
1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

1

OMI-DL: An Ontology Matching Framework
Xiulei Liu, Payam Barnaghi, Member IEEE, Bo Cheng, Li Wan, Yixian Yang

Abstract—This paper focuses on matching ontologies created
for similar domains through different sources. Different solutions
use lexical, structural or logical processing and analysis to match
ontologies. However, an important aspect is also interpreting
concepts that entities are presented with and using them in
relation to semantics in an ontology. The paper demonstrates
analyzing and extending the concepts used to define entities in an
ontology, discusses establishing and filtering matching candidates
by reasoners, and then describes constructing correspondences
between entities from different ontologies using lexical and se-
mantic analysis. The experiments show that our prototype, called
OMI-DL, is among the top group over many ontologies adopted
from the OAEI benchmark dataset. We also provide an evaluation
of the OMI-DL method for matching the DOLCE+DnS Ultralite
ontology and the domain ontology developed in the m:Ciudad
project.

Index Terms—Ontology Matching, Lexical Analysis, Semantic
Analysis, Reasoners

I. INTRODUCTION

ONTOLOGY as an explicit specification of a conceptual
model is becoming more and more popular in many

areas such as service composition, Semantic Web, and knowl-
edge and data engineering [1], [2], [3]. An ontology provides
a structured knowledge representation and makes it sharable
and reusable for machines, software agents and human users.
With growing interest and applications, an increasing number
of ontologies are constructed to describe domain knowledge in
different areas. Most of these ontologies are constructed and
maintained by different knowledge engineers who have various
backgrounds and use different terminologies to describe con-
cepts. This leads to the construction of several ontologies with
different terminologies for similar (or even the same) domains.
The heterogeneity among different ontologies for representing
similar domains limits interoperability across the ontologies.
Ontology matching methods deal with this issue [4].

There are various methods which are used to match two
ontologies. Some of the recent works are reviewed in [5],
[6]. The existing techniques mostly focus on element-level
(i.e. entity label attributes), structure-level (i.e. taxonomy
structures) and instances information to match ontologies (see
[7], [8], [9] for more details). Some of the existing methods
(such as [10], [11], [12], [13]) utilize lexical and semantic
analysis to match ontologies. At the lexical analysis stage,
the words in annotation axioms (such as Label Annotation
Axioms and Comment Annotation Axioms) are analyzed using
string similarity [11], [12] or deriving the senses of words
from external resources [10], [11], [12]. At the semantic

Xiulei Liu, Li Wan, Bo Cheng and Yixian Yang are with National
Engineering Laboratory for Disaster Backup and Recovery, Beijing University
of Posts and Telecommunications, 100876, P.R. China.

Payam Barnaghi is with Centre for Communicastion Systems Research,
University of Surrey, Guildford, Surrey, GU2 7XH, UK.

analysis stage, alignments are directly inferred based on the
results from the lexical analysis stage [10], [13], or similarity
measures are calculated between entities using results by
submitting a constant number of rules into a reasoner [12],
[14].

We propose a comprehensive framework for ontology
matching which is called OMI-DL. At the lexical analysis
stage, OMI-DL not only analyzes the suitable senses of words,
but also extends them by utilizing conceptual-semantics and
lexical relations. This helps to include the possible senses
of a word in some existing contexts instead of only finding
the most suitable representation and supports identification of
potential relations between entities. OMI-DL then formally
defines the representation of an entity notion for describing
the lexical information of an entity. With semantic elements
(such as ⊔ and ⊓), the definition not only combines the suitable
senses and their extensions from the words in entity label
and comment, but also imports the lexical information of
the concepts and the logics in the domain and range of an
entity property. The definition implies more information than
other similar solutions especially when only entity label and
comment cannot provide enough information. It also conforms
more to semantics described in domain and range of an
entity property in contrast to the methods that only calculate
similarity measures.

At the semantic analysis stage, OMI-DL not only establishes
matching candidates between entities from different ontologies
based on the representation of an entity notion by reasoners,
but also proposes a semantic iterative filtering process to
remove redundant matching candidates based rules, and prove
that this is terminable. The filtering process ensures that
semantics in integration ontology are consistent to the ones in
matched ontology when the integration ontology is established
by assembling all of axioms in the matched ontologies and
the alignment together. OMI-DL then calculates similarity
measures based on filtered matching candidates by reasoners
to compute correspondences between entities from different
ontologies and also defines the closest subsumer of an entity
description based on semantics in both matched ontologies
and alignment. This produces supplementary correspondences
which do not appear in alignments derived from most of other
methodsand ensures the consistency of the derived alignment.

The rest of this paper is organized as follows: Section II
describes background information; Section III presents related
work; Section IV discusses the OMI-DL framework; Section V
explains extensions of the suitable senses and the representa-
tion of an entity notion; Section VI demonstrates construction
of matching candidates between entities and describes the
filtering process; Section VII presents the generation of corre-
spondences; Section VIII demonstrates an evaluation; Section
IX concludes the paper and discusses the future work.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

2

II. BACKGROUND

The Web Ontology Language (OWL) benefits from well
established background and years of Description Logics(DL)
research, which is currently a popular ontology representation
language. This paper focuses on matching ontologies which
are represented in the OWL form.

An OWL ontology can be interpreted as knowledge-base
semantics (see [15] for more details). The most important
aspect for semantics is to determine relations between concepts
and between properties such as include ⊒, beIncluded ⊑,
disjoint ⊥ and equivalent ≡. In general, they can be processed
by reasoners such as Pellet, FaCT++ and Racer.

An OWL ontology has three types of entities: concepts,
individuals, and object and data properties. Concepts in an
OWL ontology can be also specified by three types: defined
concepts (name symbols), primitive concepts (base symbols)
and anonymous concepts. In this paper, we abstract both data
properties and object properties as roles (i.e. properties). An
entity label attribute in an OWL ontology is normally defined
by knowledge engineers and specified in words, and denotes
the value of the rdfs:label property.

To match entities from different ontologies, a main source
of difficulty is that ontologies are designed with various
background knowledge and often in different contexts. This
background knowledge does not usually become a part of the
ontology specification and thus is not available to matchers
[6], [16]. Lack of the background knowledge increases the
difficulty of matching tasks as it generates too many ambigu-
ities in interpreting and analyzing senses. Different strategies
have been used to tackle this problem based on syntactic and
structural analysis [5], [10], [17]. We discuss the extensions
of terminologies to describe entities by using WordNet in this
work. WordNet groups nouns, verbs, adjectives and adverbs
into sets of cognitive synonyms which are called “synsets”.
Each synset expresses a distinct concept and provides a short
and also general definition related to this concept. A synset is
uniquely identified by an address number called an offset. A
synset also contains a group of synonym words or collocations
that form a specific sense, and provides a usage count for
indicating how often a word appears in this specific sense. For
example, in [Synset: [Offset: 5780748][2][POS: noun] Words:
abstraction, abstract – (a concept or idea not associated with
any specific instance; “he loved her only in the abstract–
not in person”)], 5780748 is the offset and the collocation
is abstraction and abstract. Various senses of a word are
described in different synsets. Synsets are also interlinked
by means of conceptual-semantic and lexical relations. The
relations are defined as: also see, antonym, attribute, cause,
and son on.

III. RELATED WORK

Due to the growth of the Semantic Web and the employment
of ontology-based methods in numerous applications, ontology
matching has become a focus of research community in recent
years. The works presented in [5], [6] provide a comprehensive
review of the current approaches and classify them from
different views. According to these surveys, there are five

kinds of basic data used by most of the ontology matching
methods: lexical (or linguistic) information, structural infor-
mation, semantic information, external resource information
and individual information.

The different methods employ various techniques to use
one or more kinds of the information above. Some of the
techniques include similarity flooding [18], [19], [20], coeffi-
cient computation [11], [21], graph matching [22], [23], formal
concept analysis [24], machine learning [25], [26], Bayesian
decision theory [7], hybrid methods [8], [27], [28], Markov
networks [9], optimization techniques [29], [30], or reasoners
[10], [11], [12], [10], [31].

Many solutions analyze entity label and entity comment
attributes in an ontology and use external data resources to
obtain lexical (or linguistic) information; such as UFOme [8],
ILIADS [12], ASMOV [11], Lily [23] and MapPSO [29].
Most of the works above generally obtain the usage count of a
synset, relations (such as hypernym) or other sets in WordNet
to calculate lexical (or linguistic) similarity measures between
entities. The values of these similarity measures usually vary
between [0, 1]. OMI-DL and S-Match [10] combine the
suitable sense of a word with semantic elements to define an
entity notion and then use WordNet as a knowledge base to
infer semantic relations between entities by utilizing reasoners
as shown Section V-D.

However, in practical scenarios, finding the suitable sense
of a word in natural language processing by current techniques
is still a challenging task (as shown in the example in Section
V-B). So OMI-DL not only obtains the suitable sense of
a word, it also uses synset extensions to overcome the
limitations of entity label processing. This helps to include
the possible senses of a word in existing contexts instead of
only finding the most suitable representation, and supports
the identification of potential relations between entities. This
process is discussed in Section V-B. Most of the works above
do not support the extensions of the suitable senses to compute
lexical (or linguistic) similarity measures.

