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Abstract
Deep neural networks (DNNs) are usually used for single chan-
nel source separation to predict either soft or binary time fre-
quency masks. The masks are used to separate the sources from
the mixed signal. Binary masks produce separated sources with
more distortion and less interference than soft masks. In this pa-
per, we propose to use another DNN to combine the estimates
of binary and soft masks to achieve the advantages and avoid
the disadvantages of using each mask individually. We aim to
achieve separated sources with low distortion and low interfer-
ence between each other. Our experimental results show that
combining the estimates of binary and soft masks using DNN
achieves lower distortion than using each estimate individually
and achieves as low interference as the binary mask.
Index Terms: Combining estimates, deep neural networks, sin-
gle channel source separation, neural network ensembles, deep
learning

1. Introduction
Deep neural networks (DNNs) have been used recently to tackle
the single channel audio source separation (SCSS) problem
[1, 2, 3, 4]. The input of the DNN is the mixed signal and
the output is a time-frequency mask. The mask is then used
to separate the sources by scaling the mixed signal according
to the contribution of each source in the mixed signal. DNNs
can be trained to predict different types of masks [5]. The most
used masks are binary and soft masks [3, 5, 6]. The DNN that
predicts a binary mask achieves separated sources with less in-
terference than the DNN that predicts a soft mask. On the other
hand, the separated sources by a soft mask are less distorted
than the separated sources using a binary mask [7, 8, 9].

The combination of many different predictors might yield
better predictions than the best single predictor [10, 11]. There
are several methods of combining different neural networks’
predictions, where every neural network is trained individually
[12, 13, 14]. This combination is done, for example by major-
ity voting in classification problems or by weighted combina-
tions in regression problems [11, 13, 15]. Finding the optimal
weights for combining the predictors to achieve better predic-
tion than using a single predictor is a challenging problem [11].
To do this, simple averaging of the different predictions [15] or
solving a least squares problem to find the optimal weights are
sometimes used [11, 14].

In this paper, we introduce a new technique for combining
estimates using deep neural networks (DNNs) to combine the
predictions of two different DNNs for the single channel source
separation problem (SCSS). The first predictor (DNN1) is used
to predict a binary mask from the mixed signal and the second
predictor (DNN2) is used to predict a soft mask. The third DNN

(DNN3) is used to find a good combination of the two predic-
tors to achieve the advantages and avoid the disadvantages of
each predictor individually. Binary masks achieve separation
with lower interference between the separated sources than soft
masks [7, 16], while soft masks achieve separated signals with
lower distortion than binary masks [2, 3, 7]. The main goal of
combining the predictions of the two DNNs is to achieve sepa-
ration for the sources with both low interference and low distor-
tion. The reason for using a single DNN for combining all the
predicted sources from soft and binary masks is to include the
missing data from one separated source that appears in the esti-
mates of the other separated sources in the combination process.
Combining all the separated sources using one DNN increases
the possibility of remixing the separated sources. To decrease
this possibility, we train DNN3 discriminativly [3, 17]. To avoid
the final estimates of the sources from being biased estimates,
the data set that is used to train the third DNN is different than
the data set that is used to train each predictor [11]. Note that,
if DNN3 has only linear activation functions, training DNN3
(finding the weights) may be seen as finding the best weighted
linear combination of the predictors that can approximate the
target sources. So, using DNN3 with many hidden layers and
nonlinear activation functions gives a better chance of forming
non-linear complex combinations of the predictors than just us-
ing the average or weighted linear combinations of their predic-
tions. DNNs are usually good at modelling the complex struc-
ture of the data in many machine learning tasks [18, 19].

The contributions of this paper are: using a DNN to find
the best combination of different DNNs’ estimates (DNNs en-
sembles using another DNN). To the best of our knowledge,
this is the first time the neural network “ensembles” process has
been done by another DNN to find the best combinations of
the different predictors. The DNN for combining the predictors
(DNN3) is trained discriminatively to decrease the interference
between the final estimates of the sources.

