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Introduction 
As consumers move increasingly to multichannel and surround-sound reproduction of sound, and 

also perhaps wish to remix their music to suit their own tastes, there will be an increasing need for 

high quality automatic source separation to recover sound sources from legacy mono or 2-channel 

stereo recordings. In this Contribution, we will give an overview of some for audio source separation, 

and some of the remaining research challenges in this area. 

Separating mixed sounds 
A common problem that arises in musical audio is that of source separation, where we want to 

separate one sound from a mixture of many sounds. This is sometimes known as the cocktail party 

problem (Cherry, 1953): we might imagine we are at a party trying to listen to one conversation, 

while many other noises and other conversations are going on around us. 

This full-scale problem, with multiple sources, delays and background noise, is much too difficult for 

current techniques. Let us therefore start with something much simpler: two source instantaneously 

mixed in different ways before being picked up by two microphones (Fig. 1). We express this 

mathematically in matrix/vector form as x=As where 𝐬 = [𝑠1, 𝑠2]𝑇is the pair of sources,  𝐱 =

[𝑥1, 𝑥2]𝑇  is the  pair of microphones, and 𝐀 is the 2 × 2 matrix with elements 𝑎𝑖𝑗 representing how 

much of the 𝑗th source is picked up by the 𝑖th microphone. 

[Fig 1 goes about here]  

Our task is then to try to “unmix” this process to find the original sources 𝐬, given only the signals 𝐱 

picked up at the microphones, but without knowing the mixing matrix 𝐀. Separating the sources 

without knowing the mixing process is known as blind source separation.  

This blind separation problem might seem to be a difficult problem, but we can see how we might 

try to solve it by turning into a game. Imagine that instead of sound sources 𝑠1 and 𝑠2 we have two 

dice: Amber (𝐴) and Blue (𝐵). Then we ask an opponent to think of a pair of secret formulae to mix 

these to give two observations 𝑋 and 𝑌. For example, they might come up with 𝑋 = (1/2)𝐴 + 3𝐵 

and 𝑌 = 2𝐴 + 𝐵. They then roll the dice only tell us the numbers 𝑋 and 𝑌 (for example, as in Table 

1). Can we work out the secret formulae, and the numbers 𝐴 and 𝐵 that were rolled? 

[Table 1 goes about here] 

To proceed, let us plot the values that we get for 𝑋 and 𝑌 as a scatter plot (Fig 2). 

[Fig 2 goes about here] 

We can see that the outline of the scatter plot forms a lozenge shape, which gives us a clue about 

how to recover the mixing process.  The slopes of the lines formed by the sides of the lozenge tell us 

the numbers that appear in the two formulae, which tells us how the numbers on the dice 𝐴 and 𝐵 

were mixed to give 𝑋 and 𝑌 (Fig. 3). We can then solve these two simultaneous equations (i.e. 

multiply by the inverse mixing matrix) to get back to the original numbers 𝐴 and 𝐵. 

                                                             
1
 This in the accepted version of an article that appeared in Acoustics Bulletin 39(6): 44-47, Nov/Dec 2014.  

The published version is online at http://www.ioa.org.uk/publications/acoustics-bulletin-past 

http://www.ioa.org.uk/publications/acoustics-bulletin-past


[Fig. 3 goes about here] 

In fact, there are two ambiguities that remain after we recover the formulae. The first is a scaling 

ambiguity: A slope of 2 in ½ is the same as a slope of 4 in 1 or 1 in ¼, so we can only discover the 

relative amounts of 𝐴 mixed in 𝑋 and 𝑌. For a die roll we will know that 𝐴 can only take integer 

values between 1 and 6, so we can work out which is the correct scaling, but for more general 

signals this scaling ambiguity will remain. The second is a permutation ambiguity: we cannot tell the 

labels (colours) of the original dice from the mixtures 𝑋 and 𝑌. So we cannot tell if the original 

mixing formulae were (a) 𝑋 = (1/2)𝐴 + 3𝐵 and 𝑌 = 2𝐴 + 𝐵 or 𝑋 = (1/2)𝐵 + 3𝐴 and 𝑌 = 2𝐵 + 𝐴. 

So, while we might recover the values for 𝐴 and 𝐵, the values that we get back might be swapped 

and/or scaled from their original values. 