The method to define an entity notion in OMI-DL is also
different from similar solutions such as S-Match. S-Match
defines an entity notion by intersecting (or uniting) the suitable
sense of each word only in that entity label attribute. In
addition to adopting the suitable sense and its extensions in
entity label and entity comment attributes, OMI-DL extends
this method by transforming the representation of an entity
notion into a combination statement as discussed in Section
V-D. This leads to identification of a set of intersections (or
unions) of senses in an entity notion in OMI-DL. This feature
increases the possibility of finding more correspondences.
Concepts and logics in the domain and range of a property
also provide important information to match the properties
as explained in Section V-D. S-Match does not analyze the
property data, and a few of the methods above only use it
as one of the attributes for computing similarity measures.
OMI-DL imports the logics and the lexical information of
the concepts in the domain and range of a property into the
representation of an entity notion as shown in Section V-D.
So an entity notion in OMI-DL implies more information
than S-Match and other similar solutions especially when only

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

3

property label and property comment attributes cannot provide
enough information. The OMI-DL method also conforms more
to semantics described in domain and range of a property in
contrast to the methods that only calculate similarity measures.

There are various methods which utilize structural informa-
tion for matching ontologies. For example, Lily [23] utilizes
semantic sub-graphs to represent structural information; ILI-
ADS [12], CSR [25], SSID [32] and iMatch [9] use Jaccard
distances, classification-based learning techniques and Markov
networks to process structural information respectively; S-
Match defines the concept of a node whose logic expression
is computed as the intersection of the concepts of all labels
from the root node to the node itself; ASMOV [11] computes
similarity measures based on structural elements from different
entities; OMI-DL uses reasoning results to process structural
information.

Most of the methods based on semantic information use
reasoning results. They go one step further than the methods
that only use lexical (or linguistic) and structural information
to calculate similarity measures. The semantic analysis in
ontology matching can be divided into two main categories
according to deductions: Propositional Satisfiability problem
(SAT) and Description Logics (DL) reasoning.

SAT deciders take the Conjunctive Normal Form (CNF)
formulas as input [10]. This means that the results obtained
based on CNF (in methods such as S-Match) are not used
to match OWL ontologies. In general, DL reasoning adopts
tableau algorithms which use negation to reduce subsumptions
to (un)satisfiability of concept descriptions. This technique,
adopted by the methods such as ILIADS and OMI-DL, can
process various syntaxes and exploit semantics in an OWL on-
tology. Reasoners in ILIADS execute only a constant number
of axioms (N) that are extracted from a set of rules by heuristic
methods. The results obtained by inferring the axioms are used
to compute a logical inference similarity measure between
entities. So ILIADS cannot check whether all restrictions in
ontologies are consistent or not. OMI-DL ensures this by
directly using reasoners over all axioms.

OMI-DL also describes a semantic iterative filtering pro-
cess to remove redundant matching candidates by reasoners;
because the sense extension and representation of an entity
notion lead to inaccuracy when identifying matching candi-
dates. The rules in the filtering process and the format of
the matching candidates in OMI-DL are different from those
in ASMOV as described in Section VI-B. The verification
(or filtering) process in ASMOV mainly focuses on semantic
relations in the matching candidates according to similarity
values. The filtering process in OMI-DL puts more emphasis
on combining semantic relations in the matching candidates
together with semantics in matched ontologies.

For example, assuming 101 and 302 are references
to sample ontologies as shown in Section IV, in AS-
MOV, given <101:Report, 302:Publication, value: 0.36> and
<101:Manual, 302:Publication, value:0.24>, if there exists
<101:Report, 101:Manual, ≡> in Ontology101, the two can-
didates can define a match, OTHERWISE one of them is
removed; because there is only ≡ relation between entities
whatever the values are. Given <101:Report, 302:Publication,

⊑> and <101:Manual, 302:Publication, ⊑>, OMI-DL first
evaluates whether Ontology101 and Ontology302 with the
two matching candidates are consistent. Then, it computes
whether they lead to produce new links between the matched
ontologies. The new links do not exist in results obtained
by inferring the matched ontologies and a set of matching
candidates. If such new links are not produced, the two
matching candidates can define a match even if <101:Report,
101:Manual, ≡> does not exist in Ontology101. This concept
is discussed in more details in Section VI-B.

The filtering process in OMI-DL is more efficient compared
to the verification process in ASMOV. It increases the preci-
sion of the system as shown in Fig. 3 in Section VIII-B1.
Other methods discussed above mostly compare a threshold
value with similarity values to filter matching candidates.

IV. ONTOLOGY MATCHING FRAMEWORK

This section describes the OMI-DL framework. The main
workflow, illustrated in Fig. 1, is divided into three main
stages (separated by the dashed black line): analyzing an entity
notion, identifying and filtering matching candidates, and
aligning entities. The system receives two ontologies as input,
and outputs a set of correspondences (called an alignment).
The sample ontologies (Ontology101 and Ontology302) are
taken from Folders 101 and 302 in the Ontology Alignment
Evaluation Initiative (OAEI) benchmark dataset1. This paper
uses 101 (OR 302): <an entity label attribute> to refer to
entities in the ontologies.

The entity notion analysis stage (shown on the left in
Fig. 1) automatically finds the suitable sense of each word
described in natural language labels and comments taken
from an ontology, extends the suitable sense and then defines
the representation of an entity notion. The extensions of the
suitable senses support the identification of potential relations
between entities. The method of representing an entity notion
facilitates inferring relations between entities by using more
descriptive information for each concept.

The Tokenizer and Synset Finder components shown in Fig.
1 are similar to Tokenization and elementLevelSenseFiltering
described in [10]. We use the Synset Finder component to find
the suitable sense of each word and then utilize the Synset
Extension component to address the limitation of getting only
one sense for each word.

When deriving the suitable sense and its extensions for each
word, we first construct the Synset Relation Ontology. We then
define an entity notion to express the concept which this entity
label and entity comment attributes imply. While inferring,
if two entities from different ontologies are identified as a
matching candidate, we need to obtain the relations between
synsets that are used to define an entity notion. The relations
between synsets will be obtained by reasoning over the Synset
Relation Ontology.

After defining an entity notion and constructing the Synset
Relation Ontology, the following stage (shown in the middle in
Fig. 1) will identify and filter matching candidates. The Match-
ing Candidates Generator component determines whether two

1http://oaei.ontologymatching.org/2009/benchmarks

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

4

Fig. 1: Overview of ontology matching process

entity notions from different ontologies have any semantic
relations by using a reasoner (the dashed black connection
line as shown in Fig. 1). This process results in a set of
matching candidates which cover most of the correspondences
in the reference alignments. Collecting all possible matching
candidates ensures a high recall for the system.

However, not all of the matching candidates derived from
the previous steps are accurate. The cases are illustrated in
Table II by a partial view of the matching candidates for the
two sample ontologies. The next step which is an iterative
process filters these matching candidates and removes redun-
dant matching candidates by using a reasoner. This process
increases the precision of the system.

To perform the task, we first filter out redundant matching
candidates with the help of a reasoner (the dashed black
connection line as shown in Fig. 1) in the Matching Candidates
Filter component based on the rules defined in Section VI-B.
We then check if some matching candidates are overlooked
in the filtering process. The checking is performed according
to an adequacy condition defined in Section VI-B. If so,
the Matching Candidates Filter component will filter the
overlooked matching candidates.

The entity aligning stage (shown on the right in Fig. 1)
generates correspondences by two methods. The first method
computes similarity values between all possible pairs of en-
tities (one from each ontology) by considering the filtered
matching candidates, semantic information in an ontology, and
string similarity. It then selects correspondences by comparing
the similarity values with a heuristically defined threshold.
The second method infers supplementary correspondences
according to the closest subsumer of an entity description
which is implemented with the help of reasoners (the dashed
black connection line as shown in Fig. 1). The supplementary
correspondences satisfy semantics in the matched ontologies
and also semantics in the correspondences generated by the
previous step. This improves the recall and precision of
inferred alignments which have been discussed in Sections
VIII-B1 and VIII-C.

V. ANALYSIS OF ENTITY NOTIONS

This section introduces the formal representation of an
entity notion. An entity notion is composed of the suitable
sense and its extensions of each word describing an entity. So
OMI-DL firstly analyzes and extends the suitable sense of a

word; secondly it determines relations between the extracted
synsets from different ontologies; finally it formally defines an
entity notion. The suitable sense extension and representation
of an entity notion help to identify more matching candidates.
This improves the recall of the system.

In descriptions from entities, stop words such as “am, is,
are, have, has, string” are omitted. However, special words
such as “or, without, no, else”, denoted as “SpWdSet”, are
processed (see Section V-D for more details).

A. Analyzing Synsets

A word might have a different sense in different contexts.
So before aligning entities, the Synset Finder component
automatically finds the suitable synset (sense) of each word
taken from entity label and entity comment attributes in an
ontology. It has two sub-processes: Finding Related Synsets
and Selecting Suitable Synsets.

The Finding Related Synsets sub-process is inspired by
the element-level-sense-filtering technique used in [10]. The
key idea is that we check whether any two synsets from two
different words in an ontology are connected by any relation
in WordNet. If so, we put each synset into a set of the related
synsets of the word to which it is related.

To choose the suitable synsets, the Selecting Suitable
Synsets sub-process first calculates the critical value for each
synset in a set of the related synsets of a word as shown below.
CriticalV alueOfSynsetA = word.countForSynsetA ∗

ϕ + usageCountOfSynsetA
in which SynsetA is a synset in a set of the related synsets of
the word; word.countForSynsetA is the number of times that
SynsetA is selected as the related synset; usageCountOfSynsetA
is the usage count of SynsetA which is obtained from WordNet;
ϕ is defined experimentally. In our experiments, based on
heuristics we found that ϕ = 6 maximizes the number of words
which have correct synsets.

The Selecting Suitable Synsets sub-process then chooses a
synset in a set of the related synsets of a word which has the
highest critical value as the suitable synset of this word.

However, WordNet does not cover all words in entity label
and comment attributes (such as “url” discussed in Section
VIII-C). Consequently these words will not have the suitable
synsets. WordNet has also some omissions as shown in [33].

