The nutritional quality of foods carrying health-related claims in Germany, the Netherlands, Spain, Slovenia, and the United Kingdom.

Asha Kaur1*, Peter Scarborough2, Sophie Hieke3, Anita Kusar4, Igor Pravst5, Monique Raats6, and Mike Rayner7

1 Asha.Kaur@dph.ox.ac.uk. British Heart Foundation Centre on Population Approaches for Non-Communicable Disease Prevention, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.

2 Peter.Scarborough@dph.ox.ac.uk. British Heart Foundation Centre on Population Approaches for Non-Communicable Disease Prevention, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.

3 Sophie.Hieke@eufic.org. European Food Information Council (EUFIC), Tassel House, rue Paul-Emile Janson 6, B-1000 Brussels, Belgium.

4 Anita.Kusar@nutris.org. Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia.

5 Igor.Pravst@nutris.org. Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia.

6 M.Raats@surrey.ac.uk, Food, Consumer Behaviour and Health Research Centre, University of Surrey, Guildford, Surrey, GU2 7XH.

7 Mike.Rayner@dph.ox.ac.uk. British Heart Foundation Centre on Population Approaches for Non-Communicable Disease Prevention, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.

* Corresponding author. Tel +44 1865 289245.

Conflict of interests

This study was supported by the 7th EU Framework Programme Small Collaborative Project CLYMBOL (contract no. 311963). In addition to this PS & MR are supported by the British Heart Foundation (grant number: 021/P&C/Core/2010/HPRG), AKu and IP are supported by the Slovenian Research Agency (P3-0395, V3-1501), and MRaa’s research centre has provided consultancy to and received travel funds to present research results from organisations supported by food and drinks companies. The content of the article reflects only the
views of the authors; the European Commission is not liable for any use that may be made of the information contained in this article. The funding organisations had no role in the design, analysis or writing of this article.
Abstract

Background/objectives: Compares the nutritional quality of pre-packaged foods carrying health-related claims with foods that do not carry health-related claims.

Subjects/methods: Cross-sectional survey of pre-packaged foods available in Germany, the Netherlands, Spain, Slovenia, and the UK in 2013. 2034 foods were randomly sampled from three food store types (a supermarket, a neighbourhood store and a discounter). Nutritional information was taken from nutrient declarations present on food labels and assessed through a comparison of mean levels, regression analyses, and the application of a nutrient profile model currently used to regulate health claims in Australia and New Zealand, (Food Standards Australia New Zealand’s Nutrient Profiling Scoring Criterion, FSANZ NPSC).

Results: Foods carrying health claims had, on average, lower levels, per 100g, of the following nutrients; energy – 29.3kcal (p < 0.05), protein – 1.2g (p < 0.01), total sugars – 3.1g (p < 0.05), saturated fat – 2.4g (p<0.001), and sodium - 842mg (p<0.001), and higher levels of fibre – 0.8g (p<0.001). A similar pattern was observed for foods carrying nutrition claims. 43% (CI 41%, 45%) of foods passed the FSANZ NPSC, with foods carrying health claims more likely to pass (70%, CI 64%, 76%) than foods carrying nutrition claims (61%, CI 57%, 66%) or foods that didn’t carry either type of claim 36% (CI 34%, 38%).

Conclusions: Foods carrying health-related claims have marginally better nutrition profiles than those that do not carry claims; these differences would be increased if the FSANZ NPSC was used to regulate health-related claims. It is unclear whether these relatively small differences have significant impacts on health.

Keywords: health claims, nutrition claims, food labelling, nutrition, nutrient profiling
NUTRITIONAL QUALITY OF FOODS WITH HEALTH-RELATED CLAIMS

Introduction

Diet is a leading risk factor for non-communicable disease (NCD) in Europe (1) and 90% of deaths in the
European Union (EU) are due to NCDs (2). Therefore, improving diet should be a public health goal as even
small improvements can have large population benefits (3,4). The World Health Organization (WHO)
recommends that as part of a healthy diet adults should consume at least five portions of fruit and vegetables a
day. The WHO also recommends limiting fat intake to less than 30% of the total energy intake, saturated fat to
less than 10% of the total energy intake, free sugars to 5-10% of the total energy intake, and to consume less
than 5g of salt per day (5).

Within the EU, the laws regarding health-related claims are set out in the 1924/2006 Regulation on nutrition and
health claims for food (6). In the Regulation, a health claim is defined as ‘any claim that states, suggests or
implies that a relationship exists between a food category, a food or one of its constituents and health’(7).
Whereas nutrition claims are “any claim that states, suggests or implies that a food has particular beneficial
nutritional properties due to the energy, nutrients or other substances it contains, contains in reduced or
increased proportions or does not contain” (6).

In the EU, manufacturers may only use a specific nutrition or health claim if it has been listed in the EU register
of nutrition and health claims (7,8) and meets the corresponding conditions. If a manufacturer wishes to use a
new health claim on any food packaging or marketing materials on the market in Europe, the claim must first be
authorised by the European Commission (EC). In order for a health claim to be authorised, manufacturers must
submit a dossier containing evidence of the relationship described in the claim which is then assessed by the
European Food Safety Authority (EFSA). After such a verification procedure the claim is authorised by the EC
through the Comitology procedure (8). In addition to being scientifically accurate, the regulation (6) stipulates
that health claims must also be ‘truthful, clear, reliable and useful to the consumer in choosing a healthy diet’
(p.7). There are additional stipulations regarding the use of health-related claims outlined in the 1924/2006
Regulation (6) and all foods carrying a health or nutrition claim must provide nutrient declarations (9). Studies
from EU countries estimate that 7-14% of prepacked foods is labelled with health claims or symbols (10-11).

Health-related claims may help consumers identify healthier foods by providing useful information to
consumers about healthier choices (12-14). On the other hand, research has suggested that health-related claims
might be of negligible assistance or might even hinder consumers in their decision making for a variety of
reasons (15-17) including neglecting other, more useful sources of information (18). However, little is known
about the effects of claims on consumer understanding, purchasing and consumption of foods, particularly in real-life shopping situations. The pan-European research project *Role of health-related Claims and Symbols in consumer behaviour* (CLYMBOL) has set out to address this lack of knowledge, for an overview of the project see Hieke et al. 2015 (19).