What we have seen is a simple example of independent component analysis (ICA) (Hyvärinen et al, 

2001). While we solved this unmixing problem visually, ICA uses the statistical independence of the 

sources to solve the unmixing process, searching for an unmixing matrix 𝐁 such that the elements 𝑦𝑖 

in the vector 𝐲 = 𝐁𝐱 = 𝐁𝐀𝐬 are independent. When they are, 𝐁 will be an inverse matrix for 𝐀, 

subject to a scaling and permutation ambiguity. 

Separating more mixed sounds 
The ICA method is very useful, but since it uses the inverse of the mixing matrix (or equivalently, the 

solution of a set of simultaneous equations), it is limited to the case where the number of sound 

sources is the same as the number of observations (microphones). If instead we had more sound 

sources than microphones, such as a set of three instruments picked up by a 2-channel stereo 

microphone pair, then we cannot use the ICA method. 

Going back to our dice game again: if we have three dice (Amber, Blue, Cherry) but only two 

mixtures, we cannot see the lines on the scatter plot that would help us to recover the mixtures (Fig 

4.). This is not a game we can win, so let us play with a new set of rules based on the concept of 

sparsity. 

[Figure 4 goes about here.] 

One feature of many audio signals is that, if represent the signal into the time-frequency domain 

instead of the time domain, its representation is dominated by a small number of time-frequency 

components. When a signal can be represented or using a small number of non-zero components in 

this way, we say that it has a sparse representation. 

For our dice game, one equivalent might be to suppose that we only score something on each of our 

3 dice 𝐴, 𝐵, 𝐶 if we first roll a six, otherwise we score nothing. For example, 4 scores 0, 2 scores 0, 

but 6 followed by 4 scores 4. This means that most (5 out of 6) of our scores will be zero.  If we now 

plot the scatter plot of the two secret formulae results 𝑋 and 𝑌, we can clearly see the mixture lines 

(Fig. 5). 

[Fig. 5 goes about here] 

The high proportion of zeros in the sparse sources has led to a concentration of the scatter plots 

corresponding to the three cases 𝐵 = 𝐶 = 0, 𝐴 = 𝐶 = 0, and 𝐴 = 𝐵 = 0, where only 𝐴, 𝐵 and 𝐶 

respectively are non-zero. So we can now recover the mixing formulae. We can also determine the 

values of 𝐴, 𝐵 and 𝐶 where they are each the only non-zero value, but other cases are more difficult: 

the points on the scatter plot that are “between” lines could be caused by either two or three non-

zero values, so we may not be able to recover them uniquely. 



A corresponding situation arises for separation of audio sources. Suppose we have a pan-potted 

(instantaneous) 2-channel stereo mixture of several sources, where each source is panned to a 

particular L-R direction by mixing level only (no delays). If we transform the 2-channel mixture into 

the time-frequency domain (a spectrogram), and plot the resulting scatter plot, we might see 

something like that in Fig. 6. 

[Fig. 6 goes about here] 

We can see three clear signals that show as bidirectional “rods” sticking out from the centre in the 

scatter plot (a fourth signal is also just visible in this example, at an angle of about 80°/260° from 

vertical). Each spike corresponds to a sound source coming from a different direction from L to R, 

which has a different relative weighting of L and R. If we measure the relative L/R weighting for each 

time-frequency box in the spectrogram, and “colour” the spectrogram according to the nearest 

source, we can then “tease apart” the spectrogram using masking to give its separate component 

spectrograms (Fig. 7). By transforming those spectrograms back into the time domain, we recover an 

estimate of the original separated signals.  This approach, known as time-frequency masking, forms 

the basis of the Degenerate Unmixing Estimation Technique (DUET) (Yilmaz & Rickard, 2004) and the 

Azimuth Discrimination and Resynthesis (ADRess) method (Barry et al., 2004). 

Separating from a single microphone 
The separation problem is even more challenging with only a single microphone, since we no longer 

have any direction-of-arrival information to estimate which source is present in each time-frequency 

box.  However, if the sound sources are sparse in the time-frequency (spectrogram) domain, they 

will be approximately disjoint, and we can use the technique of non-negative matrix factorization 

(NMF) (Lee & Seung, 2001) to try to decompose the sources. 

For NMF, we assume that each note 𝑗 has a non-negative spectral profile, so our set of notes can be 

represented by a frequency x note matrix 𝐖 = [𝑤𝑖𝑗], and that the non-negative note activities can 

be represented by a note x time matrix 𝐇 = [ℎ𝑗𝑘]. If the frequency profiles of the notes are 

approximately disjoint, the elements of the “frequency x time” mixture spectrogram 𝐕 = [𝑣𝑖𝑘] is 

approximately given by adding up the contributions due to the frequency profile of each note in the 

𝑖th frequency bin, multiplied by its activity at 𝑘th time frame, i.e. 

