 mm) cadmium zinc telluride (CZT) devices. This low-noise, single-carrier-sensing configuration is the gold standard for spectroscopic silicon x-ray detectors. By combining the advantages of ring-drift with the high quantum efficiency and room-temperature operating capabilities of CZT, a simple and compact device for high-resolution spectroscopy of x-rays in the range 50–500 keV can be created. Quality of CZT crystals has improved greatly in recent years and electron-only sensing overcomes the problem of inherently poor hole transport in II–VI semiconductors.

The spatial response of our 3-ring CZT device was studied by microbeam scanning while the voltages applied to all electrodes were systematically varied. Maximum active radius extended to 2.3 mm, beyond the second ring. Resolution was limited by electronic noise. Our results show that the lateral field and its ratio to the bulk field exert a crucial influence on active area, peak position and sensitivity. CZT and the device geometry were modelled in 3D with Sentaurus TCAD. Line scans were simulated and trends in performance with bias conditions matched experimental data, validating the model. We aimed to optimize the resolution, sensitivity and active radius of the device. Fields and charge drift were visualized and the active volume was mapped in 3D to improve understanding of the factors governing performance including number of rings, their widths, positions and bias.

Keywords: cadmium zinc telluride, CdTe, TCAD simulation, x-ray detector

(Some figures may appear in colour only in the online journal)

1. Introduction

Cadmium zinc telluride (CZT) is increasingly used for room temperature spectroscopy of 50–500 keV x-rays in many fields including medical and industrial imaging, the nuclear industry and astrophysics [1]. CZT is desirable as a replacement for cryogenically-cooled HpGe because its wide band gap (1.6 eV) permits room temperature operation. Poor charge transport limits the performance of CZT crystals: in particular, hole mobility is an order of magnitude lower than electron mobility. Trapping of holes leads to incomplete charge collection and low-energy ‘tailing’ at peaks [2]. ‘Drift’ geometry is among the most effective for single-carrier (electron) sensing [3, 4]. Drift design has two defining properties: the bulk is fully depleted and electrons are steered towards the anode by a lateral drift field via suitably biased electrodes [5]. ‘Linear’ drift designs have a strip anode and parallel strip steering electrodes; ‘Ring-Drift’ devices commonly have a central anode with concentric rings of steering electrodes covering one face and a solid cathode covering the other [6]. Silicon ring-drift detectors have lower noise than any other configuration for a given active volume owing to the minimal anode area [7]. They are the standard for XRF mapping, scanning electron microscopes, particle physics and many other x-ray applications [8–11].
The potential advantages of Ring-drift design in CdTe-based semiconductors have begun to excite interest. It is desirable to replicate the excellent spectroscopic performance of silicon devices in a material with higher quantum efficiency for hard x- and gamma rays. Crystals grown by the Travelling Heater Method (THM) have recently become available and show evidence of superior spectroscopic qualities compared with previous material [12–14].

The first CZT linear drift detector (1998) proved an effective single-carrier sensor [15]. The design was developed further for high-energy astrophysics [16, 17]. The first approach to CZT ring-drift had only a point anode and guard ring on the anode face extending to the 3 mm³ wafer edge, with no intermediate rings. Cathode and guard ring voltages were equal (~500V relative to the anode). Resolution equalled or improved upon that of all other CZT devices at the time [18, 19].

Multiple-ring configuration did not appear until 2007 [20, 21]. This 1.1 mm-diameter device displayed complex variations in sensitivity with interaction position, applied bias and photon energy.

Our group has previously studied a CdTe 3-ring device 1 mm thick and 7.5 mm in diameter [22] with radioisotope sources (59.5 keV–662 keV) and microbeam scanning. Active radius and sensitivity increased with lateral field but leakage noise limited performance. In this work we present a microbeam study of a 2.3 mm-thick CZT device of the same ring geometry (figure 1). The higher resistivity of CZT permits greater field strengths without loss of resolution, resulting in greater active area as well as improved efficiency [23].

We have modelled the electronic properties of CZT device in 3D and simulated experimental line-scans to validate the model. Synopsys Technology CAD (TCAD) is a powerful tool with extensive visualization capabilities that has already proven invaluable for semiconductor detector development [24]. We have varied ring number, width, position and bias conditions in the search for optimum energy registration, active area and sensitivity. Fields and charge trajectories for many interaction positions have been studied to inform the optimization process and aim to identify which physical processes limit predicted performance.