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

5

TABLE I: Axiom conversion rules

WordNet Relation Symbol ClassAxiom
Hypernym ⊒ SupClass Axiom
Hyponym ⊑ SubClass Axiom
Holonym ⊒ SupClass Axiom
Antonym ⊥ DisjointClass Axiom
Similar to ≡ EquivalentClass Axiom
Coordinate ⊥ DisjointClass Axiom

B. WordNet Synset Extension

The Synset Finder component uses a statistical approach
to select the most frequently used synset of a word with the
information from WordNet. However, in practical scenarios,
using natural language processing to obtain the most suitable
synset of a word in some domains is a challenging task.

Defining a suitable synset does not mean that we only use
one synset for each word. There could be more than one synset
to be used because we cannot determine which synset of a
word is best according to the data derived from WordNet and
matched ontologies. Knowledge engineers may use different
terminologies to construct similar concepts in different on-
tologies. Given the two statements <Book, publishedBy, IEEE>
and <Book, hasPublisher, IEEE>, here published and publisher
have the same role but there is no relation between the synsets
for published and publisher. The Synset Extension component
shown in Fig. 1 addresses this issue.

The Synset Extension component defines a set of extended
synsets of a word which have special relations (including
pertainym, derived from adj, derivationally, related) with the
suitable synset of this word in WordNet. This helps to include
different possible synsets of a word in different contexts
instead of only finding one suitable synset. Although this func-
tion does not guarantee that the best representative concepts
for words will be found, it broadens the scope of the synset
representation for the words. In our experiments, the extended
synsets of published contain the suitable synset of publisher;
and vice versa.

The extended synsets include terminologies that support the
identification of potential relations between entity pairs. This
will improve the recall of the system. However, as in classic
information retrieval scenarios, higher recall could result in
lower precision [34]. For example, the extended synsets of
the word published in the property 101:howPublished con-
tain publisher, publishing house, publishing firm, publishing
company – (a firm in the publishing business), denoted as
synsetP, and the suitable synset of the word organization in
the property 302:organization is organization, organisation,
system – (an ordered manner; orderliness by virtue of being
methodical and well organized), denoted as synsetO. Because
there is holonym mem relation between synsetO and synsetP in
WordNet, this leads to the definition of a beIncluded relation
between 101:howPublished and 302:organization using our
method as shown in Table II.

C. Construction of Synset Relations

After determining the suitable synsets and their extensions
of all words in ontologies, we define semantic relations (if

there are any) between any two synsets, one from each
ontology, and import the relations into the Synset Relation
Ontology. This ontology is composed of the defined semantic
relations and the extracted synsets. It is also the knowledge-
base for the matching candidates inferring process described
in Section VI-A.

For establishing the Synset Relation Ontology, we first
need to infer the relations between the synsets respectively
from different ontologies, including the suitable synset and
its extensions of a word. The relations including Hypernym,
Hyponym, Holonym, Antonym, Similar to and Coordinate, are
defined in WordNet.

While finding the relations between two synsets, we convert
these relations into axioms according to the rules shown in
Table I and then add the axioms into the Synset Relation
Ontology. For example, given the synset A [Synset: [Offset:
32311][610][POS: noun] Words: school – (an educational
institution;)] for the word School, and another synset B
[Synset: [Offset: 42323][26][POS: noun] Words: institution,
establishment – (an organization founded and united for a
specific purpose;)] for the word Institution, if there exists a
Hypernym(B,A) relation in WordNet (which means that B is
Hypernym of A), we translate this relation into SubClassAxiom
(School32311, Institution42323) and then add this axiom into
the Synset Relation Ontology.

We also represent a set of the informative synsets of each
word which are the basis for defining an entity notion when
constructing the Synset Relation Ontology. Each synset in this
set is from the suitable synset or its extensions and has some
relation with another synset from the other ontology. It is
probable that a set of the informative synsets of a word do
not include all of the suitable synset and its extensions of this
word and could only include a part of them.

From the process of establishing the Synset Relation On-
tology, it can be seen that the informative synsets of words
map the concepts in this ontology and the semantic relations
between the obtained synsets map the axioms in this ontology.
This ontology only includes concepts and does not specify
properties. The Synset Relation Ontology, when matching
Ontology101 and Ontology302, includes 907 concepts, 1202
subClass axioms and 125 equivalentClass axioms.

D. Representation of an Entity Notion

This section formally define the representation of an entity
notion by combining the suitable senses and their extensions
with semantic elements and logics in the domain and range
of a property. It presents more information and also conforms
more to semantics described in domain and range of an entity
property.

It is denoted as EN(E) in which E is an entity. EN(E) is a
set in which every element is the OWL Object Intersection of
several synsets from the Synset Relation Ontology. The Synset
Relation Ontology is composed of a part of the WordNet
synsets and the relations among them, which are extracted
according to the data in ontologies as shown in V-C. So only
a subset of the WordNet synsets are related to an entity notion.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

6

We define W(E) below before describing an entity notion.

W(E) = {e∣e = La(E)⊗(Σi
n⊎Ci

n(Co(E)))} (1)
1. 0 ≤ i ≤ n
2. n = Co(E).size

In Formula 1, La(E) is a set of words in the Label An-
notation Axiom of an entity, and Co(E) is a set of words
in the Comment Annotation Axiom of an entity, where the
stop words are deleted. We take as an example the concept
101:Book shown in the sample Ontology101. The label and
comment of the 101:Book concept is ”Book‘ and ”A book
that may be a monograph or a collection of written texts‘,
respecitvely. So La(101:Book)={Book} and Co(101:Book) =
{book, monograph, or, collection, written, text}. Ci

n(A) repre-
sents a set in which every element is composed of i elements
selected in n elements of A. This can be represented with
a combination statement. For example, C1

6(Co(101:Book))
= {{book}, {monograph}, {or}, {collection}, {written},
{text}}.
⊎ denotes the merging of two sets into one set. For ex-

ample, C1
6(Co(101:Book)) ⊎ C6

6(Co(101:Book)) = {{book},
{monograph}, {or}, {collection}, {written}, {text}, {book,
monograph, or, collection, written, text}}.
⊗ denotes the formation of a new set in which every

element includes La(E) and all of the elements of the set
which is an element in Σi

n⊎Ci
n(Co), and repeated words are

deleted. For example, La(Co(101:Book))⊗C6
6(Co(101:Book))

= {{Book, monograph, or, collection, written, text}}.
Each element in W(E) includes all words in the label of E

and several words in the comment of E.
Based on the description of W(E), we formally define

EN(E) as follows:

EN(E) = {s∣s = s1 ⊓ s2 ⊓ si ⊓ si+1⋯⊓ sn} (2)
1. e ∈ W(E)
2. n = e.size
2. 0 ≤ i ≤ n
3. Wi ∈ e

4. si = {
special symbol if Wi ∈ SpWdSet
∈Wi.InformativeSynsets otherwise

In Formula 2, e is an element of W(E) defined in Formula
1; Wi is an element of e; Wi.InformativeSynsets is a set of the
informative synsets of Wi; si is an element in this set when
Wi does not belong to the SpWdSet, or it is an element in the
SpWdSet; ⊓ denotes the intersection of several synsets.

There are four attributes for an element in EN(E);
1. The element is an instance of OWL Object Intersection.
2. Operands in the element must contain one and only one

synset in a set of the informative synsets of each word
in the label of E, except when this word belongs to the
SpWdSet.

3. Operands in the element may contain one synset in a set
of the informative synsets of each word in the comment
of E.

4. Operands in the element are concepts from the Synset
Relation Ontology. Namely, the element is an anonymous
concept in the Synset Relation Ontology.

An entity label attribute takes the key role in an entity
notion, so each element in EN(E) must contain the synsets
of the words in this entity label attribute. An entity comment
attribute only takes the supplementary role, so each element
in EN(E) may contain the synsets of the words in this
entity comment attribute. This is reasonable, because when
a knowledge engineer creates an ontology, s/he will select
necessary words as an entity label attribute and may also
further describe this entity in an entity comment attribute.

We also process words in the SpWdSet (such as “or, without,
no, else”) when defining an entity notion. For example, we will
interpret or using ⊔ in “reference or conference”, and we will
interpret without using ⊓ and ¬ in “book without report”. If
si in Formula 2 includes symbols in the SpWdSet, we need to
process it further. Given the element in EN(101:Book): {Book,
monograph, “or”, collection}, we first obtain {book56434
⊓ monograph534534 ⊓ “or” ⊓ collection23244} according
to Formula 2, and then, after processing the special symbol
“or”, we replace it with {book56434 ⊓ (monograph534534 ⊔
collection23244)}.

