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ABSTRACT 

 

Introduction: The dose-volume effect of radiation therapy on breast tissue is poorly 

understood. We estimate NTCP parameters for breast fibrosis after external beam 

radiotherapy.  

 

Materials and Methods: We pooled individual patient data of 5856 patients from 2 

trials including whole breast irradiation followed with or without a boost. A two-

compartment dose volume histogram model was used with boost volume as the first 

compartment and the remaining breast volume as second compartment. Results from 

START-pilot trial (n=1410) were used to test the predicted models. 

 

Results: 26.8% patients in the Cambridge trial (5 years) and 20.7% patients in the 

EORTC trial (10 years) developed moderate-severe breast fibrosis. The best fit NTCP 

parameters were BEUD3(50) =136.4Gy, γ50=0.9 and n=0.011 for the Niemierko 

model and BEUD3(50) =132Gy, m=0.35 and n=0.012 for the Lyman Kutcher Burman 

model.  The observed rates of fibrosis in the START-pilot trial fit the predicted rates 

well. A small value of volume parameter „n‟ does not fit with the hypothesis that 

breast tissue is a parallel organ. 

 

Conclusion: This large multi-centre pooled study suggests that the effect of volume 

parameter is small and the maximum RT dose is the most important parameter to 

influence breast fibrosis. However, this may reflect limitations in our current scoring 

system, which quantifies the severity but not necessarily the extent of fibrosis.  
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Introduction 

 

Radiation therapy (RT) has an established role in the management of early stage 

breast cancer to improve loco-regional control and overall survival [1]. However, a 

proportion of patients develop RT related complications including breast fibrosis, 

breast shrinkage and telangiectasia, which contribute to physical and psychological 

morbidity. Clinicians estimate the likelihood of a complication based on published 

literature and personal experience. The Emami et al [2] seminal paper was among the 

first to provide a comprehensive review of radiation tolerance for normal tissues, 

estimating the tolerance doses (TD5 and TD50) for whole, 2/3 and 1/3 organ 

irradiation. More recently, Quantitative Analyses of Normal Tissue Effects in the 

Clinic (QUANTEC) articles summarised the quantitative effects of RT dose and 

treatment volume on late normal tissue complications [3]. However, very few 

investigators have studied the radiation dose-volume effect for breast tissue [4-6].   

 

The influence of  RT dose on late normal tissue complications is well established [7-

9], however the effect of  treated breast volume is unclear with conflicting reports in 

the literature [10]. The large EORTC 22881-10882 “boost versus no boost” trial 

reported higher breast fibrosis rates among patients treated with larger boost volumes 

on univariate analysis [11]. These results were hypothesis generating, consistent with 

a volume effect for breast fibrosis. Newer techniques aim to exploit a volume effect 

for breast tissue, including partial breast irradiation (PBI) [12], simultaneous 

integrated tumour bed boost (SIB) [13] and image guided RT (IGRT) [14], with the 

aim of reducing late normal tissue complications. As these techniques become part of 
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routine practice, a better understanding of the dose volume effect of radiation on 

breast tissue is required.  

 

The normal tissue complication probability (NTCP) models can be used to estimate 

dose-volume effect by predicting the probability of a complication for a non-uniform 

irradiated organ. For the modeling exercise, one requires a dataset with diverse dose 

and volume data and a meaningful quantitative toxicity endpoint. The purpose of this 

study is to test the volume effect hypothesis and quantify the effect of volume 

parameter by estimating the NTCP model parameters for breast fibrosis as measured 

by induration score. Fibrosis is a common sequela of breast RT and adversely effect 

overall cosmesis, can be assessed on a scoring system and likely to impact on patient 

physical and psychological wellbeing [15]. Individual patient data from randomised 

controlled trials (RCTs) provides the most robust data on RT dose and toxicity. 