Some consumers may perceive foods carrying health-related claims more positively due to the presence of a claim (positivity bias) (20). Despite contention around this area, it remains important to assess the nutritional composition of foods carrying health-related claims. Within the EU there have been few studies that assess whether foods carrying health-related claims have a better nutritional composition than foods that do not. A recent survey of health and nutrition claims in the UK found that foods carrying health claims were, on average, slightly healthier than foods that do not carry such claims (21). Similar results have also been observed internationally. A survey of health symbols in Canada found few nutritional differences between foods carrying health symbols and those that do not (22). Conversely, a survey in North Dakota revealed that 49% of foods carried a health-related claim and of these 48% had ≥20% saturated fat, sodium and/or sugar. This increased to 73% when examining the nutrient levels of foods carrying nutrient content claims, but was much lower (9%) for health claims (23). However, these studies all sampled foods differently, e.g. randomly selecting foods through a retailer’s website (21), sampling all foods within multiple stores in a single city (23), or sampling foods from the largest retailers (22), making comparisons between studies problematic. This study involved sampling products from a number of European countries in order to investigate inter-country differences in the use of claims on food products, on a comparable basis. In this paper, we compare the mean levels of energy, protein, carbohydrate, total sugars, total fat, saturated fat, fibre and sodium for foods bearing health-related claims against those that do not. Whilst assessing individual nutrients is useful, looking at each nutrient in isolation may not reveal whether the presence of a health-related claim is ‘masking’ a poor overall nutrient quality. To address this issue, a nutrient profile model was scheduled to be introduced in the EU in 2009, but this part of the legislation has not yet been implemented. The EC recently announced that it will evaluate whether nutrient profile models are necessary for the implementation of the health claims regulation (24). Nutrient profiling is ‘the science of classifying or ranking foods according to their nutritional composition for reasons related to preventing disease and promoting health’ (25). In this study we apply the Food Standards Australia New Zealand’s Nutrient Profiling Scoring Criterion (FSANZ NPSC), which is currently used to regulate health claims (26), and compare the proportion of foods with and without claims that ‘pass’ the model.
The research questions for this study are:

1. Are foods that carry a health-related claim healthier than those that do not?
2. Does this differ by type of claim? (health claims vs nutrition claims)
3. Are there differences by food category?
4. Are there country differences?

Materials and Methods

Data collection and sampling

Data were collected as part of the CLYMBOL project, for an overview of the project see Hieke et al 2015 (19), for a more detailed description of the data collection methods see Hieke et al. 2016 (11).

Data collection for this study took place in supermarkets, neighbourhood and discount stores in the UK, Germany, the Netherlands, Spain and Slovenia in August 2013. These countries were chosen on the basis of geographical spread within the EU and the localities of collaborators of the CLYMBOL project. Approximately 400 foods were sampled in each country, of which 250 were sampled from a supermarket (or a national retailer), 75 from a discounter store and the remaining 75 from a neighbourhood store. The study was powered to detect differences in the prevalence of health claims on foods between countries. A power calculation was conducted with various sample sizes in order to estimate the precision of the results. After taking time and budget constraints into account, a sample size of 400 foods per country was used which would produce confidence levels of +/-5%, thus a 10% difference in the prevalence of claims between countries could be detected.

A stratified random sampling method was used in which most pre-packaged foods (‘foods’ shall refer to foods and drinks unless otherwise specified), available to purchase on the day of sampling were eligible for inclusion.

The following groups of foods were excluded from the sampling frame:

- Non-food items, i.e. items included in appropriate food categories but which are not foods, e.g. birthday candles under ‘Food Cupboard/Baking’
- Unpackaged foods
- Alcoholic drinks (including low alcohol drinks)
- Food supplements
Deli-style products and all additional products within the ‘Fresh Food/Counters’ category, as the majority of products are sold unpackaged; a number of potentially eligible products within this category would have been excluded. This was a compromise on grounds of sampling practicality.

The sampling method was piloted and a standard routine was devised which was followed by local researchers in the five countries. All sampled foods were purchased, and the packaging was retained. The health-related claims were recorded and categorised as described below. Where it was provided, the nutritional information (energy, protein, carbohydrates, total sugars, fat, saturated fat, fibre and sodium) per 100g, and selected ingredient compositional data (for example, the proportion of fruit and vegetables) was also recorded. The nutritional information was recorded for the food as consumed rather than as packaged (for example, the nutritional information for reconstituted dried soups was recorded), however this was done in a manner that made the least possible difference to the raw food whilst still being edible, for example, breakfast cereals were recorded as consumed without milk.

Categorisation

The FSANZ NPSC evaluates foods by awarding points to foods on the basis of the levels of ‘positive’ nutrients (protein, fibre, and the proportion of fruit and vegetables) present in a food, these points are then deducted from points scored for the levels of ‘negative’ nutrients (energy, total sugars, saturated fat and sodium). If a food’s final score is greater than 0 (or greater than 3 for drinks, or greater than 27 for fats, oils and cheeses) then the food fails the model and is thus not permitted to carry a health claim. In order to apply the FSANZ NPSC, the foods were categorised into the three food groups used by the model (beverages; cheese, oils and spreads; other).

For the analyses and presentation of results foods were categorised using the food groupings used by the UK’s Eatwell Guide (27). The Eatwell Guide is a graphical representation of the government’s advice around which food groups consumers should consume more or less. In addition to the five food groups described in the Eatwell Guide documentation, two new categories were created to capture foods that did not fall into the established categories: composite foods – containing foods that consist of two or more food groups, e.g. pizza and ready meals; and miscellaneous foods – containing foods that are not captured by the Eatwell Guide such as spices, cooking aids etc.
All health-related claims, irrespective of their EC approval status, were categorised using the International Network for Food and Obesity/non-communicable disease Research, Monitoring and Action Support (INFORMAS) taxonomy (28). This taxonomy was chosen due to its compatibility with the Codex Alimentarius Commission (Codex) international definitions (29) and the EU 1924/2006 regulation (6).