While defining an entity notion for a property, we also
consider concepts and logics in the domain and range of this
property. This provides important information in some cases,
e.g., in the two properties shown below:

PropertyA: <Art book String>
PropertyB: <Book ⊔ Report title String)>

The bold words are a property label, the left items are a
domain, and the right ones are a range. If we only use the
property label attribute “book”, it is not enough to express
the notion for PropertyA. For a property, we use lexical
information from concepts and logics in the domain and
range of this property to address the limitation of only using
property label and property comment attributes. The process
is performed in four steps, as shown below:

1. Obtain the words in the concept labels in the domain and
range of the property P, denoted as D and R;

2. Calculate Σi
n⊎ Ci

n(D) and Σi
n⊎ Ci

n(R) according to
the logics in the domain and range (the logics in the range
are only used for an object property);

3. Insert Σi
n⊎ Ci

n(D) and Σi
n⊎ Ci

n(R) into Co(P) in
Formula 1;

4. Calculate Formulas 1 and 2 to obtain EN(P);
We take as an example PropertyB above to explain the steps.
a) derive D = {Book, Report}. Data types of the range

of a property, such as “String, Char”, are omitted, so R in
PropertyB is an empty set.

b) calculate Σ i
n⊎ Ci

n(Book ⊔Report),
when i = 1, C1

2(Book ⊔ Report) = {{Book}, {Report}};
when i = 2, C2

2(Book ⊔ Report) = {{Book ⊔ Report}};
Σi

n⊎ Ci
n(Book ⊔ Report) = {{}, {Book}, {Report},

{Book ⊔ Report}}.
c) compute Co(P) = {{}, {Book}, {Report}, {Book ⊔

Report}, {title}}
d) to get the synset of Book ⊔ Report, one must use

the union of two synsets, a synset obtained for Book and
another obtained for Report. So the synset of Book ⊔ Report
is SynsetOfBook ⊔ SynsetOfReport. The rest of this step is
similar to those explained for Formulas 2 and 1.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

7

As shown above, the method to define an entity notion in
OMI-DL is also different from similar solutions such as S-
Match. S-Match defines an entity notion by intersecting (or
uniting) the suitable sense of each word only in that entity
label attribute. In addition to adopting the suitable sense and its
extensions in entity label and entity comment attributes, OMI-
DL extends this method by transforming the representation of
an entity notion into a combination statement. This leads to
identification of a set of intersections (or unions) of senses in
an entity notion in OMI-DL. This feature increases the pos-
sibility of finding more correspondences. Concepts and logics
in the domain and range of a property also provide important
information to match the properties. S-Match does not analyze
the property data, and a few of the methods above only use it
as one of the attributes for computing similarity measures.
OMI-DL imports the logics and the lexical information of
the concepts in the domain and range of a property into the
representation of an entity notion. So an entity notion in OMI-
DL implies more information than S-Match and other similar
solutions especially when only property label and property
comment attributes cannot provide enough information. The
OMI-DL method also conforms more to semantics described
in domain and range of a property in contrast to the methods
that only calculate similarity measures.

Although this method can enhance the descriptions to
some extent, it leads to some inaccuracy. Given (Aca-
demic ⊔ LecturesNotes 101:school String) and (Publication
302:notes String), according to the steps above, we obtain
one element in EN(302:school): ((academic15216 ⊔ (lec-
ture8932 ⊓ notes65380)) ⊓ school46212), and one element
in EN(101:notes): (publication65022 ⊓ notes65380), and we
have the two axioms (publication65022 ⊒ notes65380) and
(notes65380 ⊒ academic15216) in the Synset Relation On-
tology. So we can infer EN(101:notes) ⊒ EN(302:school)
which leads to inconsistency in the derived alignment. We filter
out redundant matching candidates such as EN(101:notes) ⊒
EN(302:school) using the process described in Section VI-B.

VI. IDENTIFYING AND FILTERING MATCHING
CANDIDATES

This section describes generating matching candidates be-
tween entities by using a reasoner over the Synset Relation
Ontology when deriving an entity notion, and then discusses
filtering the matching candidates through an iterative process.
The matching candidates are the basis for producing corre-
spondences. The filtering process increases the precision of
the system.

A. Identifying Matching Candidates

Once we get an entity notion, we can identify a matching
candidate (MC for short) using a reasoner over the Synset
Relation Ontology. Matching candidates express logical rela-
tions between the senses of words in the labels and comments
of all possible pairs of entities, one from each ontology. It is
denoted as below:

MC(A,B) =< A,B,Relation > (3)

TABLE II: A partial view of matching candidates for the
sample ontologies

101: Entity 302: Entity Relation
1 101:Collection 302:Publication beIncluded
2 101:School 302:TechReport include
3 101:Book 302:Book equivalent
4 101:Booklet 302:Book beIncluded
5 101:author 302:author equivalent
6 101:author 302:firstauhtor include
7 101:howPublished 302:organization beIncluded

(a) MCs before filtering (b) MCs after filtering

Fig. 2: Matching candidates (MCs) filtering

where A and B are the same type and are called a source
entity from a source ontology denoted as MC.left and a target
entity from a target ontology denoted as MC.right respectively.
MC(A, ÷×) includes a set of matching candidates where a
source entity in each MC is A. A similar symbol MC(÷×, A)
is also defined. Relation in Formula 3 includes: disjoint ⊥,
include ⊒, beIncluded ⊑ and equivalent ≡.

Given EN(E1) and EN(E2), firstly infer relations between
any two elements, which are anonymous classes in the Synset
Relation Ontology and are obtained from EN(E1) and EN(E2)
respectively, by reasoners; secondly we record the count for
each relation; finally we select the relation with the maximum
count. If there is no relation between two entities, MC for
them will not be established.

This step will produce a set of the original matching
candidates, denoted as MCO, as partially shown in Table II
for the sample ontologies.

B. Filtering Matching Candidates

Not all of the matching candidates are accurate and some of
them could be redundant as shown in Sections V-B and V-D.
The matching candidates also need to ensure semantic con-
sistency in matched ontologies and themselves. Based on the
above considerations, we filter the matching candidates derived
from the previous step and keep the most relevant matching
candidates. This process helps to increase the precision of the
system. We first introduce the filtering rules and then describe
the iterative filtering process.

The rules for filtering are described in the following.
1 If one entity in an ontology has more than one candidates

that match to multiple entities in another ontology, these
matching candidates should neither lead to inconsistency
nor directly produce any new links among two matched
ontologies.

2 Select the matching candidates which have stronger re-
lations if Rule 1 is broken. Their order from stronger
relations to weaker relations is ≡,⊒,⊑ and ⊥ respectively.

Rule 1 ensures that semantics in integration ontology are
consistent to the ones in matched ontology when the integra-

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

8

tion ontology is established by assembling all of axioms in
the matched ontologies and the alignment together. Rule 2 is
developed by intuition and experiment.

With the help of Fig. 2, we explain the above rules. The
cubes represent two matched ontologies, denoted as Ontology
1 and Ontology 2. The circles represent entities, denoted as A,
C, B and D. The lines between two cubes represent matching
candidates.

In Fig. 2a, A has two matching candidates with C and D.
If the matching candidates are <A, D, equivalent> and <A, C,
include>, we can infer <D, C, include> for Ontology 2. If <D,
C, include> does not exist in Ontology 2, this directly produces
a new link which knowledge engineers have not considered in
Ontology 2. It breaks Rule 1. According to Rule 2, <A, D,
equivalent> is selected rather than selecting <A, C, include>.

If the matching candidates <A, D, equivalent> and <A, C,
disjoint>, and <D, C, include> exist in Ontology 2, we can see
<D, C, disjoint> conflicts with <D, C, include> in Ontology 2.
This leads to ontology inconsistency (refer to [15] regarding
inconsistency in an ontology) and breaks Rule 1; so <A, C,
disjoint> should be deleted based on Rule 2. The filtered
matching candidates for this example are depicted in Fig. 2b.

The Matching Candidates Filter component first checks
if MCs in MC(A,÷×) lead to inconsistency and then deletes
those matching candidates that cause conflict. After this, the
matching candidates are denoted as Consistent MC(A,÷×). If
equivalent MCs exist in Consistent MC(A,÷×), we will then
directly discard non-equivalent matching candidates, and then
keep only one equivalent matching candidate. Given <A,
D, equivalent>, <A,E, equivalent> and <A, C, beIncluded>,
we discard the non-equivalent matching candidate <A, C,
beIncluded>. If <D, C, beIncluded> or <E, C, beIncluded>
does not exist in Ontology 2, it would be discarded based on
Rule 1 and 2. If <D, C, beIncluded> and <E, C, beIncluded>
exist in Ontology 2, it would still be discarded. According
to < A, D, equivalent> and <D, C, beIncluded> or < A, E,
equivalent> and <E, C, beIncluded>, <A, C, beIncluded> will
be obtained in next step. After discarding the non-equivalent
matching candidates for Consistent MC(A,*), we filter out
the equivalent matching candidates, which have a lower string
similarity value, to keep only one equivalent matching candi-
date for Consistent MC(A,*). For this, we adopt a token-based
vector space similarity measure called Jaccard Similarity2.

We also filter MCs in Consistent MC(A, *) for the cases
that some or all of the relations include, beIncluded, disjoint
exist together in Consistent MC(A, *). They can lead to
breaking Rule 1. For example, given <101:author, 302:author,
equivalent> and <101:author, 302:firstauhtor, include>, there
is no relation between 302:author and 302:firstauthor in
Ontology302. So we delete the second one according to Rule
2. When matching Ontology101 and Ontology302, at first we
obtain more than 100 MCs. However by filtering the results
only 46 MCs are left. The filtered matching candidates are
denoted as MCF.

The process in the Matching Candidates Filter component
is bidirectional. It could also lead to deletion of some correct

2http://www.dcs.shef.ac.uk/∼sam/stringmetrics.html

matching candidates. To describe this issue, let’s assume the
case shown in Fig. 2a as an initial state before describing the
Matching Candidates Addition component.

The Matching Candidates Filter component first deletes AC
and BC from Ontology 1 and then removes AD from Ontology
2. It is clear that the matching candidate AC in Fig. 2a could be
correct but it will still be deleted. The Matching Candidates
Addition process, which includes the Adequacy Check and
Adding Missing Matching Candidates components, addresses
this issue.

The Adequacy Check component checks whether any
matching candidates are missing. This is implemented by
checking whether Condition 1 below is satisfied.
Condition 1. ∀MC ∈ MCO, it must ∃MC

′

∈ MCF which
makes MC.left = MC

′

.left or MC.right = MC
′

.right. (1)
The Adding Missing Matching Candidates component

marks the missing matching candidates according to Formula
4, which are denoted as MissingMC. It then submits them
along with MCF into the Matching Candidates Filter compo-
nent. The process will run until Condition 1 above is satisfied.