2. Synchrotron microbeam linescans of prototype

The electrode layout in figure 1 was sputtered on a THM-grown CZT wafer 10 mm × 11 mm × 2.3 mm. The ring face was bump-bonded to custom-shaped gold-plated contacts on a ceramic tile using conductive adhesive by the STFC Rutherford Appleton Laboratory (RAL). The planar gold cathode was wire-bonded at the corner of the wafer. A four-channel power supply (ORTEC 710) biased the rings and cathode independently at up to ~1000V such that the bulk and lateral (‘drift’) fields could be varied. The guard ring floated to an unknown potential and the anode was grounded through an Amptek CoolFET A250 charge sensitive preamplifier. An ORTEC 570 shaping amplifier, ORTEC 480 pulse generator and Canberra 9635 Analogue-to-Digital Converter (ADC) and Canberra Multi-Channel analyser (MCA) were used.

The cathode face of the detector was irradiated with a 20 μm × 20 μm microfocus synchrotron beam at the Diamond Light Source [25]. The x-ray energy was controlled by a Si(1 1 1) double crystal monochromator, with a fundamental energy of ≈26 keV and a beam of 2 × 10³ photons s⁻¹. Aluminium absorbers 12.5 mm thick reduced the beam to 400 photons s⁻¹ at ≈26 keV and 50 photons s⁻¹ at the 3rd harmonic energy, ≈78 keV. Spot size was controlled by tungsten slits. The detector box was mounted vertically on a computer-controlled X-Y stage. Linescans were made with 0.1 mm steps and 30s acquisition times along one radius. Lateral and bulk fields were systematically varied and the bias scheme producing the greatest active area was identified. With this scheme, the linescan was repeated with a 10 μm × 10 μm spot size in 10 μm steps.

3. Linescan results

Figure 2(a) shows a typical anode spectrum (black). Our prototype box and electronic system were not optimized for noise performance and this proved the limiting factor in resolution. High noise occurs below 15 keV. FWHM was used as a measure of resolution. The primary beam (≈26 keV) and the 3rd harmonic energy produced peaks with FWHM of (5.8 ± 0.1) keV and (6.3 ± 0.1) keV respectively. Measurement of the noise in the readout chain indicate that the FWHM resulting from the detector alone is 2.9 keV and 3.8 keV respectively [23].

The peak at ≈78 keV is symmetrical in shape and does not display the ‘hole tailing’ features associated with planar CZT detectors at this energy [2]. The peak at 50 keV represents pulse pileup; the 2nd harmonic is forbidden. With low bulk and lateral potential (<300V), only beam positions over the anode produced spectra of the quality shown in figure 2(a) (black). Beyond the anode edge, peaks shifted to lower energies and collapsed. Increasing the lateral field as a fraction

Figure 1. Prototype detector electronic layout with 0.5 mm ring and gap widths.
of bulk field increased active area and sensitivity. Scaling up both fields caused further improvement, whereas raising the bulk field alone did not. A maximum sensitive radius of 2.3 mm was achieved with bias (Ring 1, Ring 2, Ring 3) Cathode = (−500, −600, −700) − 700 V (figure 2(b)). The spectrum quality is constant up to 2.3 mm radius. Figure 2(a) illustrates the energy spectrum at 2.40 mm radius (grey) which shows a small shift in peak energies. There are no identifiable peaks beyond 2.50 mm, indicating the edge of the detector’s active area. The ≈200 μm radial distance over which counts are registered at incorrect energy is a very small fraction of the total active area. The anode leakage under this bias scheme was <10 nA. Raising the bias to (−600, −700, −800) − 800 V increased leakage noise but did not increase the active area. Alruhaili et al [23] provide a detailed analysis of all microbeam results.

4. Modelling CZT material

Detector-grade CZT varies in composition, growth method and in the trap characteristics observed in experiment [26–28]. The mechanisms underlying its electronic properties are not well-understood. It was necessary to create a simple material model with the properties relevant to drift detector performance. A TCAD model of CZT was created by adding traps to a default CdTe model and raising the bandgap to 1.60 eV. Simulations were conducted to identify a trapping scheme that produced realistic resistivity and charge transport, as reported in CZT bulk material [12–14].