Additionally, pooling of data from different RCTs increases the diversity of the 

dataset and the generalisation of results to the wider population [16]. Hence, the 

individual patient data from two large RCTs were pooled together: EORTC 22881-

10882 “boost versus no boost” trial [8, 9] and the Cambridge Breast IMRT trial [17, 

18]. To our knowledge, no other dataset of this magnitude has previously been pooled 

for the purpose of NTCP modeling for breast tissue. 
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Materials and Methods 

 

Patient cohort and toxicity scoring 

 

Cambridge Breast IMRT trial [17, 18]: This single centre trial recruited 1145 patients 

with invasive breast cancer (stage T1-T3N0-1M0) or ductal carcinoma in situ who  

received breast conserving therapy (BCT).  All patients received 40Gy in 15 fractions 

over 3 weeks to the whole breast followed by an electron tumour bed boost of 9Gy in 

3 fractions over 3 days in selected cases (n=728). Breast fibrosis was clinically 

assessed at 2 and 5 years after completion of RT and scored on a four point scale 

(0=none, 1= a little, 2= quite a bit (~ moderate) and 3= very much (~ severe)).  

 

EORTC 22881-10882 “boost versus no boost” trial [8, 9]: This multi-centre trial 

recruited 5569 patients with invasive breast cancer (stage T1-T2N0-1M0) who 

received BCT. All patients received 50Gy in 25 fractions over 5 weeks to the whole 

breast and were randomised between no boost (n=2657), 10Gy in 5 fractions boost 

(n=126), 16Gy in 8 fractions boost (n=2661) and 26Gy in 13 fractions boost (n=125). 

Electrons (63%), photons (29%) and low dose rate brachytherapy (9%) were used to 

deliver the boost dose. Breast fibrosis was clinically assessed and scored on a four 

point scale (1= none, 2 = minor, 3 = moderate, and 4 = severe) at every follow up 

visit. 

 

The brachytherapy technique can lead to significant dose heterogeneity and its boost 

volumes are usually much smaller than external beam techniques [19]. Hence, patients 
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with brachytherapy boost were excluded from the analysis as were patients with 

missing data/toxicity score (Cambridge trial: 571 and EORTC trial: 275). 

 

Dose-Volume data  

 

The accuracy with which NTCP model parameters can be estimated depends on the 

quality of both the dosimetric information and clinical follow up data. The late 

toxicity scores and boost volumes were recorded in the trials but limited dose-

distribution data was available. Therefore, a more simplistic two-compartment dose-

volume histogram (DVH) model was used. The first step of the DVH was the tumour 

bed volume receiving whole breast dose plus boost dose and the second step of the 

DVH was the remaining breast volume (whole breast volume minus tumour bed 

volume) receiving whole breast dose only.  

 

Whole breast volume was only recorded in the Cambridge trial. Hence, a Monte Carlo 

(MC) simulation method was used to generate breast volume data for the EORTC 

patients. The MC simulation used the breast volume distribution from the Cambridge 

trial and an acceptance-rejection test of boost/breast volume ratio between 5-40% (the 

range of boost volume to breast volume ratio observed in the Cambridge data). It was 

assumed that the distribution of breast volume and boost/breast volume ratio in the 

EORTC trial is the same as in the Cambridge trial. 

 

NTCP modeling  
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Two radiobiological models were used: Lyman Kutcher Burman (LKB) model [20] 

and the Niemierko model [21]. Both models assume that for whole or partial organ 

irradiation, the dose-response curve follows a basic sigmoid shape. Full details of the 

mathematical modeling are given in appendix 1.  

 

Estimation of NTCP parameters with 95% confidence interval 

 

Maximum Likelihood Estimation (MLE) method [22]  was used to find the best fit 

values of the parameters (BEUD50, γ50/m and n). A full sequential parameter search 

was performed with the following parameter constrains: BEUD3 (0-150), n (0.01-1.0), 

γ50 (0.5-3.0) and m (0.1-0.8). The 95% confidence intervals (CI) for the optimally fit 

parameters were obtained using the Profile Likelihood Estimation method [23].  

 

Goodness of fit estimation  

An independent dataset from the START-pilot trial [24] was used to assess the 

goodness of fit of the predicted NTCP models. The START-pilot trial randomised 

1410 patients into one of three whole breast RT dose fractionations: 50Gy in 25 

fractions or 39Gy in 13 fractions or 42.9Gy in 13 fractions. Patients were also sub-

randomised for tumour bed boost to a dose of 14Gy in 7 fractions using electrons. 