The following were not considered as health-related claims (21):

- The terms ‘natural’, ‘organic’ and ‘Halal’
- Information on the absence of additives, preservatives, colourings and flavourings
- Allergy advice (e.g. ‘contains nuts’)
- Statements in relation to specific diets e.g. dairy and/or lactose free; wheat and/or gluten free; vegetarian (or vegan)
- Storage advice (e.g. ‘stays fresh for longer’)
- Reference to the presence of a ‘food or food group’ in the product that does not state, suggest or imply a health benefit (e.g. ‘contains chocolate’)
- Advertising in relation to sport (e.g. ‘official product of the Olympics’) or to health concerns unrelated, or only loosely related, to a healthier diet (e.g. ‘supporting breast cancer research’)
- Nutrition labelling (either back of pack, or front of pack) e.g. traffic-light labelling for specific nutrient levels.

Additional data sources

At the time of data collection provision of nutritional information on food packaging was only mandatory for foods that carry health-related claims. Therefore there was incomplete nutritional information, limiting the number of foods that could be tested with the FSANZ NPSC. Consequently the UK Nutrient Databank (30) was used to supplement the data. The UK Nutrient Databank is a food compositional table containing approximately 8,000 generic foods and the average nutritional values for a wide range of nutrients and micro nutrients. Each food sampled in the study was matched with a similar food in the UK Nutrient Databank by a local nutrition researcher in each of the five countries. In order to assess the validity of this matching process, the nutritional information recorded from the food packaging was compared to the nutritional information from the matched product in the UK Nutrient Databank using Pearson’s R correlation statistic. The supplemented data was only
used for the application of the FSANZ NPSC. A further analysis of the validity of this matching process was conducted on the sample of Slovenian foods. This involved comparing the results of applying the FSANZ NPSC when the nutritional information from the packaging were supplemented with data from a local food composition table (OPEN) (31,32) and the UK Nutrient Databank.

Analyses

The healthiness of foods was assessed by comparing the mean levels of energy, protein, carbohydrate, total sugars, fat, saturated fat, fibre and sodium of foods carrying health-related claims against foods that do not carry claims. The mean levels per 100g were chosen as portion sizes were not always provided by the manufacturer. As the data were not normally distributed, a Mann-Whitney two sample t-test was used to determine if the differences in nutrient levels were statistically significant. All analyses were performed in STATA v11.2 (33).

As some food groups may be more likely to carry claims than others, it was thought that there might also be differences in average nutrient levels between food groups and that any differences between the average levels of nutrients between foods that carry claims and foods that do not may be confounded by food group. Therefore a regression analysis was performed that adjusted for food category using the Eatwell Guide food categories. Initially, Kruskal Wallis tests were conducted to establish associations between food category and (in turn) presence of health claims and nutritional values. Regression analyses adjusted for food category were then conducted to determine if there were any statistically significant differences between the mean levels of nutrients.

The FSANZ NPSC was applied to the foods using syntax files which were checked for consistency by another researcher. The proportion of foods that pass the model was compared by foods that carry health-related claims against foods that do not, using the standard binomial test for proportions. Regression analyses (adjusted for food category) were conducted in order to estimate the mean levels of nutrients for foods that both carried a health claim and passed the FSANZ NPSC model against foods that did not.

Results

| Table 1 Missing data |
A total of 2,034 foods were collected. The provision of on-pack nutritional information differed between countries (Table 1); 31% of foods sampled in Slovenia did not have any nutritional information compared to 8% of foods in the UK. Overall, 15% of foods did not have any nutritional information and were not included in the analyses of the nutritional composition. Across the 5 countries, 22% of foods were missing at least one of the selected nutrients (energy, protein, carbohydrate, total sugars, fat, saturated fat, fibre and sodium) and were therefore only included for the nutrient comparisons where that data was available.

For the purposes of applying the nutrient profile model, where only partial nutritional information was available for a product the data were supplemented with data from the UK nutrient databank. A Pearson’s R correlation (r) test was conducted to check that the nutritional information recorded from the food packaging was well correlated to the matched food in the UK nutrient databank; any outliers were examined and, where necessary, amended.

Overall, energy, protein, carbohydrate, total sugars, total fat, and saturated fat had very strong correlations (data available as supplementary information) with r ranging from 0.80-0.93. In some cases the correlation was lower for foods from a particular country, for example; the correlation for saturated fat was weaker in Spain (0.65) than the other countries (0.83-0.87). Similarly, total sugars was very strongly correlated in four of the countries (0.75-0.89) but was slightly lower in the Netherlands (0.67). Fibre and sodium had weaker correlations, (0.55, 0.67, respectively), with bigger country variance.

Additional analyses were conducted with the Slovenian foods to test the appropriateness of using the UK Nutrient Databank to supplement food composition data for foods from other (non-UK) countries. There was very high agreement (Cohen’s kappa 0.90-0.97) between the FSANZ NPSC classifications produced when using the UK Nutrient Databank to supplement the data and when using a Slovenian data source (data and further details available in supplementary materials).

Types of products sampled

Foods and drinks high in fat and/or sugar accounted for 36% of the foods sampled. Meat, fish, eggs, beans, and other non-diary sources of protein, and miscellaneous foods made up 14% and 15% of the database respectively.
Breads, rice, potatoes, pasta, and other starchy foods, as well as composite foods made up 10% of the database each. The remaining two categories, Milk and dairy foods and Fruit and vegetables were the smallest categories and each made-up 8% each of foods in the database. There was little country variation in the type of foods sampled from each country, however, there were a greater proportion of foods high in fat and/or sugar sampled from Slovenia (42%) than the other countries (32%-38%), and a smaller proportion of foods categorised as Composite foods from Slovenia.

Table 2 Health-related claim prevalence

Prevalence of nutrition and health claims

More than a quarter of foods carried either a health or nutrition claim; 22% of foods sampled carried a nutrition claim and 11% of foods sampled carried a health claim. The claim prevalence differed by food group, e.g. 21% of milk and dairy foods carried a health claim compared to 3% of composite foods (Table 2).