MissingMC = {MC ∣MC ∈MCO ∧ ∀MC
′

∈MCF ⇒
MC

′

.left ≠MC.left ∧MC
′

.right ≠MC.right} (4)

The filtering process is iterative as shown in Fig. 1. It is
terminable as described in Proof 1 (We use i to present related
symbols in Iteration i).

Proof 1. We assume that the process is in Iteration i now.
According to Condition 1 and Formula 4, if the size of
MissingMCi−1 is 0, the process has been stopped at Iteration
i-1.

MCFi−1 does not break the rules and MissingMCi−1

is probable to break them. According to Formula 4,
MissingMCi−1 does not affect MCFi−1 for the rules,
so the Matching Candidates Filter component only filters
MissingMCi−1 and keeps MCFi−1. So MCFi=MCFi−1+ fil-
tered MissingMCi−1.

The size of the filtered MissingMCi−1 will not be 0, be-
cause the size of MissingMCi−1 is not 0 and the Matching
Candidates Filter component does not delete all MCs in
MissingMCi−1. So MCFi−1 is a subset of MCFi.

MCO remains unchanged and MCFi−1 is a subset of
MCFi, so according to Formula 4, MissingMCi is a subset
of MissingMCi−1 and the size of MissingMCi is smaller than
the size of MissingMCi−1. When i tend to n (integer), the size
of MissingMCi converges to 0. This means Condition 1 is
satisfied and the process will stop.

As shown above, OMI-DL describes a semantic iterative
filtering process to remove redundant matching candidates by
reasoners. The rules in the filtering process and the format of
the matching candidates in OMI-DL are different from those
in ASMOV as described in Section VI-B. The verification
(or filtering) process in ASMOV mainly focuses on semantic
relations in the matching candidates according to similarity
values. The filtering process in OMI-DL puts more emphasis
on combining semantic relations in the matching candidates
together with semantics in matched ontologies. The filtering

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

9

process in OMI-DL is more efficient compared to the veri-
fication process in ASMOV. It increases the precision of the
system as shown in Section VIII-B1. Other methods discussed
above mostly compare a threshold value with similarity values
to filter matching candidates.

VII. ENTITY ALIGNING

This section presents correspondences generation by cal-
culating similarity measures. Some correspondences are also
produced by defining the closest subsumer of an entity de-
scription to enhance the overall performance of the system.

A. Correspondences Generation by Similarity Computation

The similarity measure between two entities A and B, de-
noted as S(A,B), is computed by utilizing the filtered matching
candidates, semantic information in an ontology and string
similarity. The sum of three kinds of similarity measures
is used for this purpose: lexical similarity measure denoted
as LS(A,B), semantic similarity measure denoted as SS(A,B),
and string similarity measure denoted as SM(A,B). SM(A,B)
is obtained by using the string similarity function described
in Section VI-B; if A and B exist in MCF, LS(A,B) is `
(0 ≤ ` ≤ 1), otherwise it is 0; SS(A,B) is described below.

Firstly, all the parent concepts of A and B are obtained.
Secondly, the properties of A and A’s parent concepts are
obtained (denoted as PS(A)) and the properties of B and B’s
parent concepts are obtained (denoted as PS(B)). Thirdly, if
two properties, one from PS(A) and one from PS(B), appear
together as some matching candidate in MCF which does not
have disjoint relation, the counter is increased by one. The
process examines any two properties respectively from PS(A)
and PS(B) in a similar way. Fourthly, SS(A,B) is calculated by
dividing the counter by multiplication of the sizes of PS(A)
and PS(B).

Any two entities from different ontologies which have the
same type are related to one correspondence as defined below,

C(A,B) =< A,B,Relation,S(A,B) > (5)

where Relation represents the matching candidate relation if
A and B appear together as a matching candidate in MCF.
Otherwise it is defined as “No Relation”.

We compare the value of the similarity measure in each cor-
respondence derived from the previous step with a threshold
µ. The correspondences which have a lower value than the
threshold are removed. The rest will be kept as a part of the
alignment.

B. Correspondences Generation by Defining cs(E)

For aligning ontologies, we not only utilize the semantics
in matched ontologies, but also the ones in alignments from
the last stage. We introduce a set of new correspondences
by defining the closest subsumer of an entity description.
The definition future exploits semantics between matched
ontologies and alignments, and ensure the consistency of
the derived alignment. These correspondences are important
because they are generally correct and do not appear in the

alignments obtained from most of the other solutions as shown
in Section VIII-B1. This method enhances the precision and
recall of the system.

Definition 1. An entity (a concept or a property) description
C is the closest subsumer of an entity description E (cs(E)
for short) in an ontology if it satisfies:

1. C ⊑ E and
2. if C

′ ⊑ E, then C
′ ⋣ C;

These new correspondences are produced by two steps.
We select special correspondences derived from the previous
component by referring to those that have equivalent relation.

We then combine the special correspondences with the
closest subsumer of an entity description, as explained in
Definition 1, to produce new correspondences.

Given a special correspondence <A, B, equivalent, value>,
we calculate cs(A) and cs(B). For ∀C∈cs(B), the new corre-
spondence will be established, namely <A, C, included, 0>.
For ∀D∈cs(A), the new correspondence will be established,
namely <D, B, beIncluded, 0>. We implement cs(E) mainly
by using a reasoner.

We take as an example 101:Book and 302:Book to ex-
plain this process. Given the correspondence <101:Book,
302:Book, equivalent, 1.0>, we first obtain cs(101:Book) =
{101:Collection, 101:Proceedings, 101:Monograph} and then
compose the new correspondences in relation to 302:Book:

1. <101:Collection, 302:Book, beIncluded, 0.0>;
2. <101:Proceedings, 302:Book, beIncluded, 0.0>;
3. <101:Monograph, 302:Book, beIncluded, 0.0>.

Because cs(302:Book) is an empty set, no new correspon-
dence is established for it. Generally, the three items above
do not appear in the alignments proposed by most of other
solutions.

As shown above, the correspondences inferred by cs(E) is
the results of the semantics from the matched ontologies and
the equal correspondences in the last stage. The definition
limits the number of the result to the closest subsumer of the
equal correspondences.

VIII. EVALUATION

This section provides an evaluation of OMI-DL. It is
implemented using MIT Java WordNet Interface3, OWL-API4,
Pellet5, and Alignment API6 to interact with WordNet, process
an ontology, execute inferences and compare alignments.

We evaluate OMI-DL against several ontology matching
solutions namely: SOBOM, DSSim, AROMA, Lily, ASMOV,
RiMOM, GeRoMe, Aflood, Kosimap, MapPSO, Amaker and
TaxoMap. For comparative purposes, we have also used edna
(a simple distance algorithm applied to labels).

We use three metrics: precision (Prec.), recall (Rec.) and
F-Measure (FMeas.) as defined in [35] to evaluate the align-
ments. In our experiments, the metrics are computed using the
ExtGroupEval evaluation class provided by the Alignment
API.

3http://projects.csail.mit.edu/jwi/
4http://owlapi.sourceforge.net/
5http://clarkparsia.com/pellet
6http://alignapi.gforge.inria.fr/

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

10

A. Test Dataset

1) Ontologies from the Benchmark Dataset: We evaluate
OMI-DL by using the benchmark dataset7 in the domain of
bibliography from the OAEI dataset. The reference alignment
of each test case is provided on the OAEI web site.

In general, an ontology in the benchmark dataset includes
around 37 concepts, 72 properties and 108 axioms. There
are totally 110 ontologies in this dataset except Ontology102
which is not found in the results of other solutions. We classify
these ontologies into four groups as shown below according
to entity label and entity comment attributes in an ontology.
G1 includes ontologies that have similar lexical (or linguis-

tic) and structural information. The ontologies in G1 are taken
from Folders 101 to 104 (except Folder 102). G4 consists
of four real life ontologies from Folders 301 to 304. Entity
label and comment attributes in each ontology in G2 do not
contain random strings or strings in another language rather
than English. G3 consists of the rest of the ontologies in the
benchmark dataset. All or a part of entity label and entity
comment attributes in each ontology in G3 contain random
strings or strings in another language rather than English.

2) Ontologies from Real World Projects: In addition to
evaluation of OMI-DL based on the benchmark dataset, we
also use three sets of ontologies from real world projects.

In the first set, one is the content description ontology
from the m:Ciudad project8 called UDL-CD, and the other
is DOLCE+DnS Ultralite9 (refered to as DUL in this paper).
UDL-CD provides concepts to describe mobile services and
relates them to different real world entities, activities and
events. The concepts in UDL-CD are adopted from different
common ontologies and vocabularies such as DBPedia and
CyC. DUL provides a set of upper level concepts that can be
the basis for easier interoperability among many middle and
lower level ontologies. UDL-CD includes 5806 concepts, 72
properties and 8937 axioms, and DUL includes 76 concepts,
109 properties and 1047 axioms.

The ontologies in the second set are related to the domain
of organizing conferences and are taken respectively from the
Conference Management Toolkit10 and the Conference Accel-
erator11. In this paper, the ontologies are respectively called
CMT and CAW. CMT includes 30 concepts, 59 properties and
207 axioms, and CAW includes 39 concepts, 66 properties and
377 axioms.

The ontologies in the third set are related to mouse anatom-
ical terms, namely the Mouse Genome Informatics12 and
Ontology at the MPI for Evolutionary Anthropology13. In this
paper, the ontologies are respectively called MGI and MEA.
MGI includes 5466 concepts, 3 properties and 11552 axioms,
and MEA includes 2744 concepts, 3 properties and 8289
axioms.