4.1. Modelling realistic resistivity

All detector-grade CZT displays high resistivity ρ (≥10\(^{10}\) Ω.cm). There must exist a stable compensation mechanism that is effective across all variations in composition.

Previous authors [29, 30] have simulated a set of 3 acceptor energies and one or two deep donors, based on experimental data and the supposed physical origins of traps [28, 31]. The mechanism by which a deep donor compensates for acceptors involves Fermi level ‘pinning’ [26]. If donor energy \(E_D \) is close to the intrinsic Fermi level, changes in the number of ionized donors correspond to a very little shift in the Fermi energy. Altering the concentrations of acceptors, hence the number of free holes to be absorbed by the donor, does not change the Fermi level, provided the reservoir of donors is sufficiently large. The presence of a near-mid-gap level with high concentration explains the high ρ of CZT over many variations in composition.

The current work uses acceptor energies, cross-sections and relative concentrations obtained [14] from a sample of undoped THM-grown CZT (table 1, [30]). I–V simulations were carried out to identify the donor energy and relative concentration \(N_{Rel} \) that would result in the most realistic resistivity.

Resistivity exceeds 10\(^{10}\) Ω.cm over the greatest \(N_{Rel} \) range for \(E_D \) ≈ 0.83 V. This energy and its \(N_{Rel} \) at maximum ρ were chosen for the model. The value of maximum ρ was the same for all donor energies: 1.28 × 10\(^{11}\) Ω.cm.

Resistivity depends only on relative concentrations; charge transport properties are determined by absolute concentrations. The next task was to identify the set of absolute concentrations that would produce realistic charge transport.

4.2. Modelling realistic charge transport

The significant properties are the mobility-lifetime products of electrons (\(\mu \tau \))\(_{e} \) and holes (\(\mu \tau \))\(_{h} \). These were evaluated by simulating alpha-irradiation of the cathode and anode respectively. \(\mu \tau \)\(_{e} \) was obtained by measuring charge collection efficiency as a function of electric field strength and fitting the Hecht equation to the curve [32]. Field strength was varied from 2.5 × 10\(^{4}\) Vm\(^{-1}\) to 4 × 10\(^{5}\) Vm\(^{-1}\).

The cathode of a 2 mm × 2 mm × 2 mm planar model was ramped from 0 V to its operating voltage (50 V–800 V) and transient simulation commenced. Current signals were recorded at every timestep. TCAD provides a 'heavy ion
model’ for the deposition profiles of common ion species. Any interaction site and time point can be chosen. Time was allowed for the potential field to stabilize and one αm-241 alpha particle was deposited at 10 μm depth. Simulation continued until all charge motion ceased.

Absolute concentrations of all traps were varied; their relative concentrations were maintained for high resistivity. Donor absolute concentration N_0 is quoted hereafter as shorthand for the set of corresponding acceptor concentrations.

Figure 3(a) shows a node signal following simulated 'cathode irradiation', representing electron drift. At $N_0 = 2.5 \times 10^{13}$ cm$^{-3}$, all charge is trapped at its deposition site within the first few nanoseconds. At $N_0 \geq 2.5 \times 10^{11}$ cm$^{-3}$ a falling exponential pulse shows that carrier lifetime is shorter than the time required to cross the device. At $N_0 = 2.5 \times 10^{10}$ cm$^{-3}$, the current declines after its initial peak as some charge becomes trapped. A change in gradient occurs when the remaining cloud is collected. At the two lowest N_0 values, trapping has little effect upon charge transport. A plateau followed by steep decline in current indicates drift and collection of the whole charge cloud. The FWHM of the pulse represents mean drift time across the full width of the device.