Mean levels of nutrients

Table 3 Mean level of nutrients by food category (Kruskal Wallis test) and claim type (Mann-Whitney test)

Tables 2 and 3 demonstrate how food category is associated with both the presence of health claims and the nutritional quality of foods. For example, the prevalence of health claims varied from 21% (95% CI 15%, 27%) in milk and dairy foods to only 3% (CI 1%, 5%) in composite foods, and the energy content of foods varied from 339kcal per 100g for bread, cereals and potatoes to 79kcal/100g for fruit and vegetables.

The levels of energy, protein, and total sugar, total fat, saturated fat and sodium were significantly lower for foods carrying at least one health claim. There was a large difference in the levels of sodium: for foods without health claims the average amount was 708mg/100g compared to 161mg/100g in foods with health claims. Smaller differences were seen in the remaining nutrients, for example; foods carrying health claims had mean levels of 6g/100g for protein compared to 7g/100g for foods not carrying health claims. A similar pattern was observed for foods carrying nutrition claims.

Tables 4a-b Adjusting for food category, differences in the mean level of nutrients between foods that carry claims and foods that do not
As the claim prevalence differs by food group (Table 2) and there were significant differences between the food groups in terms of the mean nutrient levels (Table 3), it was necessary to adjust for food group when assessing the nutritional quality of foods carrying health-related claims (Table 4–model 2).

Adjusting for food group reduced the differences in the mean level of some nutrients. For example, in model 1 (no adjustments) the mean difference for total fat was 3.3g/100g lower (P < 0.01) in foods carrying claims, but in model 2 this difference was reduced to 2.1g/100g and was non-significant. In contrast, adjusting for food group increased the difference in the mean levels of sodium; 547 mg/100g lower compared to 842mg/100g lower in model 2. Adjusting for food group had little effect on the levels of saturated fat, fibre, and protein.

A similar pattern was observed when adjusting for food groups in regards to foods carrying nutrition claims (Table 3b), however, the differences for the mean level of fat (-4g/100g) and sodium (-243mg/100g) were larger and statistically significant. Foods carrying at least one nutrition claim also had significantly lower levels of energy (-36kcal/100g), protein (-1 g/100g), total sugars (-3g/100g), total fat (-4g/100g), and saturated fat (-3 g/100g), and significantly more fibre (+0.9 g/100g).

In the final section of Table 4a, the mean levels of nutrients are estimated for foods that carry at least one health claim but restricted to foods that pass the FSANZ NPSC, i.e. only observing health claims that would be permitted if the current EU regulations were underpinned with the nutrient profile model currently used to regulate health claims in Australia and New Zealand. Foods that carried a health claim and did not pass the FSANZ NPSC were considered as not carrying a claim. In this scenario, in the food group adjusted model (model 2) there would be significantly lower levels of: energy (-56kcal/100g), protein (-2g/100g), carbohydrates and total sugars (both -7g/100g), total fat and saturated fat (both -3g/100g), and sodium (-878mg/100g), and significantly more fibre (1g/100g).

Using the FSANZ NPSC model to restrict health claims would lead to improvements in the mean levels of most nutrients but not all. Foods carrying health claims have, on average, 29 fewer calories per 100g than foods that do not carry health claims but if the FSANZ NPSC were used to restrict claims, the difference would be 56 calories. Similarly, with regards to the levels of total sugars; foods carrying health claims have, on average, 3g/100g less sugar whereas after the FSANZ NPSC restriction the mean is 7g/100g lower. Total fat and protein was 0.4g/100g lower, and saturated fat was 0.5g/100g lower in foods that carry health claims than when the FSANZ NPSC was not used to restrict (the use of) claims. There was also a 35mg/100g reduction in the mean level of sodium but less of an effect on the levels of fibre.
Forty-three percent of the foods sampled ‘pass’ the FSANZ NPSC model (Table 5). The percentage that passed the model was similar in each country, the Slovenia had the lowest percentage that passed the model (39%, CI 34%, 44%), 40% (CI 35%, 44%) passed in the Netherlands, 42% (CI 37%, 47%) in Germany, 45% (CI 40%, 50%) passed in Spain, and the UK had the highest pass percentage (48%, CI 43%, 53%). Overall, 36% of foods that do not carry either a health or nutrition claim pass the FSANZ NPSC; this was similar across the five countries with the lowest pass percentage seen in the Netherlands (31%, CI 26%, 36%). The third column displays the percentage of foods carrying health claims that pass the FSANZ NPSC. 70% (CI 64%, 76%) of such foods passed the FSANZ NPSC. There was greater country variance observed, with the lowest percentage found in Slovenia (51%, CI 37%, 65%) and the highest in the Netherlands (81%, CI 71%, 92%) and the UK (80%, CI 67%, 92%). Fewer foods carrying nutrition claims passed the FSANZ NPSC, ranging from 50% (CI 39%, 61%) of foods carrying nutrition claims in Slovenia to 73% (CI 65%, 80%) of such foods in the UK.

Discussion

Foods that carry health claims have significantly lower levels of energy (-30kcal/100g), protein (-1g/100g), total sugars (-3g/100g), saturated fat (-2g/100g), and sodium (-842mg/100g), and significantly more fibre (+1g/100g) than foods that do not carry health claims (Table 4a, model 2). Foods that carry nutrition claims follow a similar pattern, with significantly lower levels of energy (-36kcal/100g), protein (-1g/100g), total sugars (-3g/100g), total fat (-4g/100g), saturated fat (-3g/100g), and significantly more fibre (+1g/100g) (Table 4b, model 2).

Whilst the differences in protein, carbohydrates, total sugars, total fat, saturated fat and fibre appear to be modest, even small dietary changes can have large impacts on health outcomes when scaled up to a population level.