Summative data on moderate and severe breast induration at five years was used for 

all three whole breast dose fractionations with and without boost for the goodness of 

fit estimation. The goodness-of-fit statistic was obtained by calculating the Pearson 

chi-square statistic (χ
2
) from the observed and predicted rates of breast fibrosis. 
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Results 

Individual dose-volume and toxicity data of 574 patients (50 %) from the Cambridge 

trial and 5282 patients (95 %) from the EORTC trial were available for the NTCP 

modeling. 26.8% (154/574) patients developed moderate-severe breast fibrosis by 5 

years in the Cambridge trial and 20.7% (1096/5282) patients developed moderate-

severe breast fibrosis by 10 years in the EORTC trial. The patient‟s RT dose volume 

characteristics are summarised in table 1. 

 

Using the MLE method, the best fit NTCP parameters for the Niemierko model were 

BEUD3(50) = 136.4Gy, γ50=0.9 and n=0.011. The 95% CI for parameters were 

BEUD3(50) = 132.8-140Gy, γ50= 0.84-0.97 and n= 0.01-0.03. For the LKB model, 

the best fit parameters were BEUD3(50) = 132Gy, m= 0.35 and n= 0.012 with 95% CI 

of BEUD3(50) = 128.8-135.6Gy, m= 0.326-0.374 and n= 0.01-0.03. Both models 

imply that the risk of moderate-severe breast fibrosis is strongly associated with RT 

dose and the effect of the volume parameter is small.  

 

The observed rates of moderate and severe induration in the START pilot trial were in 

good agreement to the predicted rates of fibrosis using the LKB model (figure 1) and 

the Niemierko model (figure 2). Using the Pearson chi-square test with 5 degrees of 

freedom, the χ
2 

was 0.053
 
(p=0.95) for the LKB model and χ

2 
was 0.058

 
(p=0.95) for 

the Niemierko model suggesting a good fit of the models. 
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Discussion  

 

A better understanding of the dose-volume effect for breast tissue is timely as many 

patients now receive non-uniform breast irradiation in form of accelerated PBI, SIB 

and risk adapted RT [12, 13, 25, 26]. The EORTC 22881-10882 trial breast fibrosis 

nomogram showed a strong association between RT dose and fibrosis, with large 

boost volumes as a prognostic factor on univariate analysis only [11]. The purpose of 

this study was to specifically look at the volume effect by developing a predictive 

NTCP model. This was approached by pooling individual data from two large 

prospective trials (5856 patients), that offered robust information on RT dose, boost 

volume and late toxicity.  

 

Using the MLE method, the volume parameter „n‟ was close to zero for both the LKB 

model and the Niemierko model. This suggests that for moderate-severe fibrosis, the 

breast tissue behaves as a serial organ and the maximum RT dose is most predictive of 

the complication. The summative data of 1410 patients from an independent dataset 

with six RT dose levels had a good fit on both the LKB and Niemierko models (figure 

1 and 2).  

 

Parameter correlation leads to uncertainty of parameter estimates, independent of the 

size and diversity of the dataset [27]. An effective method to decrease the uncertainty 

is fixing one or more model parameters. Hence the α/β was fixed as 3Gy in the study 

based on the previously published literature [24]. There is no evidence to suggest the 

superiority of one model over another [28] and it is acknowledged that model 
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parameters are not interchangeable. However, similar values of the estimated 

parameters from the two models strengthen the results of this study.  

