University of Surrey & Thames Water Utilities Ltd.

Engineering Doctorate

Evaluation of Robust, Low Energy Wastewater Treatment Systems for Small Populations

Volume 1

Simon P. Wilson
URN: 1458183

Sustainability for Engineering & Energy Systems Centre for Environmental Strategy
ABSTRACT

The aim of this research is to evaluate the potential of low energy wastewater treatment processes to meet UK performance requirements, with respect to an increasingly strict regulatory framework.

This research proposes the implementation of double filtration trickling filters (TF) operating in series without the requirement for intermediate settlement. Performance data is analysed and presented to demonstrate how a 50-80% biological offload of organic carbon (BOD) using a primary plastic media TF can enhance nitrification of existing conventional TFs. This configuration is capable of providing 97.4%, ammoniacal nitrogen (NH$_4$N) removal with effluent concentrations as low as 1.2mg/L.

Process performance data from 120 TF wastewater treatment works (WWTW) are analysed in order to evaluate the relative nitrification performance of TF WWTWs, both with and without aerated tertiary nitrifying processes. Multivariate regression analysis whilst considering flow, temperature and infiltration determines that tertiary nitrification contributes to a significantly higher risk of NH$_4$-N consent being exceeded during colder winter periods. This directly challenges the current strategy of adopting tertiary processes for enhancing nitrification on TF WWTWs.

A decentralised facultative aerated lagoon (FAL) system with novel mixing and point source aeration is investigated and evaluated to determine its suitability for offloading existing WWTWs. Computational fluid dynamics (CFD) modelling describes the systems complex hydrodynamics and is validated with an experimental tracer study. Overall, this study showed that low energy mixing is capable of preventing hydraulic short circuiting and thermal stratification, which are notorious for reduced performance in traditional waste stabilisation pond variants.
To my family. I couldn’t have completed this without you. Thank you for all of your incredible support along the way.
ACKNOWLEDGEMENTS

Special thanks to Thames Water Utilities Ltd.’s Innovation department for hosting me throughout my EngD. Together with the Engineering and Physical Sciences Research Council funded IDC in ‘Sustainability for Engineering and Energy Systems’ at the University of Surrey’s Centre for Environmental Strategy (Grant EP/G037612/1).

I would like to personally thank my academic supervisors Dr. Sabeha Ouki and Dr. Devendra Saroj whose expertise, understanding and generous support has ensured that I remained steadfast throughout my time at the University of Surrey. Moreover, I am highly indebted and thoroughly grateful to my industrial supervisor Pete Pearce for being an outstanding manager, guide and mentor throughout the EngD. I do not think I can ever repay the debt I owe you for all that you have done to help me.

I would like to give many thanks to Dr. Tuan Ta for his mentoring and support with computational fluid dynamic modelling. Thanks to the Crown Estate and Gurney Environmental Ltd for permitting access to monitor the wastewater treatment lagoon within Windsor Great Park. Finally a special thank you to Anglian Water Services Ltd for their collaboration and support with sampling at Sawston wastewater treatment works.