Small country differences were observed in the nutrient composition of foods with and without claims. The greatest difference was observed with regards to the proportion of foods that carry a health claim and pass the FSANZ NPSC. Slovenia had the lowest proportion of such foods (51%, CI 37%, 65%) whereas the Netherlands had the highest (81%, CI 71%, 92%), however, these analyses were not powered for cross-country comparisons and any statistically significant (p<0.05) differences between countries may be a chance finding since multiple comparisons have been undertaken.
The EC, through its Evaluation and Fitness Check Roadmap (24), is seeking to evaluate whether a nutrient profile model is necessary for the regulation of health and nutrition claims and whether the failure to implement such a model has had any negative or even positive effects. The results presented in this paper may be taken to suggest that concerns over the poor nutritional composition of foods carrying health-related claims in Europe may be unfounded given that foods carrying health-related claims have, on average, a better nutritional composition than foods that do not carry such claims. However, 30% of foods carrying health claims and 39% of foods carrying nutrition claims do not pass the FSANZ NPSC. When the FSANZ NPSC was used to restrict health claims, the mean kcal/100g and total sugars in g/100g was halved. Smaller improvements, ranging from 0.4g/100g to 0.5 g/100g, were seen in regards to the mean levels of protein, total fat and saturated fat. A smaller difference was seen in the mean levels of fibre when the FSANZ NPSC was used to restrict health claims (0.2g/100g less). And there would be a 35mg/100g decrease in the mean level of sodium.

To the best of our knowledge the nutritional composition of foods carrying health claims and nutrition claims has not previously been measured on a multiple country basis using a random selection of foods across all food categories. Previous prevalence studies have typically focussed either on a small number of food categories (34), foods that are commonly consumed (35), or were audits of foods that carry health or nutrition claims (36). Whereas this study examined randomly sampled foods from five countries in which most pre-packaged food were eligible for inclusion.

Where previous studies have evaluated the nutritional composition of foods carrying claims, they have generally involved a restricted number of food groups (37, 38) and usually within one country. For example, an earlier study of foods in the UK (21) found a comparable prevalence of health claims and nutrition claims (29%, CI 25%, 34%) to the current study and also found that foods carrying claims had a slightly healthier nutritional profile than foods that did not. There have also been a number of similar studies to this conducted in Australia that yielded similar findings. For example, one study found that 31% of foods carrying health claims and 29% of foods carrying nutrition claims did not pass the FSANZ NPSC (39).

One potential weakness of the current study was that the nutritional information collected was incomplete and therefore had to be supplemented with nutritional composition tables from the UK so that the FSANZ NPSC model might be applied. Due to time and budget constraints local nutritional composition tables were not used. However, validity assessments were conducted to ensure that the supplemented data was as close as possible to that for the sampled foods and this data was only used for the application of the FSANZ NPSC and not the...
comparison of the mean level of nutrients. A further analysis of the validity of supplementing the nutritional information collected from packaging was conducted on the sample of Slovenian foods. This involved comparing the results of applying the FSANZ NPSC when the nutritional information from packaging were supplemented with data from a local food composition table (OPEN) (31,32) against the results of applying the FSANZ NPSC results when using the UK Nutrient Databank to supplement the information (results not shown but available as supplementary material). In summary there was high agreement between the results (95% agreement, kappa = 95%, standard error: 0.06). The application of data from a food composition database to complete data missing in nutrition declarations has previously been deemed a useful and effective approach for nutrient profiling of large datasets of foods (40). Also, it may be deemed inappropriate to evaluate European foods using an Australian nutrient profile model as there may be differences in nutritional needs, however, whilst the FSANZ NPSC is not a European model it is based upon the UK’s FSA/Ofcom model which is used to regulate television advertising of foods to children (41,42). An alternative nutrient profile could have been used, such as the European Commission’s proposed model to regulate health claims, however this model, has not been adopted (or published), therefore we chose a model that was accessible, currently in use and its formative model, the UK FSA/Ofcom model, has been validated against diets in the UK (43) and with a survey of nutritional professionals (44).

A limitation of the study is the use of parametric tests for the adjusted analyses as the nutritional data were not normally distributed. We used parametric tests in order to adjust for confounding by food category. Future work should involve larger sample sizes so that non-parametric tests may be used in subsamples stratified by food category.

We hope that the results presented in this paper will help the EC assess the need for nutrient profile models in the regulation of health and nutrition claims. Whilst the nutritional quality of foods carrying claims has been explored in this paper, it is still unclear what the public health impact of these relatively modest differences is. Future work could focus on modelling how the diet may change as a result of health claims and how this may translate into differences in health outcomes, e.g. by modelling the impact of health claims scenarios such as the introduction of a nutrient profile model to regulate health and nutrition claims.

Acknowledgements
The authors wish to thank the following project partners: Nera Kuljanic (European Food Information Council), Živa Korošec and Krista Miklavec (Nutrition Institute, Slovenia), Kerry A Brown, Bernadette M Egan (University of Surrey), Andrea Gröppel-Klein, Katja Pfeifer, Stephanie Leick (Saarland University), Azucena Gracia (Agrifood Research and Technology Centre of Aragon), Vanessa Mello Rodrigues (Federal University of Santa Catarina) and Anja Mizdrak (University of Oxford).

Author contributions

AKa: development of methods, data cleaning, data analysis, writing paper. PS: development of methods, data analysis, feedback on paper. SH: development of methods, data extraction, and feedback on paper. AKu: data collection and extraction, feedback on paper. IP: development of methods, data collection and extraction, feedback on paper. MR: development of methods, data collection and extraction, feedback on paper.

Each author has seen and approved the contents of the submitted manuscript.

Conflict of interests

This study was supported by the 7th EU Framework Programme Small Collaborative Project CLYMBOL (contract no. 311963). In addition to this PS & MR are supported by the British Heart Foundation (grant number: 021/P&C/Core/2010/HPRG), AKu and IP are supported by the Slovenian Research Agency (P3-0395, V3-1501), and MRaa’s research centre has provided consultancy to and received travel funds to present research results from organisations supported by food and drinks companies. The content of the article reflects only the views of the authors; the European Commission is not liable for any use that may be made of the information contained in this article. The funding organisations had no role in the design, analysis or writing of this article.

References

NUTRITIONAL QUALITY OF FOODS WITH HEALTH-RELATED CLAIMS

(10) Pravst I, Kušar A. Consumers’ exposure to nutrition and health claims on pre-packed foods: Use of sales weighting for assessing the food supply in Slovenia. Nutrients 2015, 7(11), 9353-9368; doi:10.3390/nu7115474.

(19) Hieke S; Kuljanic N; Wills J.M; Pravst I; Kaur A; Raats M.M; van Trijp H.C.M; Verbeke W; Grunert, K.G. The role of health-related claims and health-related symbols in consumer behaviour: Design and conceptual framework of the CLYMBOL project and initial results. Nutr. Bull. 2015; 40,66–72.