$(\mu\tau)_k$ and $(\mu\tau)_h$ were plotted as a function of trap concentration (figure 3(b)). Within error, $(\mu\tau)_k\alpha N_0^{-1}$. This results from the trapping model applied by TCAD. N_D^0/N_D and N_A^0/N_A are the concentrations of ionized/non-ionized donors and acceptors. Capture cross-sections σ_{th}, thermal velocities v_{th}^{th} and mobilities are set as constants. The trapping times for a donor level are given by:

$$\tau_D = \frac{1}{\sigma_h N_D^0 v_{th}^{\text{th}}}$$

The trapping times for each acceptor level:

$$\tau_A = \frac{1}{\sigma_h N_A^0 v_{th}^{\text{th}}}$$

The cross-sections σ of the donor and the $E_v + 0.48$ eV acceptor are some orders of magnitude larger than those of the other acceptors whereas the concentrations N of all four levels differ by a multiple of 25 or less (table 1). The σN product in the denominator of each trapping time equation therefore signifies that the donor and the $E_v + 0.48$ eV acceptor level cause the most rapid trapping.

In a deep level ($E_{\text{trap}} \gg kT$) the residence time is so large that very little de-trapping occurs. Hence the observed relationship $(\mu\tau)_k\alpha N_0^{-1}$ only in the range $N_0 > 2.5 \times 10^9$ cm$^{-3}$. Below this concentration, $(\mu\tau)_h$ rises more gradually with falling N_0.

The change in gradient corresponds to the transition from a falling exponential current pulse to a square-topped signal.

The range of experimental values of THM CZT [12–14] $(\mu\tau)_k$ is indicated; $(\mu\tau)_h$ of the same crystals was not reported. A mid-range value of $(\mu\tau)_k = 3.5 \times 10^{-4}$ cm2 V$^{-1}$ was selected for the model. The best fit line shows that this requires a donor concentration of 1×10^9 cm$^{-3}$. The corresponding $\mu_h \approx 5 \times 10^{-4}$ cm2 V$^{-1}$ is somewhat high in comparison with values reported for CZT from other sources (3×10^{-6} cm2 V$^{-1}$–1.5 $\times 10^{-4}$ cm2 V$^{-1}$ [14, 26, 33]). However, reported values cover a wide range and it is reasonable to expect a high $(\mu\tau)_h$ for this THM material corresponding to its high $(\mu\tau)_k$. In any case, $(\mu\tau)_h$ is of little significance for testing a single-carrier sensor.

Table 1 summarises the properties of the final model of CZT used in section 5 for device modelling. Values of trap energies and cross-sections, electron and hole mobilities and the bandgap were based on undoped THM-grown CZT [14, 30]. These values were written into the parameter file of default CdTe. Resistivity and $(\mu\tau)_{k,h}$ values emerge during simulation from the specified mobility values, traps and the physical models applied.

5. Modelling ring-drift devices and simulating linescans

5.1. Methods

The prototype device (figure 1) was modelled in 3D with perfectly Ohmic gold contacts (figure 4(a)). The ‘heavy-ion
model’ was used to simulate x-ray interaction, with the spatial and temporal deposition profile of a 26 keV photon undergoing photoelectric absorption in CZT. The 1/e attenuation depth of a 26 keV photon in CZT is 70 μm. This was taken to be a representative depth for replicating a linescan by a series of single-photon simulations at 100 μm radial intervals.

3D datasets were recorded at multiple times for visualization of fields, charge drift and diffusion in any plane (figures 4(b)–(g)). Figure 5 shows how current signals (a) were integrated to obtain a ‘Qrad profile’ (c): charge collection on each electrode as a function of radius. Active area corresponds to the extent of anode charge collection. A flat response indicates correct energy registration; the region of declining anode charge represents counts registered at too low an energy. The Qrad profile is characteristic of the geometry, bias and interaction depth. To compare the overall performance of devices under uniform illumination, the extent of the flat response must be considered in combination with the loss of resolution caused by partial charge collection. A factor G was devised to quantify spectroscopic quality (appendix A). The quality factor informed optimization of the device and its operating conditions.

A variety of field conditions and ring geometries were simulated and interaction depth was varied to represent higher photon energies.