 

Three other studies have previously estimated the NTCP parameters for breast fibrosis 

and there results are summarised in table 2. Borger et al [4] model was based on 404 

patients treated with WBI (50Gy in 25 fractions over 5 weeks) followed by low dose 

rate Iridium-192 based tumour bed boost (15-25Gy). BEUD was calculated using α/β 

of 2Gy and repair half-time of 1.5 hours. The implant positions were re-constructed 

on the available radiographs and dose-volume calculations were performed. The best 

fit NTCP parameters in the study were TD50=72Gy and n= 0.16 ± 0.04. Though 

informative, the model parameters were estimated from patients with brachytherapy 

boost alone. It is not evident to compare parameters generated from brachytherapy to 

external beam techniques due to the difference in dose distribution and a possible 

different radiobiological effect. For this reason, patients with brachytherapy boost 

were excluded in the current study. Avanzo et al [5] estimated the best fit parameters 

for the model using average dosimetric parameters (prescription dose, fraction dose, 

median follow up and dose-volume data) from three WBI studies without boost and 

four external beam PBI studies. Three PBI studies used twice daily fractionation, and 

BEUD calculations included a repair half-time of 4.4 hours in the model. As the 

median follow up of the PBI studies was short (1.3-4.2 years), a latency function 

correction was included. The parameters were estimated using weighted least square 

method, with the number of patients in each dataset as weights. The parameters for 

moderate-severe breast fibrosis model were BEUD50= 105.8, n=0.15 and m=0.22. 

The authors acknowledged that the gold standard approach to estimate NTCP 
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parameters is the use of individual dosimetric data/clinical outcome. MLE method 

based parameter estimates are also more precise as compared to weighted least square 

method [29].  

 

On the contrary, Alexander et al [6] reported a strong effect of volume parameter on 

breast fibrosis. This study included summative data of 806 patients from the START- 

pilot trial [24], 590 patients from a Germany study [30] and 150 post-mastectomy 

patients treated during the 1960‟s [31]. All patients received WBI and no partial 

volume data was available for the fitting analysis. The dose-volume data were 

generated using an anthropomorphic phantom and parameters were estimated for a 

relative seriality model and Lyman model. The study suggested a parallel architecture 

for breast tissue with a strong volume effect on breast fibrosis (n=0.78). However, 

these results cannot be generalised for several reasons: 

 

a. The toxicity outcome used is different between the studies. The START-pilot 

and German study assessed breast fibrosis on clinical examination, whereas 

the post-mastectomy study scored fibrosis on photographs. 

b. The planning techniques for post-mastectomy study (1960‟s) would be 

considered as outdated by present standards. One would also expect different 

NTCP parameters for breast fibrosis after BCS and tissue fibrosis after 

mastectomy. 

c. The study corrected time latency in BCT study (START-pilot & German) 

based on the results of the historic post-mastectomy series. 
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Overall, most studies have indicated a small volume effect for breast fibrosis. There 

are several possible reasons to explain the difficulty in demonstrating the effects of 

volume parameter for breast fibrosis. Breast fibrosis may represent a focal RT effect, 

with the maximum RT dose as the most predictive factor. It is also possible that our 

current scoring methods for breast fibrosis are not sensitive to the volume effect. 

Breast fibrosis is often graded as mild-severe based on the severity; however the 

scoring system does not take into account the extent of fibrosis i.e. small discrete 

region of fibrosis and widespread region of fibrosis are potentially scored alike. It has 

been suggested that NTCP parameters are influenced by the severity of measured 

toxicity [32]. For rectum, Rancati et al. estimated the best fit „n‟ parameter was 0.23 

for ≥ grade 2 rectal bleeding, which decreased to 0.06 when only severe rectal 

bleeding (grade3) was considered [32]. It is plausible that a volume effect for breast 

tissue may have been seen for mild fibrosis. Apart from RT parameters, breast fibrosis 

can also be influenced by surgical techniques [33] and systemic therapy [34], which 

are not accounted in the mathematical model.  

 

There is a need to investigate quantitative methods, which define both the severity and 

extent of breast fibrosis. The use of patient-reported toxicity scoring for NTCP 

modeling may also be useful. A small area of fibrosis in the breast may not be 

perceived as toxicity by the patient, whereas a large area of fibrosis in a small breast is 

likely to be considered as significant toxicity by the patient. Hence, patient-reported 

breast fibrosis scoring may be more sensitive to the change in treatment volume. 

Other toxicity endpoints like photographic assessed breast shrinkage may also be 
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more sensitive to the volume effect as it represents global organ effect, is more 

objective and scored independent of surgical changes.  

