Cobalt chloride doping in racehorses: concerns over a potentially lethal practice

Ali Mobasheri a, b, *, Christopher J. Proudman a

a School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford GU2 7XH, Surrey, UK
b Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah 21589, Kingdom of Saudi Arabia

* Corresponding author. Tel.: +44 1483 689398

E-mail address: a.mobasheri@surrey.ac.uk (A. Mobasheri).
Abstract

Recent reports from Australia suggest that cobalt chloride is being used in racehorses competing in New South Wales and Victoria. Although these are the first such reports, it is suspected that cobalt chloride may have been used illegally for some time. Cobalt chloride is a well-established hypoxia mimic that is used experimentally to stabilise hypoxia-inducible factor 1α (HIF-1α) at the cellular level. It can induce hypoxia-like responses, increase blood erythropoietin (EPO) levels, promote erythropoiesis and enhance the oxygen carrying capacity of blood. However, prolonged administering large quantities of cobalt salts can lead to serious health problems such as cardiomyopathy. Supraphysiological doses of cobalt chloride may result in systemic cytotoxicity, myocardial dysfunction and acute inflammatory responses in the myocardium leading to cardiac arrest and death. In this paper we review the current evidence for the illicit use of cobalt chloride in racehorses. There are genuine concerns that non-veterinarians are sourcing misleading information from the internet as there are websites claiming that cobalt chloride can improve equine health and performance. It is the duty of veterinary surgeons working in the racing industry to ensure that owners, trainers and race officials are aware of the dangers of ‘amateur’ use of a potentially fatal compound.

(202 words in abstract)

Keywords: Cobalt chloride; Doping; Racehorse; Hypoxia mimetic; Erythropoietin
Introduction

Blood doping is an illegal and unacceptable way of enhancing athletic performance by increasing the oxygen carrying capacity of blood (Lippi et al., 2005). Currently used blood doping methods usually involve stimulation of erythropoiesis by using erythropoietin (EPO) or its recombinant form (Debeljak and Sytkowski, 2012). EPO is the hormone responsible for controlling erythropoiesis in bone marrow therefore erythropoiesis-stimulating agents (ESAs) and metal salts that can substitute for and simulate the erythropoietic actions of EPO have been used as potential performance-enhancing agents (Lippi et al., 2006; Duh et al., 2008). Although these agents may possibly have some physiological effects, there are significant risks associated with the illicit use of these substances in athletes (Franz, 2009).

The popular press frequently publishes revelations about the possible use of anabolic steroids and other banned substances in racehorses. The most recent report comes from Australia and involves the detection of cobalt chloride in racehorses competing in New South Wales and Victoria 1. Although these convictions are the first in the country, it is suspected that cobalt chloride doping may have been practiced for some time.

Cobalt chloride is a well-established hypoxia mimetic and inducer of hypoxia-like responses, which can cause gene modulation at the hypoxia inducible factor pathway to stimulate EPO transcription and increase its levels in blood (Ho et al., 2014). Cobalt (symbol Co, atomic number 27) is a transition metal in the periodic table. In biological systems cobalt is at the active centre of coenzymes such as cobalamins, the most common example of which is vitamin B12. Therefore, cobalt is an essential trace micronutrient that is important for the formation of the vitamin B12 complex. As an activator of enzymes it is involved in the

oxygen-carrying function of red blood cells and can replace the co-factor zinc in some enzymes. There are no published reports of cobalt dietary deficiency. A variety of foods including nuts, green leafy vegetables, fish and cereals contain cobalt and it unlikely for humans to develop dietary deficiencies.

Currently there is no evidence to suggest that cobalt chloride can enhance human or equine performance. The rationale for its use in racehorses is likely to be based on preclinical research done in cell lines and some anecdotal evidence from in vivo studies in laboratory animals, suggesting that cobalt chloride may have the same effect as EPO on erythropoiesis in bone marrow. Cobalt chloride is not a prescription medication and various cobalt salts are available for purchase from a variety of commercial sources. The salts are inexpensive, easily accessible, not subject to medicines regulation and orally active. Therefore, ill-informed and unscrupulous trainers can easily obtain cobalt chloride and administer it to horses. However, regulatory bodies have recently implemented a urinary threshold of 2000 ng/mL and a plasma threshold of 10 ng/mL for the control of cobalt abuse in non-race day or out-of-competition samples (200ug/l plasma in Australia and 100ug/l in Hong Kong) (Ho et al., 2014).