5.2. Comparison of experimental and simulation results

26 keV linescans in the prototype device were simulated under the bias conditions used in experiment. Trends in performance were qualitatively reproduced: increasing the lateral field increased active area. Raising ring and cathode voltages...
with a fixed ratio increased both active area and the maximum value of anode charge collected. Figure 6 compares linescan data with the simulated Qrad profiles of the anode and Ring 1 under the experimentally optimized scheme of \((-500, -600, -700) - 700\) V. The ‘floating’ nature of the guard ring could not be simulated; an applied guard bias of \(-1000\) V resulted in spatial performance that most closely matched experimental data. The influence of the guard ring is discussed further in section 5.3.2.

5.3. Varying bias conditions, ring geometry and interaction depth: results and discussion

Linescans were simulated under bias conditions outside the experimental range. The aim was to optimize the performance of the model. Qrad profiles were compared with that of the experimentally optimized scheme of \((-500, -600, -700) - 700\) V. The models discussed in this section are listed in table 2 with their quality factor \(G\) values.

5.3.1. Effects of varying lateral and bulk bias increments.

The relative voltages of the electrodes were systematically altered and trends in Qrad observed.

Firstly, cathode bias was increased while maintaining all ring voltages (figure 7(a) pink, grey series) This caused a higher uniform response over a smaller area and steeper decline in Qrad. This was as predicted: the larger bulk/lateral field ratio allowed less distance of lateral drift before all the charge reached the anode face. \(G\) increased, indicating improved energy resolution. However, the device was scarcely operating in ‘drift’ mode; charge deposited beyond Gap 1 was almost entirely collected by the rings.

Secondly, inter-ring voltages were increased to 250 V, then to 400 V. Ring 1 voltage and Cathode = Ring 3 were maintained (figure 7(a), dashed series) produced a similar result. The lateral field close to the cathode remains weak even when there is a large voltage drop across the rings. Charge close to the cathode experienced the high bulk field. Visualization of the electron cloud showed that its initial trajectory had no lateral component. When it reached a region of high lateral field, it was already too close to the anode face to drift to the anode without being captured by Ring 1.

Thirdly, Ring 1 bias was increased to \(-800\) V, then to \(-1000\) V. Inter-ring voltages and Cathode = Ring 3 were maintained (figure 7(b)). This resulted in a larger flat-response area but also extended the region of partial charge collection, degrading the overall quality \(G\).
5.3.2. Effects of biasing the guard ring and scaling all voltages. The true voltage of the ‘floating’ guard used in experiment is unknown. A model with no metallized guard (figure 8(a)) produced a gradual decline in the anode Qrad profile (figure 7). It was necessary to add a metal guard and impose a voltage to produce a closer match to experimental data (section 5.2). Guard voltages up to $-1200\,\text{V}$ were simulated with the experimentally optimized scheme of ($-500, -600, -700$) $- 700\,\text{V}$.

A guard more negative than $-700\,\text{V}$ caused the sloping Qrad profile to be ‘cut off’: decline very steeply to zero at a certain radius. This cut-off corresponds to the radius at which the depth component of the electric field falls to zero and changes direction (figure 8(b) where an equipotential intercepts the cathode). The steep decline in experimental peak energy cannot be ascribed to this field condition because the true floating guard voltage must be smaller than $-700\,\text{V}$.

A more negative guard decreases this cut-off radius, reducing the active area; a less negative guard increases it, allowing a greater area of partial charge collection. The maximum G (0.59), representing the best compromise between these two effects, was attained with the guard biased at $-1000\,\text{V}$ (figures 8(b) and (c) dashed).

This bias combination produced the best performance of many simulated schemes with ring, guard and cathode voltages in the range 0 to $-1000\,\text{V}$. Though some attained higher G with an active radius extending only to Ring 1 (figure 7(a) solid lines), this model produced high G while operating as a true ‘drift’ device, collecting the majority of charge deposited within the outer radius of Ring 2.

The next step in optimization was to scale up all voltages while maintaining the ratio ($-500, -600, -700, [-1000]) - 700\,\text{V}$. In experiment, raising ring and cathode voltages with a fixed ratio increased the maximum value of anode charge collected (section 5.2). This trend was reproduced in simulation when voltages were doubled.

In the absence of a guard, the Qrad profile shifted up the charge (Q) axis without significantly altering its shape. The flat-response radius increased very slightly but the range of partial charge collection expanded greatly as charge collection declined gradually to zero from a higher initial plateau. The total effect was to decrease G.