 

Limitations  

 

It is recognised that there are several limitations of this study. One of the intrinsic 

difficulties in modeling for breast tissue is the lack of detailed dosimetric data. A two-

compartment DVH was used with the assumption that a homogeneous dose was 

delivered to the breast during WBI. The EORTC whole breast volume data was 

generated using MC simulation, using parameters from the Cambridge trial. It is clear 

that using simulated data for the EORTC patients can lead to large uncertainties. A 

plot of boost volume against moderate-severe fibrosis suggests that the volume effect 

is likely to be weak (appendix figure 3) and the model parameters will not be affected 

by the distribution of the simulated breast volumes. To test this hypothesis, ten 

additional breast volume datasets were generated for the EORTC patients using the 

MC method. Furthermore, the variance of the first two simulated datasets was 

changed by 0.5 and 2 times the original value. Repeat simulations and changing the 

variance of breast volume distribution did not significantly change the estimated 

NTCP parameters (in keeping with weak volume effect). 

 

Other limitations of the study include the use of both photons and electron boost 

modalities without any correction for their different radiobiological effectiveness 

(RBE). Bentzen et al. [35] previously reported RBE for electrons was 0.88 relative to 

photons at 4.1mm depth. As the RBE difference at depths other than 4.1mm is 
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unknown, no attempts were made to correct for this. The duration of follow up was 

different between the EORTC (10 years) and Cambridge datasets (5 years). However, 

no suitable adjustment could be made in the MLE method for latency. In addition, 

current literature indicates that the majority of the breast fibrosis events take place by 

five years time point [11]. For this analysis, the score for fibrosis was used 

independent from the site in the breast (boost area or elsewhere). It is not expected to 

influence on our results, as it is most often located at the boost area (where the highest 

dose is given). Moreover, the worst score ever was reported. Although improvement 

of fibrosis is not expected, erroneous scoring of oedema early after treatment might be 

possible. Apart from dose volume parameter, other patient (smoking, diabetes), 

treatment (type of surgery, chemotherapy, endocrine therapy and post-operative 

complications) and genetic factors also influence on breast fibrosis [11]. These factors 

could not be assessed and not included in the current study. 
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Conclusion 

This large multi-centre pooled study suggests that the effect of volume parameter is 

small and the maximum RT dose is the most important parameter to influence late 

breast fibrosis. However, this may reflect limitations in our current scoring system. 

There is a need to refine our current assessment tools which allow quantification of 

both the extent and severity of toxicity endpoints including fibrosis. Other RT 

associated complications should also be analysed to determine the effects of dose-

volume parameters and patient-reported outcomes should complement clinicians score 

based models in the future. Inclusion of other clinical factors is desirable for future 

NTCP modelling work. 
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Table 1: Dose-volume characteristics from the Cambridge and the EORTC dataset used for the NTCP model. 

 

 

 Number of patients Mean boost volume (range) Moderate-severe 

fibrosis rates 

Cambridge dataset    

No Boost 235 - 40/235 (17%) 

Boost 339 161.2 (33.6-540cc) 114/339 (33.6%) 

EORTC dataset    

No boost 2656 - 341/2656 (12.8%) 

6-10 Gy 6 238 (108-372cc) 1/6 (16.7%) 

10Gy 117 204.7 (42-1176cc) 28/117 (23.9%) 

12Gy 31 185.9 (48-606cc) 11/31 (35.5%) 

14Gy 93 273.4 (48-735cc) 23/93 (24.7%) 

16Gy 2257 209 (22-1386cc) 635/2257 (28.1%) 

16-20Gy 39 193.1 (52-630cc) 9/39 (23.1%) 

26Gy 83 198.5 (43-630cc) 48/83 (57.8%) 
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Table 2 Summarised results of the best fit NTCP parameters for moderate-severe breast fibrosis 

 

 Number of 

patients 

BEUD3(50) γ50 m n 

Borger et al [4] 

 

404 
NTD50=72 Gy 

(α/β =2Gy) 

(t1/2 = 1.5hrs) 

  0.16 

Alexander et al* [6] 