NUTRITIONAL QUALITY OF FOODS WITH HEALTH-RELATED CLAIMS

NUTRITIONAL QUALITY OF FOODS WITH HEALTH-RELATED CLAIMS

<http://www.opkp.si/>.

(32) Seljak BK; Stibilj V; Pograjc L; Mis NF; Benedik E. Food composition databases for effective quality nutritional care. Food Chem. 2013, 140, 553–561.

(33) StataCorp (2009) STATA version 11. College Station, TX, USA.

Table 1 Missing data

<table>
<thead>
<tr>
<th>Missing data</th>
<th>Germany</th>
<th>Netherlands</th>
<th>Spain</th>
<th>Slovenia</th>
<th>United Kingdom</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of foods (n, %, 95 CI)</td>
<td>399, 20% (18%, 21%)</td>
<td>416, 20% (19%, 22%)</td>
<td>405, 20% (18%, 22%)</td>
<td>416, 20% (19%, 22%)</td>
<td>398, 20% (18%, 21%)</td>
<td>2034, 100%</td>
</tr>
<tr>
<td>Missing data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>55 (14%)</td>
<td>41 (10%)</td>
<td>62 (15%)</td>
<td>128 (31%)</td>
<td>32 (8%)</td>
<td>318 (16%)</td>
</tr>
<tr>
<td>Protein</td>
<td>55 (14%)</td>
<td>44 (11%)</td>
<td>61 (15%)</td>
<td>129 (31%)</td>
<td>34 (9%)</td>
<td>32 (16%)</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>55 (14%)</td>
<td>43 (10%)</td>
<td>61 (15%)</td>
<td>129 (31%)</td>
<td>33 (8%)</td>
<td>321 (16%)</td>
</tr>
<tr>
<td>Total sugars</td>
<td>109 (27%)</td>
<td>80 (19%)</td>
<td>125 (31%)</td>
<td>196 (47%)</td>
<td>43 (11%)</td>
<td>553 (27%)</td>
</tr>
<tr>
<td>Fat</td>
<td>55 (14%)</td>
<td>42 (10%)</td>
<td>61 (15%)</td>
<td>131 (32%)</td>
<td>33 (8%)</td>
<td>322 (16%)</td>
</tr>
<tr>
<td>Saturated fat</td>
<td>110 (28%)</td>
<td>79 (19%)</td>
<td>123 (30%)</td>
<td>193 (46%)</td>
<td>43 (11%)</td>
<td>548 (26%)</td>
</tr>
<tr>
<td>Fibre</td>
<td>123 (31%)</td>
<td>103 (25%)</td>
<td>161 (40%)</td>
<td>217 (52%)</td>
<td>49 (12%)</td>
<td>653 (32%)</td>
</tr>
<tr>
<td>Sodium</td>
<td>111 (28%)</td>
<td>82 (20%)</td>
<td>126 (31%)</td>
<td>208 (50%)</td>
<td>42 (11%)</td>
<td>569 (28%)</td>
</tr>
<tr>
<td>Foods without any nutritional information</td>
<td>54 (14%)</td>
<td>41 (10%)</td>
<td>57 (14%)</td>
<td>128 (31%)</td>
<td>31 (8%)</td>
<td>311 (15%)</td>
</tr>
<tr>
<td>Foods with nutritional information for selected nutrients</td>
<td>273 (69%)</td>
<td>306 (74%)</td>
<td>234 (58%)</td>
<td>194 (47%)</td>
<td>348 (87%)</td>
<td>1355 (67%)</td>
</tr>
<tr>
<td>Missing nutritional data</td>
<td>21.10%</td>
<td>24.10%</td>
<td>15.40%</td>
<td>40.00%</td>
<td>9.70%</td>
<td>22.20%</td>
</tr>
</tbody>
</table>
Table 2. Health-related claim prevalence

<table>
<thead>
<tr>
<th>Eatwell Guide group</th>
<th>Number of foods (n, %, 95 CI)</th>
<th>Health claims</th>
<th>Nutrition claims</th>
<th>Any claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread, rice, potatoes, pasta, etc.</td>
<td>194, 10% (8%, 11%)</td>
<td>23, 12% (7%, 16%)</td>
<td>53, 27% (21%, 34%)</td>
<td>57, 29% (23%, 36%)</td>
</tr>
<tr>
<td>Milk and dairy foods</td>
<td>162, 8% (7%, 9%)</td>
<td>34, 21% (15%, 27%)</td>
<td>64, 40% (32%, 47%)</td>
<td>75, 46% (39%, 54%)</td>
</tr>
<tr>
<td>Foods and drinks high in fat and/or sugar</td>
<td>740, 36% (34%, 38%)</td>
<td>66, 9% (7%, 11%)</td>
<td>152, 21% (18%, 24%)</td>
<td>172, 23% (20%, 26%)</td>
</tr>
<tr>
<td>Meat, fish, eggs, beans, etc.</td>
<td>300, 15% (13%, 16%)</td>
<td>24, 8% (5%, 11%)</td>
<td>46, 15% (11%, 19%)</td>
<td>53, 18% (13%, 22%)</td>
</tr>
<tr>
<td>Fruit and vegetables</td>
<td>159, 8% (7%, 9%)</td>
<td>16, 10% (5%, 15%)</td>
<td>46, 29% (22%, 36%)</td>
<td>53, 33% (26%, 41%)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>279, 14% (12%, 15%)</td>
<td>53, 19% (14%, 24%)</td>
<td>62, 22% (17%, 27%)</td>
<td>86, 31% (25%, 36%)</td>
</tr>
<tr>
<td>Composite foods</td>
<td>200, 10% (9%, 11%)</td>
<td>6, 3% (1%, 5%)</td>
<td>28, 14% (9%, 19%)</td>
<td>32, 16% (11%, 21%)</td>
</tr>
<tr>
<td>Total</td>
<td>2034, 100%</td>
<td>222, 11% (10%, 12%)</td>
<td>451, 22% (20%, 24%)</td>
<td>528, 26% (24%, 28%)</td>
</tr>
</tbody>
</table>
Table 3: Mean level of nutrients by food category (Kruskal Wallis test) and claim type (Mann-Whitney test)