When the guard was biased to cut off the region of partial charge collection at a fixed radius, doubling all voltages improved G as a result of the marginal increase in flat-response radius.

Figure 8(c) (dashed lines) illustrates the change in Qrad when doubling ($-500, -600, -700, [-1000]) - 700\,\text{V}$. G rose from 0.59 to 0.69. However, anode leakage also doubled from 0.5 nA to 1 nA. The increase in maximum Q with electric field strength results from the material model (section 4.2): absolute collected charge is limited by carrier lifetime. Faster drift allows a greater proportion of deposited charge to be collected rather than succumbing to traps.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Bias (V) (R1, R2, R3, (R4), [Guard]) Cathode</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures 7(a) and (b)</td>
<td>3-ring prototype, no guard</td>
<td>0.43</td>
</tr>
<tr>
<td>Figure 7(a)</td>
<td>($-500, -600, -700$) $- 700$</td>
<td>0.77</td>
</tr>
<tr>
<td>Figure 7(a)</td>
<td>($-500, -750, -1000$) $- 1000$</td>
<td>0.49</td>
</tr>
<tr>
<td>Figure 7(b)</td>
<td>($-800, -900, -1000$) $- 1000$</td>
<td>0.38</td>
</tr>
<tr>
<td>Figures 8(b) and (c)</td>
<td>3-ring prototype + guard</td>
<td>0.59</td>
</tr>
<tr>
<td>Figure 8(c)</td>
<td>($-1000, -1200, -1400, [-2000]) - 1400$</td>
<td>0.69</td>
</tr>
<tr>
<td>Figures 10 and 11</td>
<td>3 narrow rings + guard</td>
<td>0.78</td>
</tr>
<tr>
<td>Figures 8(b) and (c)</td>
<td>($-1000, -1200, -1400, [-2000]) - 1400$</td>
<td>0.78</td>
</tr>
<tr>
<td>Figure 9</td>
<td>4 narrow rings + guard</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Table 2. Quality factor G (appendix A) of various models undergoing simulated 25 keV linescans (70 μm interaction depth).
The anode and guard radii were kept constant and three 250 μm rings were placed at the outer edges of the original (500 μm-wide) ring positions (figure 11(a)). This geometry gave a slightly larger flat-response radius and a shorter range of partial charge collection than the prototype. The value of G rose from 0.69 to 0.78. 250 μm rings were adopted for all subsequent models.

An uneven electric field slows drift to the anode and increases the probability of trapping and charge collection by the rings [34]. Theory shows that the ratio of drift-strip pitch to wafer thickness should be less than $\frac{1}{4}$ to obtain a sufficiently uniform drift field in the centre of a linear detector. For deep interactions (close to the anode face) even smaller spacing is required. The possible effects of a finer ring structure were investigated by replacing 3 250 μm rings (750 μm gaps) with 6 250 μm rings (Gap 1 750 μm, other gaps 250 μm) with the same voltage/distance gradient. Spatial fluctuations in electric field greatly reduced in magnitude. Linescans were simulated at depths from 70 μm to 1800 μm. The Qrad profiles of the 3-ring and 6-ring devices showed no significant difference. At ≥1800 μm depth, anode charge collection ceased at the inner edge of Ring 1 for both devices. Smoothing the electric field brought no performance benefit.

The drift field was extended over a larger radius, by adding fourth and fifth rings, with the aim of increasing active area. Figure 9 shows one 4-ring geometry under three bias schemes (electrostatic potential plots (a)–(c)) and their Qrad profiles for interactions at 70 μm depth (d). This 4-ring geometry with bias scheme (a) was created to replicate the best-performing field in a 3-narrow-ring device (figure 11(a)) but extend the active area to a cut-off radius of 3400 μm. Ring 1 in this geometry has been narrowed to 150 μm (the very minimum that could be bonded in a real device) and re-positioned repeatedly to minimize its charge collection. However, Qrad profiles show that partial charge collection by Ring 1 affects (a) from $r \approx 1100 \mu m \ G = 0.42$.