7http://oaei.ontologymatching.org/2009/benchmarks/
8http://www.mciudad-fp7.org/
9http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS Ultralite
10http://msrcmt.research.microsoft.com/cmt/
11http://webistem.com/en/
12http://www.informatics.jax.org/searches/AMA form.shtml
13https://onto.eva.mpg.de/

The evaluation of alignments of these ontologies are manu-
ally produced by our colleagues at the University of Surrey and
Beijing University of Posts and Telecommunications. None of
these individuals is associated with the OMI-DL system .

B. Evaluation Results

The evaluation takes three aspects into account: 1) the
impact of different components on the results; 2) comparing
OMI-DL with other existing solutions; 3) evaluation results
for ontologies from real world projects.

Fig. 3: Effect of using each of the components

1) Effect of Using Each of the Components: There are
mainly four components which affect the performance of the
system: Synset Extension, Representation of an Entity Notion,
Matching Candidates Filter and Correspondences Generation
by Defining cs(E). We have run the system with excluding
some of the components at a time to analyze the effect of the
various components in the performance over the four real life
ontologies in G4. It is clear that including all the components
produces better results compared with the case that some
components are excluded as shown in Fig. 3. The evaluation
also demonstrates to what extent they affect the results.

It can be seen that the Synset Extension, Representation
of an Entity Notion and Matching Candidates Filter com-
ponents improve the results better than the Correspondences
Generation by Defining cs(E) component. Without the Synset
Extension and Representation of an Entity Notion components,
although Prec. is increased from 88% to 91% (3%), Rec. and
FMeas. are decreased from 82% to 45% (-37%) and from 85%
to 60% (-25%) respectively in comparison with the case that
the components are not excluded. This case violates the basis
for producing matching candidates, so Rec. is very low. It can
be seen that Synset Extension and Representation of an Entity
Notion components help to increase the Rec. of the system.

By excluding the Matching Candidates Filter component,
Prec., Rec. and FMeas. vary from 88% to 51% (-37%), from
82% to 81% (-1%) and from 85% to 63% (-22%) respectively.
It can be seen that the Matching Candidates Filter component
helps to increase the Prec. of the system. It is interesting to
note that without the Matching Candidates Filter component,
the Rec. is decreased. This component removes some matching
candidates that could be correct correspondences at the end,
but it does not add any new matching candidates. This shows

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

11

that the existence of some matching candidates will affect the
construction of correspondences in the rest of the system.

The Correspondences Generation by Defining cs(E) com-
ponent has 2% increase in Rec. and 1% decrease in Prec. in
comparison with the case that all the components are included.
All of the correspondences inserted by this component con-
form to semantics in two matched ontologies. However, the
reference alignments do not include all reasonable correspon-
dences and not all correspondences in the reference align-
ments are incoherent [36]14. The correspondences inserted
by this component are coherent according to our analysis.
For example, <101:Deliverable, 303:Report, beIncluded> and
<101:Report, 303:ProjectReport, included> produced by this
component are coherent and reasonable, but they do not appear
in the reference alignment while matching Ontology101 and
Ontology303.

2) Comparison with Other Existing Solutions: We have
compared our method with SOBOM, DSSim, AROMA, Lily,
ASMOV, RiMOM, GeRoMe, Aflood, Kosimap, MapPSO,
Amaker and TaxoMap. We found that OMI-DL is one of the
top performers in many test cases and is the best in some of
them as shown in Table III and Table IV.

While evaluating ontologies in G1, most solutions including
OMI-DL obtain high performance (around 100% Prec. and
Rec.) as shown in Table III. This is due to the fact that these
ontologies have similar structural and lexical (or linguistic)
information.

OMI-DL has high Prec., FMeas. and especially higher Rec.
(99%) while evaluating ontologies in G2 as shown in Table
III. However, while evaluating ontologies in G3, OMI-DL does
not provide high results, especially in Rec. (only 44%), and
ASMOV, Lily, RiMOM and Aflood have higher performance.
Fig. 4 represents the differences in Rec., Prec. and FMeas.
of each solution while evaluating ontologies in G2 and G3.
The results reflect that the various solutions have a different
degree of dependency on lexical (or linguistic) or structural
information. As shown in Fig. 4, the performance (especially
Rec.) of most of the solutions decreases with the lack of
lexical (or linguistic) data (especially with G3 that contains
ontologies with random and often not meaningful words). It
is also found that some solutions, especially OMI-DL whose
Prec. Rec. and FMeas. are decreased from 97% to 83% (-
14%), 99% to 44% (-55%) and 98% to 57% (-41%), are more
dependent on lexical (or linguistic) information than ASMOV,
Lily and RiMOM.

However, the main reason for the low performance in
OMI-DL in this case is that our solution is designed to
match the senses of English words. When entity label and
entity comment attributes in an ontology contain random
strings (which do not cover any meanings) or are specified
in another language than English, OMI-DL cannot exploit the
suitable sense and its extensions of a word using WordNet and
cannot efficiently produce matching candidates by inferring
entity notions which reflect lexical (or linguistic) information
from entities. This causes some components (such as the

14This affects the evaluation results of our system. However, for consistency
reasons, we followed the reference alignments.

Fig. 4: Difference in performance between G2 and G3

Correspondences Generation By Similarity Computation and
Correspondences Generation by Defining cs(E) components)
which analyze structural or semantic information not to per-
form efficiently as they do not have access to sufficient inputs.
Another reason for affecting the performance in OMI-DL is
that we cannot find some correspondences together as we
focus highly on consistency in matched ontologies as shown
in Section VIII-C. In some testing cases, correspondences
are correct but do not appear in the reference alignments
as described in Section VIII-B1. As shown in Table IV,
OMI-DL performs highly for the test cases that ontologies
include meaningful words and statements to describe entity
label and entity comment attributes (e.g. Test Cases 221−247
and 301−304) even though their lexical (or linguistic) and
structural information are altered.

The common feature of many of the existing solutions
(such as Lily, ASMOV and RiMOM) is that they concurrently
calculate various similarity measures between entities which
reflect lexical and structural information. The calculations of
the different similarity measures do not depend on each other.
These solutions then combine the values of these similarity
measures by different methods (such as assigned weights
in ASMOV and a dynamic multi-strategy in RiMOM). For
example, ASMOV combines the values of the similarity mea-
sures by a formula as: ω1S1+...+ωnSn where ωi represents
an assigned weight and Si represents the value of a similarity
measure. It then compares the sum with a threshold µ to pro-
duce correspondences. If an ontology does not include some
kinds of information, ASMOV can deal with this problem
by adjusting µ and ωi. So, solutions such as Lily, ASMOV
and RiMOM still have high performance while evaluating
ontologies in G3 as shown in Table III. This could be due
to the adjustment factor that can tune them for a special set
of data. However, this will limit their flexibility usability in
applying to various ontologies.

Although lexical (or linguistic) and structural information
for ontologies in G2 and G4 vary, sufficient information can
be extracted. As shown in Table III, the difference between
Rec. in OMI-DL and the highest value is only of 1% while
evaluating ontologies in G2. Rec. in OMI-DL is one of the
best for the four real life ontologies in G4 as shown by Row
4 in Table III.

This is due to the fact that the synset extension and repre-
sentation of entity notions enhance the possibility of finding
more correspondences. The Correspondences Generation by

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

12

TABLE III: Experiment comparison with other solutions

Algo. edna OMI-DL Kosimap TaxoMap GeRoMe DSSim AROMA
Test data Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas.

G1 0.96 1.00 0.98 1.00 1.00 1.00 0.99 0.99 0.99 1.00 0.34 0.51 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G2 0.71 0.99 0.83 0.97 0.99 0.98 0.97 0.96 0.97 0.98 0.98 0.98 1.00 1.00 1.00 1.00 0.96 0.98 0.97 0.98 0.98
G3 0.33 0.46 0.39 0.83 0.44 0.57 0.89 0.49 0.63 0.81 0.21 0.33 0.89 0.66 0.76 0.96 0.56 0.71 0.93 0.60 0.73
G4 0.47 0.82 0.60 0.88 0.82 0.85 0.72 0.50 0.59 0.77 0.31 0.44 0.68 0.60 0.64 0.94 0.67 0.78 0.85 0.78 0.81

Algo. Amaker ASMOV Lily RiMOM Aflood SOBOM MapPSO
Test data Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas. Prec. Rec. FMeas.

G1 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.98 0.98 1.00 1.00 1.00
G2 0.98 0.98 0.98 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.97 0.94 0.95 0.98 0.98 0.98
G3 0.99 0.51 0.67 0.94 0.83 0.88 0.97 0.84 0.90 0.91 0.77 0.83 0.99 0.75 0.85 1.00 0.28 0.44 0.53 0.48 0.47
G4 0.92 0.79 0.85 0.81 0.82 0.81 0.84 0.81 0.82 0.81 0.82 0.81 0.90 0.81 0.85 0.92 0.55 0.69 0.54 0.29 0.37

Defining cs(E) also helps to increase the Rec. in OMI-DL.
Row 4 in Table III also shows that edna has high Rec. (82%),
but its Prec. is low (47%).

In this case, Prec. in OMI-DL is lower in contrast to the high
Rec. in OMI-DL. The difference between Prec. in OMI-DL
and the highest Prec. obtained via other solutions for G2 is 3%
and for G4 is 6% (as shown in Talbe III). Row 4 in Table III
shows that SOBOM and DSSim have high Prec. but very low
Rec., because they only generate around 50 correspondences,
and other solutions produce around 70 correspondences.