 LKB model 

 Relative seriality model 

 

1546  

 

104 Gy 

104 Gy 

 

- 

1.47 

 

0.27 

 

0.78 

(s=0.12) 

 

Avanzo et al* [5] 

 with repair correction ((t1/2  = 4.4hrs) 

 without repair correction 

 

2562 

 

105.8 Gy 

107.2 Gy 

 

- 

 

0.22 

0.22 

 

0.15 

0.06 

Current study  

 LKB model 

 Niemierko model 

 

5856 

 

132 Gy 

136.4 Gy 

 

 

0.9 

 

0.35 

 

0.012 

0.011 

 * these studies used summative dosimetric and toxicity data 

NTD: Normalised total dose 

BEUD3(50): Biologically equivalent uniform dose using α/β of 3Gy 

γ50/m: slope of the dose response curve 

n: volume parameter  

t1/2: repair half-time 

s: describes the serial/parallel architecture of the organ. A large value indicates a serial structure and a small value indicates a 

parallel structure.  
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Figure 1: Lyman Kutcher Burman Model - The probability of moderate-severe 

breast fibrosis versus biological equivalent dose using α/β of 3 Gy (BED3). The 

solid line is based on the best fit parameters (BED3 = 132 Gy and m= 0.35) and 

the dashed lines are upper and lower 95%CI. The summative toxicity data of the 

three dose fractionations ± boost at five years from the START pilot trial are 

plotted. 
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Figure 2: Niemierko Model - The probability of moderate-severe breast fibrosis 

versus biological equivalent dose using α/β of 3 Gy (BED3). The solid line is based 

on the best fit parameters (BED3 = 136.4 Gy and γ50= 0.9) and the dashed lines 

are upper and lower 95%CI. The summative toxicity data of the three dose 

fractionations ± boost at five years from the START pilot trial are plotted. 
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Appendix 1:  Summary of the mathematical modeling used in the study 
 

Two mathematical models were used in the study: Lyman Kutcher Burman (LKB) 

model and the Niemierko model. Both of these are based on three parameters: 

 

TD50: homogeneous dose to the organ which leads to 50% patients experiencing the 

defined toxicity at 5 years 

γ50/m: steepness of the dose-response curve  

n:  volume parameter of the organ being assessed 

 

For the purpose of estimating these parameters, each patient‟s two-compartment DVH 

was converted into a generalised equivalent uniform dose (EUD) using the Kutcher-

Burman histogram reduction method. The EUD is the dose, when delivered uniformly 

to the organ, will lead to the same complication probability as the actual dose 

distribution.  

 

 

n

i

nDiviEUD 









 

1

…………………………… (1) 

 

where vi is the i-th relative sub-volume of the organ irradiated with dose Di in the 

differential dose-volume histogram. The parameter “n” describes the volume effect of 

the irradiated organ or tissue. 

 

If n=1, the assessed organ has a parallel architecture with a strong volume dependence 

on late complication rate and EUD is the mean dose 
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If n=0, the assessed organ has a serial architecture with no volume dependence on late 

complication rate and EUD tends to be the maximum dose 

 

As radiotherapy associated complications are dependent on fraction size, a 

biologically equivalent uniform dose (BEUD) was generated using the EUD and α/β 

ratio of 3Gy in the linear quadratic model.  

 

 
















 /
1

N

EUD
EUDBEUD

…………………… (2) 

 

 

(A) Lyman Kutcher Burman (LKB) model:  

 














x

dx

x

eNTCP

0

2

2

2

1

 ………………… (3) 

 

 

where 

50

50

mBEUD

BEUDBEUD
x




         …………………….. (4) 
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(B) Niemierko model  

 

 
504501

1



BEUD

BEUD
NTCP




………………… (5) 

 

Both these models were written in Object Pascal (Delphi, Embarcadero technologies, 

San Francisco, CA, USA).  
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Appendix 2  

 

Figure 3: Tumour bed boost volume plotted against incidence of moderate-severe 

fibrosis for EORTC 16Gy in 8 fractions boost (red) and Cambridge 9Gy in 3 fractions 

boost (blue) 
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