Aside from the lack of evidence for enhanced athletic performance in horses, one of the key concerns is the paucity of information about the long-term safety of cobalt chloride administration and toxicity, especially in vital organs. In the US there have been reports of unexplained deaths in horses that were found to have elevated blood levels of cobalt chloride. Although cobalt salts have medical applications for the treatment of anaemia (Bowie and Hurley, 1975; Duckham and Lee, 1976), cobalt can be highly toxic. Cobalt exerts well-known and well-documented neurotoxic effects (Catalani et al., 2012) in addition to its toxic actions on the thyroid, the heart and the haematopoietic system. High doses of cobalt in
patients exposed to abnormal levels from damaged hip prostheses induce optic and auditory neuropathy (Apostoli et al., 2013). Furthermore, there are reports that cobalt exposure may lead to fatal cardiomyopathy and ischemic heart disease in cobalt-exposed workers (Barborik and Dusek, 1972; Jarvis et al., 1992; Centeno et al., 1996) and in regular beer drinkers who have consumed beer from breweries with cobalt contamination (Alexander, 1972). It is also worth commenting that cobalt-drug interactions are unknown. Racehorses commonly receive NSAIDs and, in non-UK racing jurisdictions, can race on furosemide medication.

However, the lay public does not have access to detailed information about the potential risks and many trainers do not have the scientific knowledge to assess the risk: benefit ratio for the use of cobalt salts. Unfortunately, the Internet is a source of inaccurate, conflicting and misleading information about cobalt and its salts. This is the introductory text that describes uses of cobalt chloride in horses on the eHow website:\(^2\):

\begin{quote}
‘Cobalt chloride, also nicknamed blue salt by the horse and cattle community, is often associated with the dietary needs of cows. Cobalt chloride isn’t only for cattle, however. Horses can also benefit from supplements of this essential electrolyte, as nontraditional as their consumption of it may be. Horse owners should use caution in dispensing cobalt chloride to avoid overdoses and unnecessary iodine intake, but there are usually few risks involved.’
\end{quote}

The author of this non-refereed article is Kirsty Ambrose, a regular contributor to www.ehow.com. She holds a Bachelor of Arts in English literature from the University of Victoria and enjoys writing about pet care. Her article is a top hit on Google (5th item in a Google search (article accessed 8 March 2015) using the keywords ‘cobalt’, ‘chloride’ and ‘equine’). This style of writing clearly gives readers the impression that providing cobalt chloride to horses can improve their overall health. The paper has not gone any kind of peer-review and the author does not cite any scientific or clinical papers to back up the claim that ‘Horses can also benefit from supplements of this essential electrolyte’. Clearly cobalt is not a conventional electrolyte. It is a micronutrient and research suggests that micronutrients can be toxic in high concentrations.

Medical uses of cobalt and cobalt chloride

It is important to highlight some of the medical uses of cobalt and cobalt chloride. Cobalt-60 (60Co) is a radioactive form of cobalt used in radiotherapy for targeting inoperable tumours. The concept of 60Co radiotherapy was developed in the 1950’s by scientists at the University of Saskatchewan in Canada (Johns et al., 1952; Morrison et al., 1952). Although cobalt therapy has partly been replaced by linear accelerator radiation therapy (the electron beam), which can generate higher energy radiation, cobalt treatment still has a useful role in radiotherapy. 60Co is also one of the most commonly used radio-isotopes for food irradiation (Deitch, 1982).

Cobalt salts have proved to be effective therapies for stimulating erythropoiesis in both non-renal and renal anaemia. Cobalt chloride has been effective for the management of uraemic patients with refractory anaemia, especially in patients undergoing long-term

haemodialysis (Bowie and Hurley, 1975; Duckham and Lee, 1976). Cobalt chloride stabilizes
the transcriptional activator hypoxia-inducible factor 1 α (HIF-1α) and thus mimics hypoxia
thereby stimulating EPO production (Fig. 1). However, as with any type of drug, there are
also serious medical adverse effects associated with long-term use, especially in high
concentrations. Safe and effective use in the human medical field has been dependent upon
accurate prescribing and diligent monitoring by clinicians for adverse reactions. The same
mechanisms involved in HIF-1α activation may potentially have genotoxic (De Boeck et al.,
2003) and carcinogenic (Simonsen et al., 2012) effects, through cobalt mediated inhibition of
DNA repair (Lison et al., 2001). Oral intake of inorganic cobalt salts can cause severe organ
damage, especially by inducing toxicity in the gastrointestinal tract, the thyroid, the heart and
the sensory systems (Ebert and Jelkmann, 2014). These undesirable side effects should deter
professional equine trainers (and human athletes) from using cobalt chloride and other cobalt
salts as ‘chemistry set chemicals’ for stimulating erythropoiesis.

Cobalt activation of matrix metalloproteinases

Cobalt intake can bear risks to health and the potential effectiveness of cobalt salts
and other ESAs continue to be an open and important question for sport and athletic
regulatory bodies. More research is needed on cobalt physiology and pathophysiology and
more effective strategies are needed to unmask the potentially deleterious effects of cobalt
salts in horses. In vitro studies have demonstrated that cobalt chloride can up-regulate matrix
metalloproteinases 2 and 9 in equine laminar keratinocytes (Medina-Torres et al., 2011).
Cobalt chloride also induces cytotoxicity and upregulates MMP-2 in ligament cells (Song et
al., 2012; Wang et al., 2012). Horses are at risk of developing laminitis and it is possible that
in certain conditions sustained hypoxia within the hoof and up-regulation of MMPs may
cause irreparable damage to the lamellar basement membrane, increasing the risk of laminitis
(Medina-Torres et al., 2011). Damage to other load-bearing connective tissues is also potentially possible. These equine-specific risks are currently unquantified.