<table>
<thead>
<tr>
<th>Eatwell food group</th>
<th>Energy (KJ/100g)</th>
<th>Energy (Kcal/100g)</th>
<th>Protein (g/100g)</th>
<th>Carbohydrate (g/100g)</th>
<th>Total sugars (g/100g)</th>
<th>Total fat (g/100g)</th>
<th>Saturated fat (g/100g)</th>
<th>Fibre (g/100g)</th>
<th>Sodium (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread, rice, potatoes, pasta, etc.</td>
<td>1418.5</td>
<td>339.0</td>
<td>9.1</td>
<td>60.4</td>
<td>8.4</td>
<td>5.6</td>
<td>1.9</td>
<td>5.2</td>
<td>267.3</td>
</tr>
<tr>
<td>Milk and dairy foods</td>
<td>699.7</td>
<td>167.2</td>
<td>9.3</td>
<td>7.5</td>
<td>6.7</td>
<td>10.7</td>
<td>6.0</td>
<td>0.2</td>
<td>273.9</td>
</tr>
<tr>
<td>Foods and drinks high in fat and/or sugar</td>
<td>1342.8</td>
<td>320.9</td>
<td>3.6</td>
<td>40.3</td>
<td>24.1</td>
<td>16.2</td>
<td>6.3</td>
<td>1.7</td>
<td>262.5</td>
</tr>
<tr>
<td>Meat, fish, eggs, beans, etc.</td>
<td>1022.3</td>
<td>244.3</td>
<td>16.6</td>
<td>6.9</td>
<td>1.5</td>
<td>16.3</td>
<td>4.6</td>
<td>1.9</td>
<td>809.7</td>
</tr>
<tr>
<td>Fruit and vegetables</td>
<td>330.4</td>
<td>79.0</td>
<td>1.8</td>
<td>11.3</td>
<td>8.9</td>
<td>2.9</td>
<td>0.6</td>
<td>2.3</td>
<td>201.5</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>545.1</td>
<td>130.7</td>
<td>3.8</td>
<td>19.5</td>
<td>11.1</td>
<td>3.5</td>
<td>1.5</td>
<td>2.2</td>
<td>2700.7</td>
</tr>
<tr>
<td>COMPOSITE FOODS</td>
<td>713.2</td>
<td>170.5</td>
<td>7.7</td>
<td>16.7</td>
<td>4.0</td>
<td>7.8</td>
<td>2.8</td>
<td>1.5</td>
<td>1021.2</td>
</tr>
<tr>
<td>P value</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Mean levels of nutrients by claim type

<table>
<thead>
<tr>
<th></th>
<th>Energy (KJ/100g)</th>
<th>Energy (Kcal/100g)</th>
<th>Protein (g/100g)</th>
<th>Carbohydrate (g/100g)</th>
<th>Total sugars (g/100g)</th>
<th>Total fat (g/100g)</th>
<th>Saturated fat (g/100g)</th>
<th>Fibre (g/100g)</th>
<th>Sodium (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without health claims</td>
<td>1051.4</td>
<td>251.4</td>
<td>7.0</td>
<td>28.2</td>
<td>13.7</td>
<td>12.0</td>
<td>4.7</td>
<td>1.9</td>
<td>707.7</td>
</tr>
<tr>
<td>With health claims</td>
<td>851.9</td>
<td>203.6</td>
<td>5.5</td>
<td>25.5</td>
<td>10.1</td>
<td>8.7</td>
<td>2.2</td>
<td>2.7</td>
<td>161.1</td>
</tr>
<tr>
<td>P value</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.68</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Without nutrition claims</td>
<td>1078.9</td>
<td>257.8</td>
<td>7.1</td>
<td>27.7</td>
<td>14.1</td>
<td>12.9</td>
<td>5.1</td>
<td>1.8</td>
<td>689.2</td>
</tr>
<tr>
<td>With nutrition claims</td>
<td>877.9</td>
<td>210.1</td>
<td>6.1</td>
<td>28.2</td>
<td>10.9</td>
<td>8.0</td>
<td>2.4</td>
<td>2.7</td>
<td>503.6</td>
</tr>
<tr>
<td>P value</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.98</td>
<td>0.84</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>No health-related claims</td>
<td>1100.7</td>
<td>263.1</td>
<td>7.3</td>
<td>28.2</td>
<td>14.3</td>
<td>13.1</td>
<td>5.3</td>
<td>1.8</td>
<td>715.3</td>
</tr>
<tr>
<td>At least one health-related claim</td>
<td>850.0</td>
<td>203.4</td>
<td>5.8</td>
<td>26.9</td>
<td>10.8</td>
<td>7.9</td>
<td>2.3</td>
<td>2.5</td>
<td>469.3</td>
</tr>
<tr>
<td>P value</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.22</td>
<td>0.00</td>
<td>0.00</td>
<td>0.66</td>
<td>0.00</td>
</tr>
<tr>
<td>Energy (KJ/100g)</td>
<td>-199.5</td>
<td>0.00</td>
<td>(-312.9, -86.8)</td>
<td>121.9</td>
<td>0.02</td>
<td>(-224.5, -19.4)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(-500.0, -241.6)</td>
</tr>
<tr>
<td>Energy (Kcal/100g)</td>
<td>-47.8</td>
<td>0.00</td>
<td>(-74.9, -20.7)</td>
<td>-29.3</td>
<td>0.01</td>
<td>(-53.8, -4.8)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(-119.6, -57.9)</td>
</tr>
<tr>
<td>Protein (g/100g)</td>
<td>-1.5</td>
<td>0.01</td>
<td>(-2.6, -0.4)</td>
<td>-1.2</td>
<td>0.01</td>
<td>(-2.1, -0.4)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(-3.1, -0.6)</td>
</tr>
<tr>
<td>Carbohydrate (g/100g)</td>
<td>-2.7</td>
<td>0.20</td>
<td>(-6.8, 1.4)</td>
<td>-0.7</td>
<td>0.01</td>
<td>(-2.1, -0.4)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(-14.4, -5.1)</td>
</tr>
<tr>
<td>Total sugars (g/100g)</td>
<td>-3.5</td>
<td>0.02</td>
<td>(-6.4, -0.7)</td>
<td>-3.1</td>
<td>0.02</td>
<td>(-5.6, -0.5)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(-11.6, -5.2)</td>
</tr>
<tr>
<td>Total fat (g/100g)</td>
<td>-3.3</td>
<td>0.01</td>
<td>(-5.7, 1.0)</td>
<td>-2.1</td>
<td>0.06</td>
<td>(-4.4, 0.1)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(-7.2, -1.9)</td>
</tr>
<tr>
<td>Saturated fat (g/100g)</td>
<td>-2.5</td>
<td>0.00</td>
<td>(-3.5, -1.6)</td>
<td>-2.4</td>
<td>0.00</td>
<td>(-3.3, -1.4)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(-4.4, -2.3)</td>
</tr>
<tr>
<td>Fibre (g/100g)</td>
<td>0.7</td>
<td>0.01</td>
<td>(0.2, 1.3)</td>
<td>0.8</td>
<td>0.00</td>
<td>(0.3, 1.3)</td>
<td>Model 2</td>
<td>0.00</td>
<td>(0.4, 1.5)</td>
</tr>
<tr>
<td>Sodium (mg/100g)</td>
<td>-546.7</td>
<td>-2.12</td>
<td>(-1052, -40)</td>
<td>-842.4</td>
<td>0.00</td>
<td>(-1348.4, -336.5)</td>
<td>Model 2</td>
<td>0.04</td>
<td>(-1166.1, -29.8)</td>
</tr>
</tbody>
</table>
Table 4b Adjusting for food category, differences in the mean level of nutrients between foods that carry nutrition claims and foods that do not, and foods that carry at least one health or nutrition claim, and foods that do not carry any claims