This paper is organized as follows: In Section 2 a mathe-
matical formulation of the SCSS problem is given. Section 3
shows using DNNs to predict binary and soft masks to sepa-
rate the sources from the mixed signal. In Sections 4 and 5, we
present our proposed approach of discriminatively combining
the predicted sources using DNN3. The experimental results
and the conclusion of this paper are presented in Sections 6 and
7.

2. Problem formulation of SCSS
The main concern of the SCSS problem is to separate one or
more sources from their single mixture. For simplicity, we as-
sume the number of sources to be separated in this paper is
two. Let us assume that the mixed signal y(t) is a mixture of
two sources s1(t) and s2(t) as y(t) = s1(t) + s2(t). This



problem is usually solved in the short time Fourier transform
(STFT) domain [20, 21], where Y (n, f) is the STFT of y(t),
n and f represent the frame index and the frequency index
respectively. This problem can be formulated as Y (n, f) =
S1(n, f) + S2(n, f), where S1(n, f) and S2(n, f) are the
unknown STFTs of the sources in the observed mixed signal
Y (n, f). The estimates for the sources Ŝ1(n, f) and Ŝ2(n, f)
are usually found by predicting a time-frequency maskM(n, f)
that scales the mixed signal according to the contribution of
each source in the mixed signal as in [1, 5, 16] as follows:

Ŝ1(n, f) =M(n, f)Y (n, f)

Ŝ2(n, f) = (1−M(n, f))Y (n, f)
(1)

where the mask M(n, f) takes real values either between zero
and one (soft mask), or takes only zero and one values as a bi-
nary mask. The main goal here is to predict a mask M(n, f)
that achieves good separation for the sources. In this frame-
work, the magnitude spectrum of the measured signal is usually
approximated as the sum of the magnitude spectra of the esti-
mated sources [20, 22] as follows: |Y (n, f)| ≈

∣∣∣Ŝ1(n, f)
∣∣∣ +∣∣∣Ŝ2(n, f)

∣∣∣. The magnitude spectrograms and the mask can

be written in matrix form as Y(n, f), S(n, f), and M(n, f),
where each column n represents a spectral frame and each row
f represents a frequency index.

3. Training DNNs to predict binary and soft
masks

Two DNNs are trained to predict binary and soft masks from
the mixed signal using the same set of the training data. Given
the magnitude spectrogram of the first set of the training mixed
signals X(1)

tr , which is the sum of the sources S(1)

tr1 and S
(1)

tr2 , the
DNNs are trained to minimize the following cost function:

CM =
∑
n,f

(
ZM (n, f)−Mr (n, f)

)2 (2)

where ZM is the output of the last layer of the DNNs and Mr
is the reference mask. For DNN1, Mr is a binary mask (Mb1

)
and for DNN2, Mr is a soft mask (Ms1 ). The binary mask is
defined as follows:

Mb1
(n, f) =

{
1 if S

(1)

tr1 (n, f) ≥ S
(1)

tr2 (n, f)

0 otherwise
(3)

and the soft mask is defined as:

Ms1(n, f) =
S
(1)

tr1 (n, f)

S
(1)

tr1 (n, f) + S
(1)

tr2 (n, f)
(4)

where the subscript tri in S
(1)

tri indicates the training data of
source number i and the superscript 1 indicates the first set of
the training data. In this training stage, the clean sources S

(1)

tr1
and S

(1)

tr2 are available.

4. Training DNN3 to combine the
predictions of the binary and soft masks

For estimating the optimal combination of different predictors
(DNN1 and DNN2), it is usually preferred to learn the param-
eters of the combining-model (DNN3) using different set of

training data than the used data for training each predictor in-
dividually [11, 13]. This avoids the final estimates from being
biased estimates [11]. Thus, we use different set of training
data to train DNN3. The magnitude spectrogram X

(2)
tr of the

mixed signal of the second set of the training data is applied to
both trained DNNs to predict binary and soft masks as Zb and
Zs respectively. The estimates of the sources using the binary
mask (DNN1) are computed as follows:

Ŝ
(2)

btr1
= X

(2)
tr � Zb and Ŝ

(2)

btr2
= X

(2)
tr � (1− Zb) (5)

where � denotes an element-wise multiplication and 1 is a ma-
trix of ones. Also the estimates of the sources using the soft
mask (the output of DNN2) are computed as follows:

Ŝ
(2)
str1

= X
(2)
tr � Zs and Ŝ

(2)
str2

= X
(2)
tr � (1− Zs). (6)

Here each source is estimated twice from DNN1 and DNN2.
The interference between the initial estimates of the separated
sources using the binary mask is usually less than the interfer-
ence between the separated sources using the soft mask. Also
the distortion of the estimated sources of using the soft mask is
usually less than the distortion of using the binary mask. We
need to combine the estimates to achieve low distortion and low
interference between the separated sources. The idea here is
to train DNN3 to combine the estimated sources to find the fi-
nal estimates of the sources that are better than the estimates of
DNN1 and DNN2 individually. All the four estimates in Eqs.
(5) and (6) are concatenated and fed to the third DNN (DNN3)
as shown in Fig.1. Given the reference sources for the second
set of the training data S

(2)

tr1 and S
(2)

tr2 , DNN3 is trained by min-
imizing the following cost function:

Cc =
∑
n,f

(Q (n, f)−V (n, f))2

− λ1

∑
n,f

(
Q1 (n, f)− S

(2)

tr2 (n, f)
)2

− λ2

∑
n,f

(
Q2 (n, f)− S

(2)

tr1 (n, f)
)2 (7)

where λ1, λ2 are regularization parameters, V is the concate-
nation of the reference signals V =

[
S
(2)

tr1 : S
(2)

tr2

]
, Q is the

actual output of DNN3 which is a concatenation of two outputs
Q = [Q1 : Q2]. The output Q1 is the set of the output nodes
of DNN3 that correspond to the normalized reference output
of the first source S

(2)

tr1 , while the output Q2 is for the second
source S

(2)

tr2 . The normalization is done by dividing each frame
by its Euclidean norm. This normalization is important since
the activation function in the output layer is a sigmoid func-
tion that takes values between zero and one. The first term in
the cost function in Eq. (7) minimizes the difference between
the outputs of DNN3 and their corresponding reference signals.
The second and third terms of the cost function maximize the
dissimilarity/differences between the estimated DNN3 outputs
of the different sources, which is considered as “discriminative
learning”. The cost function in Eq. (7) aims to prevent each set
of the outputs of DNN3 from representing the other set. This
helps in decreasing the possibility of remixing the separated
sources in DNN3 and also achieves better separation for the es-
timated sources [3]. Note that, DNN1 and DNN2 are trained
to predict masks in their output layers, while DNN3 is trained
to predict normalized magnitude spectrograms of the sources in
its output layer.
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Figure 1: The overview of the proposed approach of using a single
DNN to combine the predictions of two different DNNs for SCSS. The
DNNs at the bottom (DNN1, DNN2) are used to predict binary and soft
masks for separation. The DNN at the top (DNN3) is used to combine
the predictions of DNN1 and DNN2.

5. Testing DNN1, DNN2, and DNN3
Given an observed mixed signal y(t) of the test data that needs
to be separated, the magnitude spectrogram Y is calculated.
Then Y is fed to DNN1 and DNN2 to predict binary and soft
masks Zbts1

and Zsts1 respectively. The masks Zbts1
and Zsts1

are then used to find initial estimates for the sources as S̃bts1
and S̃bts2

for the binary mask as follows:

S̃bts1
= Zbts1

�Y and S̃bts2
=
(
1− Zbts1

)
�Y (8)

and S̃sts1 and S̃sts2 for the soft mask as follows:

S̃sts1 = Zsts1 �Y and S̃sts2 =
(
1− Zsts1

)
�Y. (9)

The estimates for the sources are concatenated and fed to the
third DNN as shown in Fig.1. The source signals can have any
values, but the output nodes of DNN3 are composed of sig-
moid activation functions that take values between zero and
one. To ensure that we do not lose the scale information
of the sources, the Euclidean norm (gain) of all frames in
the spectrograms of the estimated sources S̃bts1