Conclusions

Paracelsus the ‘father’ of toxicology wrote: ‘*All things are poison and nothing (is) without poison; only the dose makes that a thing is no poison.*’ Clearly, it is the dose that makes a substance poisonous. To our knowledge studies to determine therapeutic vs. toxic dose of cobalt chloride in horses have not been published. The schematic in Fig. 2 summarises our concept of therapeutically and supraphysiological doses of hypoxia mimetics.

Cobalt chloride has pro-apoptotic and anti-apoptotic biphasic effects but these largely depend on the cell type studied and the dose used. Although low quantities of cobalt chloride may potentially stimulate erythropoiesis without any lethal effects, we do not have enough information about the long-term effects of exposing horses to cobalt salts. Cobalt poisoning can occur following exposure to large amounts of cobalt (Goldfrank, 2011). There are also genuine concerns about the purity of chemical grade salts that are currently available and their interactions with other drugs. The cobalt salts currently available are not pharmaceutical grade substances. High doses of impure cobalt chloride may be associated with significant toxicity. It is irresponsible and unethical to administer them to horses.

Therefore, it is important that we continue the development of technologies and assays to detect and control the misuse of cobalt in horses (Ho et al., 2014) and remain prepared to review and refine the urinary and plasma threshold concentrations based on emerging new evidence. If this disturbing trend continues and more unexplained deaths occur, we must focus new research on the effects of physiologically relevant concentrations
of cobalt chloride on global patterns of gene expression, protein function and cytotoxicity in primary equine cells and tissues in vitro, make predictions about its bioavailability and pathophysiological effects in vivo and develop sensitive biomarkers to examine its effects on the myocardium.

The development of new ESAs and the use of cobalt-based chemical agents capable of acting as hypoxia mimetics and EPO-stimulating agents highlight the need for developing new and sensitive analytical mass-spectrometry methods for detecting the abuse of these substances in human sport and horseracing (Reichel, 2011).

A recent study examined the pharmacokinetics and pharmacodynamics of cobalt following a single intravenous administration to 18 horses (Knych et al., 2014). The authors showed that a single intravenous dose of cobalt chloride or cobalt gluconate had no effect on EPO concentrations, red blood cell parameters or heart rate in any of the horses studied. However, this study did not examine the effects of multiple intravenous doses. We suspect that this may actually be happening in horseracing.

We are concerned that some trainers will continue to use Google as the source of reliable information. It is the duty of veterinary surgeons working in the racing industry to ensure that trainers are aware of the dangers of ‘amateur’ use of a potentially fatal compound.

Conflict of interest statement:

The authors do not have any conflicts of interest to declare. They do not have any financial, personal or other relationships with other people or organizations that could have influenced their work.
Acknowledgements:

Ali Mobasheri is the coordinator of the D-BOARD Consortium funded by European Commission Framework 7 program (EU FP7;HEALTH.2012.2.4.5–2, project number 305815, Novel Diagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases). Ali Mobasheri wishes to acknowledge the financial support of Arthritis Research UK through his membership of the Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis (Grant Reference: 20194).

References

Reichel, C., 2011, Recent developments in doping testing for erythropoietin. Analytical and Bioanalytical Chemistry 401, 463-481.

Figure Legends

Fig. 1: Physiological and pathophysiological regulation of hypoxia-inducible factor 1 α (HIF-1α) by hypoxia and cobalt chloride. HIF-1α is a basic-helix-loop-helix transcription factor that activates expression of genes encoding erythropoietin (EPO), glucose transporters (GLUTs), glycolytic enzymes, vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs) and other genes whose protein products increase oxygen delivery, facilitate metabolic adaptation to hypoxia (Semenza, 1999, 2000; Sethi et al., 2012).

Cobalt chloride acts as a hypoxia mimic by activating the expression of genes that contain a hypoxia response element. Proteasomal pathways degrade HIF-1α during normoxia but this transcription factor is stabilized under hypoxic conditions and in the presence of hypoxia mimetics such as cobalt chloride.

Fig 2: Schematic illustrating the potential effects of high and low doses of hypoxia mimetics such as cobalt chloride. (A) Low (therapeutic) doses of cobalt chloride may stimulate erythropoiesis and result in enhanced oxygen carrying capacity. (B) Supraphysiological doses of cobalt chloride may result in systemic cytotoxicity, myocardial dysfunction and acute inflammatory responses in the myocardium leading to cardiac arrest and death.