Biases were varied to increase the flat-response radius and reduce the range of partial charge collection. A flat response with steep decline was achieved only by moving the cut-off radius so far inwards that the Qrad profile and the electrostatic potential field resembled that of a 3-ring device: Ring 4 and even Ring 3 became an extension of the guard (figures 9(c) and (d), purple series, $G = 0.60$). None of the large-area 4-ring or 5-ring geometries improved upon the active area or quality achieved with 3 narrow rings and a guard. The aspect ratio of the wafer may be the limiting factor in maximising active area.

5.3.4. Effects of varying interaction depth. The best-performing model tested thus far had 3 250 μm rings with 750 μm gaps and a guard and was biased with the ratio (5, 6, 7, 10/7) (figure 11(a)). The bias values that would give the best performance in experiment depend upon the trade-off between sensitivity and leakage noise. A reasonable bias scheme of (−1000, −1200, −1400, −2000) − 1400V (simulated leakage 1.0 nA) was chosen to create a high-resolution 3D map of charge collection (figure 11). The aim was to understand the relationship between potential shape and active volume,
enabling more accurate prediction of performance from potential fields and thus quicker optimization.

Figure 10 illustrates the Qrad at three depths. The steep cut-off observed at 70 μm (a) is replaced at 1300 μm depth (b) by a wide radial range of charge sharing. A large negative bias on the guard ring produces a sharp cut-off only for very shallow interactions. At 1800 μm depth (c) the range of partial charge collection shrinks again as Ring 1 collection dominates. The inner edge of Ring 1 is the limiting active radius. No gaps >900 μm had been used hitherto for reasons described earlier; this data stimulated a study of increasing gap 1 width up to 1750 mm by condensing the other gaps or removing one ring.
Figure 11 was constructed by interpolation between ‘linescan’ datasets at 12 depths including those shown in figure 10. The relationship between the potential shape (figure 11(a)) and partition of charge collection between electrodes as a function of interaction position for the model (a). Active volume is represented by full anode charge collection. The sum of fractional charge collection by all electrodes at any location is 0 (black area) (Guard and Cathode not illustrated). This 3D charge collection map is interpolated from Qrad profiles from simulated linescans at 12 depths. Figure 10 shows examples at the 3 depths indicated by white dashed lines.

Figure 11 was constructed by interpolation between ‘linescan’ datasets at 12 depths including those shown in figure 10. The relationship between the potential shape (figure 11(a)) and partition of charge collection between electrodes (b)–(e) is evident. At <300 μm depth, anode charge collection extends to the ‘cut off’ radius at which the bulk field (the depth co-ordinate component of the electric field) switches polarity (≈2300 μm). Beyond this radius, charge is forced upwards and collected by the cathode (figure 10(a)). The lateral field at shallow depth is too weak to cause significant lateral drift.

At greater depths, anode charge collection extends further but charge is increasingly shared with Ring 1. At the radius where the bulk field switches polarity, the strong lateral field prevents charge from drifting up to the cathode; instead, it is swept towards the axis until it experiences a bulk field component towards the anode face. Charge is forced diagonally downwards. Some reaches the anode; charge from deeper interactions at larger radii arrives at the anode face at the location of Ring 1, Ring 2 or Ring 3 and is captured.

If the guard were made less negative or removed, there would be no ‘cut-off’; the anode charge-sharing region in
The problem of partial charge collection was not observed in experiment (figure 6). It is possible that the field conditions resulting from surface treatment and electrode deposition prevent charge from drifting too close to the surface and being captured by the rings. A more realistic model of the surface needs to be developed.

6. Conclusion

We have studied a 3-ring drift detector of 2.3 mm-thick CZT by 26 keV and 78 keV microbeam scanning at room temperature. Voltages of all electrodes were independently varied to optimize performance. Our device displayed correct energy registration to the outer radius of its second ring. No peak ‘tailing’ was observed at 78 keV, confirming that this is an effective single-carrier-sensing configuration. Resolution was limited by electronic noise. Our data show systematic trends in active area, peak position and sensitivity as lateral and bulk electric fields were varied. Future work will include experiments on similar devices with a noise-optimized electronic system.

The device was modelled in 3D with Sentaurus TCAD and linescans were simulated. Trends in performance with bias conditions were qualitatively reproduced but the model suffers from charge sharing between Ring 1 and the anode, which was not observed in experiment to this extent. Bias conditions of the model were optimized and found to be in the same ratio as the optimized experimental conditions.