, S̃bts2
, S̃sts1

and S̃sts2 are computed as follows: for the binary mask case

αbts1
=
[
αb1,1

, ..., αbN,1

]
for the first source and αbts2

=[
αb1,2

, ..., αbN,2

]
for the second source, and for the soft mask

case as αsts1 =
[
αs1,1 , ..., αsN,1

]
for the first source and

αsts2 =
[
αs1,2 , ..., αsN,2

]
for the second source, where N

is the number of frames in each source. The final scale for
each frame in each source is the average of the scales of the
hard and soft mask estimates as αts1 = [α1,1, ..., αN,1] and
αts2 = [α1,2, ..., αN,2], where αn,i = (αbn,i

+αsn,i)/2. Each
αn,i here is considered as an estimate of the scale of its corre-
sponding frame n in source i. The scales αn,i are then saved to

be used later. The four initial estimates in Eqs. (8) and (9) are
concatenated and fed to DNN3 as shown in Fig.1. The output
of DNN3 is Ŝ =

[
Ŝts1 : Ŝts2

]
. The values of the outputs of

DNN3 are between zero and one. The magnitude spectrograms
and their scales are then used to build the final mask as follows:

M(n, f) =
αts1(n)Ŝts1(n, f)

αts1(n)Ŝts1(n, f) +αts2(n)Ŝts2(n, f)
(10)

where the multiplication αts1(n)Ŝts1(n, f) means that every
frame (vector) in Ŝts1 is multiplied (scaled) with its correspond-
ing gain entry in αts1. The scaling using αs here helps in using
DNN3 with bounded outputs between zero and one without the
need to train DNN3 over all possible scales of the source sig-
nals. The final estimate of the magnitude spectrogram of each
source is computed as

Ŝ1 = M�Y and Ŝ2 = (1−M)�Y (11)

where M is computed using Eq. (10). The time domain esti-
mates for the source signals ŝ1(t) and ŝ2(t) are computed using
the inverse STFT of Ŝ1 and Ŝ2 respectively with the phase angle
of the STFT of the mixed signal.

6. Experiments and Discussion
We tested our proposed algorithm on a collection of speech (vo-
cal) and music (accompaniment) signals from the SiSEC 2015
dataset [23]. The dataset has 100 songs. Each song represents
a mixture of vocal, bass, drums, and other musical instruments.
We used our proposed algorithm to separate each song into vo-
cal and accompaniment signals. The first 35 songs were used
to train DNN1 and DNN2 for separation as shown in Section 3.
The second 35 songs were used to train DNN3 for combining
the estimates of DNN1 and DNN2 as shown in Section 4. The
remaining 30 songs were used for testing. The data was sampled
at 44.1kHz sampling rate. The magnitude spectrograms for the
data were calculated using the STFT: A Hanning window with
2048 points length and overlap interval of 512 was used and the
FFT was taken at 2048 points, the first 1025 FFT points only
were used since the conjugate of the remaining 1024 points are
involved in the first points.

For DNN1 and DNN2, the number of nodes in each hidden
layer was 1025 with three hidden layers. The length of the in-
put for DNN3 is 4100, which is the length of the combination
of the four estimates of DNN1 and DNN2 (4*1025) as shown
in Fig.1. The number of nodes in the output layer of DNN3 is
2050, which is the length of the concatenation of the two sepa-
rated sources (2*1025). For DNN3, we used three hidden lay-
ers with 4100 nodes in each hidden layer. Sigmoid nonlinearity
was used at each node, including the output nodes for all DNNs
in this paper. The parameters for the DNNs were initialized
randomly. We used 200 epochs for backpropagation training
for each DNN. Stochastic gradient descent was used with batch
size 100 frames and learning rate 0.1. We implemented our pro-
posed algorithm using Theano [24, 25]. For the regularization
parameters λ1 and λ2 in Eq. (7), we tested with different values
as λ1 = λ2 = λ as shown in the Figures below.

We compared using DNN3 for combining the estimates of
DNN1 and DNN2 with combining the estimates using the sim-
ple average of the estimates of DNN1 and DNN2.

Performance measurements of the proposed separation ap-
proach were done using the signal to distortion ratio (SDR) and
the signal to interference ratio (SIR) [26]. The SDR values



are usually considered as the overall performance evaluation
for any source separation approach and the SIR indicates the
success of the approach in separating the mixed signals [26].
High SIR values mean low interference between the separated
sources and high SDR values mean low distortion.

