Deep Karaoke: Extracting Vocals from Musical Mixtures Using a Convolutional Deep Neural Network
Simpson, AR, Roma, G and Plumbley, M (2015) Deep Karaoke: Extracting Vocals from Musical Mixtures Using a Convolutional Deep Neural Network In: Latent Variable Analysis and Signal Separation: 12th International Conference, LVA/ICA 2015, 25-28 Aug 2015, Liberec, Czech Republic.
![]() |
Text
SimpsonRomaPlumbley15-lva_accepted.pdf - Accepted version Manuscript Restricted to Repository staff only Available under License : See the attached licence file. Download (220kB) |
|
|
Text
1504.04658v1.pdf Available under License : See the attached licence file. Download (528kB) | Preview |
|
|
Text (licence)
SRI_deposit_agreement.pdf Available under License : See the attached licence file. Download (33kB) | Preview |
Abstract
Identification and extraction of singing voice from within musical mixtures is a key challenge in source separation and machine audition. Recently, deep neural networks (DNN) have been used to estimate 'ideal' binary masks for carefully controlled cocktail party speech separation problems. However, it is not yet known whether these methods are capable of generalizing to the discrimination of voice and non-voice in the context of musical mixtures. Here, we trained a convolutional DNN (of around a billion parameters) to provide probabilistic estimates of the ideal binary mask for separation of vocal sounds from real-world musical mixtures. We contrast our DNN results with more traditional linear methods. Our approach may be useful for automatic removal of vocal sounds from musical mixtures for 'karaoke' type applications.
Item Type: | Conference or Workshop Item (Conference Paper) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects : | Signal processing | ||||||||||||||||||||||||
Divisions : | Faculty of Engineering and Physical Sciences > Electronic Engineering > Centre for Vision Speech and Signal Processing | ||||||||||||||||||||||||
Authors : | Simpson, AR, Roma, G and Plumbley, M | ||||||||||||||||||||||||
Date : | 15 August 2015 | ||||||||||||||||||||||||
DOI : | 10.1007/978-3-319-22482-4_50 | ||||||||||||||||||||||||
Contributors : |
|
||||||||||||||||||||||||
Uncontrolled Keywords : | Deep learning, Supervised learning, Convolution, Source separation | ||||||||||||||||||||||||
Related URLs : | |||||||||||||||||||||||||
Additional Information : | The original publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22482-4_50 | ||||||||||||||||||||||||
Depositing User : | Symplectic Elements | ||||||||||||||||||||||||
Date Deposited : | 02 Feb 2016 09:01 | ||||||||||||||||||||||||
Last Modified : | 06 Jul 2019 05:15 | ||||||||||||||||||||||||
URI: | http://epubs.surrey.ac.uk/id/eprint/809734 |
Actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year