Optical gain in GaAsBi/GaAs quantum well diode lasers
Marko, I, Broderick, CA, Jin, S, Ludewig, P, Stolz, W, Volz, K, Rorison, JM, O’Reilly, EP and Sweeney, SJ (2016) Optical gain in GaAsBi/GaAs quantum well diode lasers Scientific Reports, 6.
![]() |
Text
srep28863.pdf - Version of Record Available under License : See the attached licence file. Download (1MB) |
|
|
Text (licence)
SRI_deposit_agreement.pdf Available under License : See the attached licence file. Download (33kB) | Preview |
Abstract
Electrically pumped GaAsBi/GaAs quantum well lasers are a promising new class of near-infrared devices where, by use of the unusual band structure properties of GaAsBi alloys, it is possible to suppress the dominant energy-consuming Auger recombination and inter-valence band absorption loss mechanisms, which greatly impact upon the device performance. Suppression of these loss mechanisms promises to lead to highly efficient, uncooled operation of telecommunications lasers, making GaAsBi system a strong candidate for the development of next-generation semiconductor lasers. In this report we present the first experimentally measured optical gain, absorption and spontaneous emission spectra for GaAsBi-based quantum well laser structures. We determine internal optical losses of 10–15 cm−1 and a peak modal gain of 24 cm−1, corresponding to a material gain of approximately 1500 cm−1 at a current density of 2 kA cm−2. To complement the experimental studies, a theoretical analysis of the spontaneous emission and optical gain spectra is presented, using a model based upon a 12-band k.p Hamiltonian for GaAsBi alloys. The results of our theoretical calculations are in excellent quantitative agreement with the experimental data, and together provide a powerful predictive capability for use in the design and optimisation of high efficiency lasers in the infrared.
Item Type: | Article |
---|---|
Divisions : | Faculty of Engineering and Physical Sciences > Electronic Engineering > Advanced Technology Institute |
Authors : | Marko, I, Broderick, CA, Jin, S, Ludewig, P, Stolz, W, Volz, K, Rorison, JM, O’Reilly, EP and Sweeney, SJ |
Date : | 1 July 2016 |
Funders : | Engineering and Physical Sciences Research Council |
DOI : | 10.1038/srep28863 |
Copyright Disclaimer : | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Related URLs : | |
Depositing User : | Symplectic Elements |
Date Deposited : | 04 Jul 2016 11:29 |
Last Modified : | 06 Jul 2019 05:15 |
URI: | http://epubs.surrey.ac.uk/id/eprint/811099 |
Actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year