Figures 2 and 3 show the box-plots of the average SDR and
SIR between the vocal and accompaniment signals over the 30
songs in the test set. To plot these figures, the average SDR and
SIR values between the vocal and accompaniment for each song
were calculated for each model. Model1 in the figures show the
results of using the binary mask only (DNN1) for separating
the mixed signal. Model2 shows the results of using only the
soft mask (DNN2) for separation. Model3 shows the results
of combining the estimates of DNN1 and DNN2 by taking the
average between their estimates. Model4 to model6 show the
results of combining the estimates of DNN1 and DNN2 using
DNN3 with different values for the regularization parameters
λ1 = λ2 = λ in Eq. (7). The red lines in the box-plots
represent the median over the results of the 30 songs. The
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1- Hard mask (DNN1),   2- Soft mask (DNN2),   3- Average of DNN1 and DNN2,    

4- DNN3 with λ = 0,   5- DNN3 with λ = 0.2,   6- DNN3 with λ = 0.4   
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Figure 2: The average SDR of the vocal and accompaniment
signals.
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Figure 3: The average SIR of the vocal and accompaniment
signals.

data shown in Figures 2 and 3 were also analysed using non-
parametric statistical methods [27] to determine the significance
of the differences between the shown models. For SDR in Fig.2,

there is a main effect of model (P < 0.01, df = 5, χ2 = 90.4,
Friedman test [28]). There are no significant differences be-
tween model2 and model3, model4 and model6, and model5
and model6 (P > 0.05, Wilcoxon signed-rank test [29], Bon-
ferroni corrected [30]). There are significant differences be-
tween all the other pairs of models (P < 0.01, Wilcoxon
signed-rank test, Bonferroni corrected). This means the fol-
lowing: using soft mask (model2) is significantly better than
the binary mask (model1), combining the estimates of DNN1
and DNN2 by taking their average (model3) is significantly bet-
ter than using the binary mask (model1) but not significantly
better than the soft mask (model2), combining the estimates of
DNN1 and DNN2 using DNN3 (model4, model5, and model6)
achieves significant improvements over each estimate individu-
ally (model1 and model2) and also over the average of the es-
timates (model3). Model5 gives the highest median values (the
red line inside the box-plot) compared to all other models.

For SIR in Fig.3, there is a main effect of model (P <
0.01, df = 5, χ2 = 126.23, Friedman test). There are no
significant differences between model1 and model5, model1
and model6, and model3 and model4 (P > 0.05, Wilcoxon
signed-rank test, Bonferroni corrected). This means that there is
no evidence of significant differences in the separation perfor-
mance between the binary mask model (model1) and model5
and model6. There are significant differences between all the
other pairs of models (P < 0.01, Wilcoxon signed-rank test,
Bonferroni corrected). This means the following: using bi-
nary mask (model1) is significantly better than the soft mask
(model2) and all other models (except model5 and model6), all
the combinations of model1 and model2 are significantly better
than using the soft mask (model2).

From the above analysis of the results, model5 and model6
achieve significant SDR improvements compared to all other
models and they also achieve good separation (high SIR val-
ues) that is not significantly different than the binary mask.
Thus, model5 and model6 retain the advantage of using the bi-
nary mask by achieving low interference between the separated
sources and achieve even less distortion (better SDR) than the
soft mask.

The implementation for this paper is available at: http:
//cvssp.org/projects/maruss/combiningdnn/

7. Conclusions
In this work, we proposed a new approach of combining mask
estimates of two different deep neural networks using third deep
neural network (DNN). We used the proposed combining ap-
proach to achieve the advantages of two different source sep-
aration estimates using binary and soft masks, where the first
estimate (binary mask) achieves better separation with less in-
terference than the soft mask, but with distorted sources, while
the second estimate (soft mask) achieves less separation, but
with less distortion than the binary mask. Combining the es-
timates of binary and soft masks using another DNN achieves
less distortion than each estimate individually and as good sep-
aration as the binary mask. This means that the new method
of combining estimates using a DNN that is trained discrimina-
tively achieves better results than each estimator individually.
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