Considering Rec. and Prec., even if OMI-DL has lower Prec.
than some solutions, it has high FMeas. value. while evaluating
ontologies in G1, G2 and especially G4 (as shown in Table III).
Row 4 in Table III shows that the improvement for FMeas. in
OMI-DL is 25% over edna, 4% over ASMOV, 3% over Lily,
4% over RiMOM, 7% over DSSim, 4% over AROMA, 20%
over GeRoMe, 25% over Kosimap, 40% over TaxoMap, 48%
over MapPSO and 16% over SOMBOM. Row 4 in Table III
also shows that Aflood, Amaker and OMI-DL have the same
FMeas. (85%). But the difference between Prec. and Rec. in
OMI-DL (6%) is smaller than Aflood (9%) and Amaker (13%).
So Pec. and Rec. in OMI-DL are more balanced.

It is worth noting that the ExtGroupEval class in the
Alignment API does not consider semantic relations in cor-
respondences when it computes the metrics. OMI-DL pro-
duces correspondences containing semantic relations (such as
<Monograph, Book, beIncluded>) which are not found in other
solutions. This is important in some applications (such as
ontology integration).

3) Evaluation of Ontologies from Real World Projects: This
subsection demonstrates applying our method to ontologies
with broader scope of concepts. We provide an evaluation of
matching ontologies from real world projects. Prec., Rec. and
FMeas. are shown in Table V for each case15.

When evaluating matching DUL and UDL-CD, OMI-DL
maps < DUL ∶ classifies > to < UDL − CD ∶ category >.
The main reason is that the extensions of a suitable synset
of the word “classify” contain a suitable synset of the word
“category”. This leads to the establishment of the matching
candidate based on their notions. In CMT-CAW set, we can
infer <CMT:Chairman, CAW:Chair, equivalent> when match-
ing CMT and CAW, because OMI-DL assign the right synsets
to Chairman and Chair respectively.

OMI-DL can also map each element in cs(CMT:Person)

15The detailed results can be accessed from: http://tinyurl.com/cufbg4u

TABLE IV: The results of OMI-DL for the benchmark dataset

Test Case Prec. Rec. Fmeas. Test Case Prec. Rec. Fmeas.
101 1.00 1.00 1.00 103 1.00 1.00 1.00
104 1.00 1.00 1.00 201 NaN 0.00 NaN

201-2 0.93 0.79 0.86 201-4 0.88 0.60 0.71
201-6 0.69 0.42 0.53 201-8 0.91 0.22 0.35
202 1.00 0.01 0.02 202-2 0.92 0.79 0.85

202-4 0.87 0.60 0.71 202-6 0.69 0.42 0.53
202-8 0.91 0.22 0.35 203 1.00 1.00 1.00
204 0.98 0.94 0.96 205 0.69 0.34 0.46
206 0.83 0.35 0.49 207 NaN 0.00 NaN
208 0.98 0.94 0.96 209 0.69 0.32 0.44
210 0.83 0.35 0.49 221 1.00 1.00 1.00
222 0.96 1.00 0.98 223 0.92 1.00 0.96
224 1.00 1.00 1.00 225 1.00 1.00 1.00
228 1.00 0.97 0.98 230 0.94 1.00 0.97
231 1.00 1.00 1.00 232 1.00 1.00 1.00
233 1.00 0.97 0.98 236 1.00 0.97 0.98
237 0.96 1.00 0.98 238 0.92 1.00 0.96
239 0.97 0.97 0.97 240 0.79 1.00 0.88
241 1.00 0.97 0.98 246 0.97 0.97 0.97
247 0.79 1.00 0.88 248 1.00 0.01 0.02

248-2 0.94 0.79 0.86 248-4 0.89 0.60 0.72
248-6 0.77 0.42 0.55 248-8 0.91 0.22 0.35
249 1.00 0.01 0.02 249-2 0.92 0.79 0.85

249-4 0.87 0.60 0.71 249-6 0.69 0.42 0.53
249-8 0.91 0.22 0.35 250 NaN 0.00 NaN
250-2 0.81 0.79 0.80 250-4 0.71 0.61 0.66
250-6 0.47 0.42 0.44 250-8 1.00 0.21 0.35
251 1.00 0.01 0.02 251-2 0.96 0.80 0.87

251-4 0.95 0.60 0.74 251-6 0.85 0.42 0.56
251-8 0.91 0.23 0.36 252 1.00 0.01 0.02
252-2 0.84 0.79 0.81 252-4 0.84 0.79 0.81
252-6 0.84 0.79 0.81 252-8 0.84 0.79 0.81
253 1.00 0.01 0.02 253-2 0.94 0.79 0.86

253-4 0.89 0.60 0.72 253-6 0.77 0.42 0.55
253-8 0.91 0.22 0.35 254 NaN 0.00 NaN
254-2 0.90 0.79 0.84 254-4 0.83 0.61 0.70
254-6 0.64 0.42 0.51 254-8 1.00 0.21 0.35
257 NaN 0.00 NaN 257-2 0.81 0.79 0.80

257-4 0.71 0.61 0.66 257-6 0.47 0.42 0.44
257-8 1.00 0.21 0.35 258 1.00 0.01 0.02
258-2 0.96 0.80 0.87 258-4 0.95 0.60 0.74
258-6 0.85 0.42 0.56 258-8 0.91 0.23 0.36
259 1.00 0.01 0.02 259-2 0.84 0.79 0.81

259-4 0.84 0.79 0.81 259-6 0.84 0.79 0.81
259-8 0.84 0.79 0.81 260 0.00 0.00 NaN
260-2 0.88 0.79 0.84 260-4 0.86 0.62 0.72
260-6 0.71 0.41 0.52 260-8 0.88 0.24 0.38
261 0.00 0.00 NaN 261-2 0.63 0.79 0.70

261-4 0.63 0.79 0.70 261-6 0.63 0.79 0.70
261-8 0.63 0.79 0.70 262 NaN 0.00 NaN
262-2 0.90 0.79 0.84 262-4 0.83 0.61 0.70
262-6 0.64 0.42 0.51 262-8 1.00 0.21 0.35
265 0.00 0.00 NaN 266 0.00 0.00 NaN
301 0.90 0.76 0.83 302 1.00 0.69 0.81
303 0.70 0.83 0.76 304 0.94 0.95 0.94

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

13

TABLE V: Evaluation for matching real world ontologies

Num. Ontologies FMeas. Prec. Rec.
1 DUL UDL-CD 0.65 0.93 0.50
2 CMT CAW 0.67 0.78 0.58
3 MGI MEA 0.84 0.89 0.79

to < CAW ∶ Person > such as <CMT:User, CAW:Person,
beIncluded> and <CMT:ConferenceMember, CAW:Person,
beIncluded> (based on the correspondence <CMT:Person,
CAW:Person, equivalent>). For the same reason, we can also
infer <DUL:NaturalPerson, UDL-CD:Person, beIncluded>
and <DUL:SocialPerson, UDL-CD:Person, beIncluded>.

Because both MGI and MEA have almost the same entity
label attributes and have not any other information, this leads
to that the same words from different ontologies have the same
synsets at the same contextes and the entities from different
ontologies have the same entity notions. So the words for the
source entity in a correspondence are similar to those used for
the target entity in the correspondence when matching MGI
and MEA, such as <MGI:Colon, MEA:colon, equivalent> and
<MGI:Bone, MEA:bone, equivalent>.

Overall, the real world ontologies provide broader concepts
and descriptions, and the entity label attributes are also de-
scribed in different terminologies. As the results show, OMI-
DL performs efficiently when it is applied to ontologies with
broader scope in the real world applications.

C. Analysis And Discussion

To demonstrate the strengths and limitations of OMI-DL, we
use the sample ontologies (Ontology101 and Ontology302) in
Section IV as an example to discuss the derived alignment.

As shown in Table IV, OMI-DL has 100% in Prec. and
69% in Rec. when matching the two sample ontologies. The
correspondences which appear in the reference alignment but
are not found by OMI-DL are listed in the following:

1. <101:Chapter, 302:InBook, equivalent>;
2. <101:Reference, 302:Resource, equivalent>;
3. <101:Booklet, 302:Publication, beIncluded>;
4. <101:LectureNotes, 302:Publication, beIncluded>;
5. <101:Academic, 302:Publication, beIncluded>;
6. <101:Informal, 302:Publication, beIncluded>;
7. <101:Report, 302:Publication, beIncluded>;
8. <101:Part, 302:Publication, beIncluded>;
9. <101:Deliverable, 302:Publication, beIncluded>;

10. <101:Unpublished, 302:Publication, beIncluded>;
11. <101:proceedings, 302:booktitle, equivalent>;
12. <101:url, 302:softCopyURI, equivalent>;
13. <101:isPartOf, 302:booktitle, equivalent>;
14. <101:book, 302:booktitle, equivalent>;

The Synset Extension and Representation of an Entity
Notion components generate Items 3 to 10. They appear in
the original matching candidates. However, according to the
filtering process based on the rules as shown in Section VI-B,
we remove them. If the filtering process is not applied, we
will also obtain some other correspondences which do not
appear in the reference alignment (see Fig. 3 and Table II).
So the Matching Candidates Filter component enhances the

Prec. of the system, but we still need to improve the rules in
the filtering process to produce a higher Rec. value.

For Item 2, relations between 101: Reference and 302:
Resource are not found. Because relations between their labels
are not found in WordNet. For Item 12, url cannot be found
in WordNet. So using other external resources such as Linked
Open Data [37] may improve the performance. The Tokenizer
component is not able to process booktitle into two words
<book, title>. So Items 11, 13 and 14 are missing in the derived
alignment. The enhanced string and label processing can solve
this problem and will be a part of future work.