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Energy (KJ/100g)</th>
<th>Energy (Kcal/100g)</th>
<th>Protein (g/100g)</th>
<th>Carbohydrate (g/100g)</th>
<th>Total sugars (g/100g)</th>
<th>Total fat (g/100g)</th>
<th>Saturated fat (g/100g)</th>
<th>Fibre (g/100g)</th>
<th>Sodium (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1 P CI</td>
<td>Model 2 P CI</td>
<td>Model 1 P CI</td>
</tr>
<tr>
<td>Energy (KJ/100g)</td>
<td>-201.0 0.00 (-285.0, -117.0)</td>
<td>-149.9 0.00 (-225.5, -74.3)</td>
<td>-250.7 0.00 (-339.9, -170.6)</td>
<td>-183.1 0.00 (-255.9, -110.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (Kcal/100g)</td>
<td>-47.7 0.00 (-67.8, -27.6)</td>
<td>-35.7 0.00 (-53.8, -17.6)</td>
<td>-59.6 0.00 (-78.8, -40.46)</td>
<td>-43.7 0.00 (-61.1, -26.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein (g/100g)</td>
<td>-1.1 0.01 (-1.9, -0.26)</td>
<td>-0.6 0.05 (-1.2, 0.0)</td>
<td>-1.5 0.00 (-2.3, -0.7)</td>
<td>-1.0 0.00 (-1.6, -0.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrate (g/100g)</td>
<td>0.5 0.76 (-2.6, 3.5)</td>
<td>0.9 0.48 (-1.5, 3.3)</td>
<td>-1.3 0.37 (-4.3, 1.6)</td>
<td>-0.1 0.92 (-2.5, 2.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sugars (g/100g)</td>
<td>-3.2 0.00 (-5.4, -1.1)</td>
<td>-3.0 0.00 (-4.9, -1.1)</td>
<td>-3.5 0.00 (-5.5, -1.4)</td>
<td>-3.2 0.00 (-5.0, -1.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fat (g/100g)</td>
<td>-4.9 0.00 (-6.6, -3.1)</td>
<td>-3.8 0.00 (-5.5, -2.2)</td>
<td>-5.2 0.00 (-6.9, -3.6)</td>
<td>-4.1 0.00 (-5.7, -2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated fat (g/100g)</td>
<td>-2.7 0.00 (-3.5, -2.0)</td>
<td>-2.6 0.00 (-3.3, -1.9)</td>
<td>-3.0 0.00 (-3.7, -2.4)</td>
<td>-2.9 0.00 (-3.6, -2.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre (g/100g)</td>
<td>0.9 0.00 (0.5, 1.3)</td>
<td>0.9 0.00 (0.5, 1.3)</td>
<td>0.7 0.00 (0.3, 1.1)</td>
<td>0.7 0.00 (0.3, 1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium (mg/100g)</td>
<td>-185.6 0.34 (-564.0, 192.8)</td>
<td>-243.3 0.21 (-620.9, 134.4)</td>
<td>-246.0 0.19 (-610.8, 118.9)</td>
<td>-354.7 0.06 (-721.3, 11.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Foods that pass the FSANZ NPSC</td>
<td>Foods that do not carry any claims that pass the FSANZ NPSC</td>
<td>Foods that carry health claims that pass the FSANZ NPSC</td>
<td>Foods that carry nutrition claims that pass the FSANZ NPSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>169, 42% (37%, 47%)</td>
<td>124, 39%, (34%, 45%)</td>
<td>26, 68% (53%, 84%)</td>
<td>38, 54% (42%, 66%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>161, 40% (35%, 44%)</td>
<td>95, 31% (26%, 36%)</td>
<td>48, 81% (71%, 92%)</td>
<td>40, 55% (43%, 66%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>182, 45% (40%, 50%)</td>
<td>115, 38% (32%, 43%)</td>
<td>20, 67% (49%, 85%)</td>
<td>61, 66% (56%, 75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>161, 39% (34%, 44%)</td>
<td>113, 36% (31%, 42%)</td>
<td>26, 51% (37%, 65%)</td>
<td>39, 50% (39%, 61%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>190, 48% (43%, 53%)</td>
<td>90, 35% (29%, 41%)</td>
<td>36, 80% (67%, 92%)</td>
<td>98, 73% (65%, 80%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>863, 43% (41%, 45%)</td>
<td>537, 36% (34%, 38%)</td>
<td>156, 70% (64%, 76%)</td>
<td>276, 61% (57%, 66%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using data supplemented using UK Nutrient databank.