University of Surrey

Test tubes in the lab Research in the ATI Dance Research

On the capacity of cognitive interference channel structures.

Reátegui del Águila, Fernando (2015) On the capacity of cognitive interference channel structures. Doctoral thesis, University of Surrey.

[img]
Preview
Text
Thesis.pdf - Thesis (version of record)
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB) | Preview
[img] Text
2014_08_13_Author_Deposit_Agreement.docx - Supplemental Material

Download (42kB)

Abstract

The cognitive interference channel extends the classical two-user interference channel to have unidirectional cooperation at the transmitters. In this model, the cognitive transmitter is assumed to have noncausal knowledge of the other transmitter's current message (primary message). This a priori knowledge is used by the cognitive user to accomplish its two main purposes, i.e., to relay the primary message in order to boost the primary user's data rate and to maximise its own data rate by cancelling the interference at its receiver. The cognitive interference channel is well studied in the literature and capacity results are available for the weak and very strong interference regimes, amongst others. A general solution is still elusive. In this thesis we study the capacity region of cognitive structures that are based in their core on the cognitive interference channel but with the aggregate that an additional node is considered, e.g., an additional receiver node, an additional transmitter node or a relay node. The cognitive broadcast interference channel consists of the cognitive interference channel with an additional receiver. The cognitive side serves either one or two receivers and the interference goes from the cognitive transmitter to the primary receiver only. In this model we provide a general achievable rate region when the cognitive side serves two receivers. We analyse the discrete memoryless channel and show that the region simplifies to existing results in the literature when certain assumptions are made. An achievable rate region for the Gaussian channel is also provided for the case where the cognitive side sends common information to both receivers. When the cognitive side serves only one receiver, we provide an achievable rate region and an outer bound and show the gap graphically. The cognitive interference channel with a relay consists of the cognitive interference channel with an additional relay node. In this model we show that as in the interference channel with a relay, interference forwarding is also beneficial. We describe analytically achievable rate regions and show the benefits of interference forwarding. We also provide an achievable rate region with generalised interference forwarding, i.e., the relay forwards the intended message and the interference simultaneously, and show that allowing the relay to allocate part of its power to forward interference is beneficial when we are in the strong but not in the very strong interference regime. The cognitive interference channel with causal unidirectional destination cooperation is formed by transferring the relaying capabilities of the relay node in the previous model to the cognitive receiver and its operation is causal rather than strictly causal. In this model we show that instantaneous amplify and forward is good enough to achieve the capacity region of the Gaussian channel. We derive analytically an inner and outer bounds and show that they coincide for certain values of the antenna gain at the relay in the very strong interference regime. We also analyse the cognitive interference channel with a relay for the case where the relay operates causally. The capacity region is obtained for a special case of very strong interference. The cognitive multiple access interference channel consists of the cognitive interference channel with an additional cognitive transmitter. In this model the interference goes from the primary user to the cognitive receiver only. The cognitive users form a MAC channel. We show for this scenario that dirty paper coding achieves the capacity region in the Gaussian case. In the analysis we make use of encoding techniques first utilised for the MAC with state available noncausally at the encoder.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
AuthorsEmailORCID
Reátegui del Águila, Fernandoferreat@gmail.comUNSPECIFIED
Date : 30 January 2015
Contributors :
ContributionNameEmailORCID
Thesis supervisorImran, Muhammad Alim.imran@surrey.ac.ukUNSPECIFIED
Thesis supervisorTafazolli, Rahimr.tafazolli@surrey.ac.ukUNSPECIFIED
Depositing User : Fernando Reategui Del Aguila
Date Deposited : 13 Feb 2015 10:01
Last Modified : 17 Feb 2015 10:22
URI: http://epubs.surrey.ac.uk/id/eprint/807077

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800