OMI-DL ensures the consistency of the derived alignment,
so we cannot find some of the correspondences above together.
For example, <101:proceedings, 302:booktitle, equivalent>,
<101:isPartOf, 302:booktitle, equivalent>, and <101:book,
302:booktitle, equivalent> cannot be found together, be-
cause this leads to <101:isPartOf equivalent 101:proceedings
equivalent 101:book>, and it also conflicts with the ax-
iom in 0ntology101, namely <101:isPartOf, 101:proceedings,
Include>. OMI-DL also cannot find <101:Chapter, 302:In-
Book, equivalent> and <101:InBook, 302:InBook, beIncluded>
together, because we can infer <101:InBook, 101:Chapter,
beIncluded> which is not claimed and is not reasonable in
Ontology101. If those incoherent correspondences [36] in the
reference alignments are removed, OMI-DL can obtain an even
higher performance.

Using the synset extension and representation of an entity
notion improves the Rec. of the system; for example, OMI-
DL obtains <101: date, 302: publishedOn, beIncluded> which
does not appear in the alignments provided by most of
other solutions. By defining the closest subsumer of an en-
tity description, OMI-DL obtains <101:Collection, 302:Book,
beIncluded> and <101:Monograph, 302:Book, beIncluded>
which also do not appear in the alignments provided by most
of other solutions.

IX. CONCLUSION AND FUTURE WORK

This paper proposes a comprehensive framework for on-
tology matching called OMI-DL. It analyzes the senses of
a word and extends them to define the representation of an
entity notion in an ontology. OMI-DL generates matching
candidates between entities and filters out redundant matching
candidates using reasoners. Our method constructs correspon-
dences between entities according to the closest subsumer
of an entity description and similarity measures. We have
conducted evaluations and compared the results with other
methods. The results empirically prove its strengths.

Future work will focus on improving the performance in
OMI-DL by extending the scope of analysis methods. Using
other common terminologies and structured data on the Web
(such as DBpedia and Linked Open Data resources) will
provide broader resources to describe and represent concepts
and enable the concepts to be extended. We also plan to
include individual analysis in our method. This will enhance
the results of our algorithm when lexical and semantic anal-
ysis methods fail to provide high confidence in establishing
correspondences. Future work will also focus on scalability
issues and provide matching for large scale ontologies.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2410794, IEEE Transactions on Services Computing

14

REFERENCES

[1] K. Xiangping, L. Deyu, and W. Suge, “Research on domain ontology
in different granulations based on concept lattice,” Knowledge-Based
Systems, vol. 27, no. 0, pp. 152–161, 2012.

[2] X. Liu, A. Bouguettaya, J. Wu, and L. Zhou, “Ev-lcs: A system for the
evolution of long-term composed services,” Services Computing, IEEE
Transactions on, vol. 6, no. 1, pp. 102–115, First 2013.

[3] J. Zhang, D. Kuc, and S. Lu, “Confucius: A tool supporting collaborative
scientific workflow composition,” Services Computing, IEEE Transac-
tions on, vol. 7, no. 1, pp. 2–17, Jan 2014.

[4] J. Gracia and E. Mena, “Semantic heterogeneity issues on the web,”
Internet Computing, IEEE, vol. 16, no. 5, pp. 60–67, 2012.

[5] P. Shvaiko and J. Euzenat, “Ten challenges for ontology matching,” in
Proceedings of the OTM 2008 Confederated International Conferences,
CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the Move
to Meaningful Internet Systems, ser. LNCS, no. 5332, Mexico, 2008.

[6] ——, “Ontology matching: State of the art and future challenges,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 25, no. 1,
pp. 158–176, Jan 2013.

[7] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, and K. Wang, “Using bayesian
decision for ontology mapping,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 4, no. 4, pp. 243–262, 2006.

[8] G. Pirro and D. Talia, “Ufome: An ontology mapping system with strat-
egy prediction capabilities,” Data & Knowledge Engineering, vol. 69,
no. 5, pp. 444–471, 2010.

[9] S. Albagli, R. Ben-Eliyahu-Zohary, and S. E. Shimony, “Markov net-
work based ontology matching,” Journal of Computer and System
Sciences, vol. In Press, Accepted Manuscript, pp. –, 2011.

[10] F. Giunchiglia and P. Shvaiko, “Semantic matching,” Knowl. Eng. Rev.,
vol. 18, pp. 265–280, September 2003.

[11] Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka, “Ontology
matching with semantic verification,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 7, no. 3, pp. 235–251, 2009.

[12] O. Udrea, L. Getoor, and R. J. Miller, “Leveraging data and structure in
ontology integration,” in SIGMOD ’07: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data. New York,
NY, USA: ACM, 2007, pp. 449–460.

[13] M. Bonifacio, A. Dona, A. Molani, and L. Serafini, “Context matching
for electronic marketplaces: a case study,” The Knowledge Engineering
Review, vol. 18, no. 04, pp. 317–328, 2003.

[14] S. Khan and M. Safyan, “Semantic matching in hierarchical
ontologies,” Journal of King Saud University - Computer and
Information Sciences, no. 0, pp. –, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1319157814000111

[15] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003, ch. Basic
Description Logics, pp. 46–99.

[16] C. Quix, P. Roy, and D. Kensche, “Automatic selection of background
knowledge for ontology matching,” in Proceedings of the International
Workshop on Semantic Web Information Management, ser. SWIM ’11.
New York, NY, USA: ACM, 2011, pp. 51–57.

[17] P. Maio and N. Silva, “An extensible argument-based ontology matching
negotiation approach,” Science of Computer Programming, no. 0, pp. –,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167642314000264

[18] P. Xu, Y. Wang, and T. Zang. (2009) Alignment results of sobom
for oaei 2009. [Online]. Available: http://dit.unitn.it/∼p2p/OM-2009/
oaei10 paper12.pdf

[19] C. E. Yap and M. H. Kim, “Instance-based ontology matching with
rough set features selection,” in IT Convergence and Security (ICITCS),
2013 International Conference on, Dec 2013, pp. 1–4.

[20] G. Acampora, V. Loia, and A. Vitiello, “Enhancing ontology alignment
through a memetic aggregation of similarity measures,” Information
Sciences, vol. 250, no. 0, pp. 1 – 20, 2013.

[21] M. Houshmand and E. Khorram, “Similarity aggregation in ontology
matching based on reliability maximization,” in Electrical Engineering
(ICEE), 2011 19th Iranian Conference on, may 2011, pp. 1–6.

[22] Y. Qu and G. Cheng, “Falcons concept search: A practical search engine
for web ontologies,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 41, no. 4, pp. 810–816, july 2011.

[23] W. Peng, “Research on the key issues in ontology mapping,” Ph.D.
dissertation, Dept. Electron.Eng., SouthEast Univ., NanJing, China,
2009.

[24] R. Chen, C. Bau, and C. Yeh, “Merging domain ontologies based on the
wordnet system and fuzzy formal concept analysis techniques,” Applied
Soft Computing, vol. 11, no. 2, pp. 1908–1923, 2011.

[25] V. Spiliopoulos, G. A. Vouros, and V. Karkaletsis, “On the discovery of
subsumption relations for the alignment of ontologies,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 8, no. 1, pp.
69–88, 2010.

[26] X. Xue, Y. Wang, and A. Ren, “Optimizing ontology alignment through
memetic algorithm based on partial reference alignment,” Expert Systems
with Applications, vol. 41, no. 7, pp. 3213 – 3222, 2014.

[27] J. Li, J. Tang, Y. Li, and Q. Luo, “Rimom: A dynamic multistrategy
ontology alignment framework,” IEEE Transactions on Knowledge and
Data Engineering, vol. 21, pp. 1218–1232, 2008.

[28] A. Buccella, A. Cechich, D. Gendarmi, F. Lanubile, G. Semeraro, and
A. Colagrossi, “Building a global normalized ontology for integrating
geographic data sources,” Computers & Geosciences, vol. 37, no. 7, pp.
893–916, 2011.

[29] J. Bock and J. Hettenhausen, “Discrete particle swarm optimisation for
ontology alignment,” Information Sciences, no. -, pp. –, 2010.

[30] X. Wang and Q. Xu, “An improved ant colony optimization for ontology
matching,” in Computer Research and Development (ICCRD), 2011 3rd
International Conference on, vol. 4, march 2011, pp. 234–238.

[31] M. Kolli and Z. Boufaida, “A description logics formalization for the
ontology matching,” Procedia Computer Science, vol. 3, no. 0, pp. 29–
35, 2011.

[32] Y. Jiang, X. Wang, and H.-T. Zheng, “A semantic similarity measure
based on information distance for ontology alignment,” Information
Sciences, vol. 278, no. 0, pp. 76 – 87, 2014.

[33] T. Richens, “Anomalies in the wordnet verb hierarchy,” in Proceedings of
the 22nd International Conference on Computational Linguistics (Coling
2008). Manchester, UK: Coling 2008 Organizing Committee, August
2008, pp. 729–736.

[34] H. Deng, I. King, and M. R. Lyu, “Enhanced models for expertise
retrieval using community-aware strategies,” Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on, vol. PP, no. 99, pp.
1–14, 2011.

[35] J. Euzenat and P. Shvaiko, Ontology matching. Heidelberg (DE):
Springer-Verlag, 2007.

[36] C. Meilicke, “The relevance of reasoning and alignment incoherence in
ontology matching.” in ESWC, ser. Lecture Notes in Computer Science,
vol. 5554. Springer, 2009, pp. 934–938.

[37] V. Mascardi, A. Locoro, and P. Rosso, “Automatic ontology matching
via upper ontologies: A systematic evaluation,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 22, no. 5, pp. 609 –623, 2010.