𝑣𝑖𝑘 ≈ ∑ 𝑤𝑖𝑗ℎ𝑗𝑘

𝑗

 

or in matrix notation, 𝐕 ≈ 𝐖𝐇. So if we start with the spectrogram 𝐕, we can use the NMF approach 

to decompose into the separation note spectral profiles and note activities (Fig. 8), resulting in a 

transcription of the musical notes (Smaragdis & Brown, 2003). While the standard NMF algorithm 

uses an Euclidean distance, Févotte et al (2009) suggest that approximating using the Itakura-Saito 

divergence is more suitable for audio sources. 

To separate different musical instruments, we then need to group together the notes from the 

different sound sources. For a simple case we can do this by hand (Wang and Plumbley, 2005) or use 

convolutive methods (Virtanen, 2004).  

We can therefore break our decomposition into sub-matrices corresponding to each of our sources, 

so our decomposition is split into 𝐕 ≈ 𝐖𝐇 =  𝐖1𝐇1 + 𝐖2𝐇2 + ⋯ + 𝐖𝑁𝐇𝑁 = 𝐕1 + 𝐕2 + ⋯ + 𝐕𝑁 

where 𝐕𝑛 = 𝐖𝑛𝐇𝑛 is the estimate of the spectrogram due to the 𝑛th source. We then recover the 

estimated source by transforming back to the time domain. 



Research challenges 
For time-frequency masking and NMF to work well, the sources must each occupy different boxes in 

the transform domain, a property that is sometimes known as W-disjoint orthogonality (Yilmaz & 

Rickard, 2004). In reality, this orthogonality property does not completely hold, so different types of 

artefacts can be heard in the separated sources. For example, if two source occupy the same time-

frequency box, some of one signal will be mis-allocated to the estimate of a different signal, and we 

can hear parts of one source signal “bleeding through” to the other.   

Another artefact, often called musical noise (or birdies) arises due to filtering of background noise. In 

areas where the energy from all sources is low, the value in a time-frequency box may be mostly due 

to background noise rather than one of the sources. However, the basic algorithm does not detect 

the difference between noise and signal, and will allocate that noise component to the source with 

the nearest corresponding L/R ratio. Since each time-frequency box represents a brief burst of 

energy near the centre frequency for that box, this can be heard as a set of very quiet “bip” sounds 

at different frequencies, which combine to give a very noticeable “twittering” effect in the 

background. 

Solving these and other problems is a challenge for current researchers. For example, we have been 

exploring alternative time-frequency transforms to improve separation (Nesbit et al., 2007), the use 

of additional information such as user input (Smaragdis & Mysore, 2009), knowledge of musical 

scores (Fritsch & Plumbley, 2013; Ewert et al., 2014), and modelling the local phases and correlations 

in time-frequency transforms of signals (Badeau & Plumbley, 2014). Many other audio source 

separation methods are possible, see e.g. (Evangelista et al, 2011) for a review. 

Conclusions 
Musical audio source separation is an interesting and challenging area of research. Where we have 

the same number of microphones as sources to be separated, we can use methods based on 

independent component analysis (ICA). In many cases there are more sound sources than 

microphones, and for those cases we can use methods based on time-frequency masking, including 

the well-known non-negative matrix factorization (NMF) approach. However, this is still far from 

being a solved problem, particularly if we are looking for results with high perceived audio quality, 

suitable for upmixing or remixing applications, and currently may still require significant manual 

work to get the best results. Nevertheless, there are some promising areas of current research that 

suggest that progress is still possible, and it will be interesting to see how far we can go towards the 

target of fully automatic high quality audio source separation. 
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Figure 1: Mixing process of two sources into two microphones. 
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Table 1: Example results of applying the secret formulae to die rolls. 

 

 

  



Figure 2: Scatter plot of secret formula values Y against X, highlighting the point X=7, Y=6. 
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Figure 3: Reading off the mixtures from the scatter plot 
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Figure 4: With three sources but only two mixtures, the scatter plot no longer allows us to find the mixtures. 
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Figure 5: Scatter plot of two mixtures of three sparse sources. 
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Figure 6: Scatter plot of the real values of a time-frequency transform of pan-potted stereo signal. 
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Figure 7: Separation by colour-coding the spectrogram 
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Fig. 8: Illustrative example of decomposition of a spectrogram by non-negative matrix factorization (NMF)  

 

 

 