Ring width, spacing, number and bias have been varied. Visualization of charge drift, field conditions and multiple electrode signals have improved understanding of the parameters governing performance. In particular, the 3D shape of the active volume has been mapped and its relationship to bias and geometry is still under investigation. Narrowing the rings to the minimum size that can be fabricated has been shown to improve energy registration marginally. No 4-ring or 5-ring device has yet surpassed the performance of our best 3-ring design. Results suggest that the shape of the electric field on a wafer of this size and thickness is adequately controlled by 3 rings and cannot be further improved by extra steering electrodes.

Further changes in geometry will be investigated. Results of active volume mapping indicate that widening the first gap may increase charge collection for deep (high-energy) interactions. Charge sharing between the anode and rings must be eliminated in order to reproduce experimental results accurately. A more realistic model of the field conditions at contact interfaces and gap surfaces is under development.

Acknowledgments

The authors would like to thank AWE for funding and Dr M Veale and Dr N Tartoni for assistance with microbeam experiments. Tuition and advice on use of TCAD was provided by Dr N Owen of the Microelectronics Support Centre, Rutherford Appleton Laboratory.

Appendix A. Quality factor of simulated ‘Qrad’ curves

The anode ‘Qrad’ curve (figure 5(c), red, figures 7 and 8(c)) shows the amount of charge collected by the anode when a single photon interacts at a certain radius in simulation. A Qrad curve is characteristic of a certain geometry, bias combination and interaction depth.

The simulation method used in this study does not generate spectra. The total effect of the complete and incomplete charge collection regions of the device is difficult to judge by inspection of their Qrad profiles. A quality factor was devised to quantify the relative performance of model devices.

It is supposed that the device is under uniform illumination of 1 photon per unit area at a single energy. All photons undergo photoelectric interaction.

The Qrad plot is normalized to a value of charge collected per count \(Q = 1 \) at the anode centre. Data points are interpolated by a piecewise cubic hermite interpolating polynomial (PCHIP) algorithm [36]. The region with \(Q > 0.95 \) charge collection is considered ‘flat-response’, radius \(r_{\text{flat}} \), and its \(Q \) is rounded up to 1. Therefore the number of counts correctly registered is

\[
1 \times \pi r_{\text{flat}}^2.
\]

The region of partial charge collection is divided into 250 bins with upper and lower relative charge collection limits \(Q_i \) and \(Q_j \) respectively. Radii at these limits are designated \(r_i \) and \(r_j \). The number of counts in a bin is \(1 \times \) the physical area of the annulus it represents.

The mean relative \(Q \) per interaction in the bin is approximately \((Q_i + Q_j)/2 \). Thus a weighting factor

\[
W = \left(1 - \frac{Q_i + Q_j}{2}\right)
\]

is the difference between the charge collected per count in the bin and the correct value.

The ‘adverse impact’ of the bin upon spectrum quality is quantified as:

\[
1 \times (\pi r_i^2 - \pi r_j^2) \times \left(1 - \frac{Q_i + Q_j}{2}\right).
\]

Thus larger annuli with lower charge collection have a greater impact. The flat-response region has an impact factor of 0, by definition of \(W \). The ‘impact factors’ of all annuli are summed from \(r_i = r_{\text{flat}} \) up to the radius at which no charge is collected (\(Q_j = 0 \)).

The overall ‘quality factor’ \(G \) of the (imagined) spectrum is defined as:

\[
G = \frac{\pi r_{\text{flat}}^2}{\pi r_{\text{flat}}^2 + \sum \pi (r_j^2 - r_i^2) \left(1 - \frac{Q_i + Q_j}{2}\right)}.
\]

Thus the ideal spectrum has a quality factor \(G = 1 \) and a Qrad plot falling from \(Q_j = 1 \) to 0 at a single radius. Both the value of \(G \) and the active radius \(r_{\text{flat}} \) must be considered when judging the performance of a detector model.

References

[27] Li G Q, Jie W Q, Hua H and Gu Z 2003 Cd(1-x)Zn(x) Te: growth and characterization of crystals for x-ray and gamma-ray detectors Prog. Cryst. Growth Charact. 46 85–104

