Finite-dimensional global and exponential attractors for the reaction-diffusion problem with an obstacle potential

Antonio Segatti
Dipartimento di Matematica "F.Casorati"
Università di Pavia
Via Ferrata 1, 27100 Pavia, Italy
antonio.segatti@unipv.it

Sergey Zelik
Departement of Mathematics
University of Surrey
Guildford, GU2 7XH, UK
s.zelik@surrey.ac.uk

Abstract

A reaction-diffusion problem with an obstacle potential is considered in a bounded domain of \mathbb{R}^N. Under the assumption that the obstacle \mathcal{K} is a closed convex and bounded subset of \mathbb{R}^N with smooth boundary or it is a closed n-dimensional simplex, we prove that the long-time behavior of the solution semigroup associated with this problem can be described in terms of an exponential attractor. In particular, the latter means that the fractal dimension of the associated global attractor is also finite.

1 Introduction

This paper is devoted to the long-time behavior of solutions of the following reaction-diffusion system with an obstacle potential in a bounded and regular domain $\Omega \subset \mathbb{R}^N$

\[
\begin{aligned}
&\partial_t u - \Delta_x u + \partial I_{\mathcal{K}}(u) - \lambda u \ni 0, \\
&u|_{t=0} = u_0, \quad u|_{\partial\Omega} = 0.
\end{aligned}
\]

(1.1)

Here $u = (u_1(t,x), \ldots, u_n(t,x))$ is an unknown vector-valued function, Δ_x is a Laplacian with respect to the variable x, $\lambda > 0$ is a given constant, \mathcal{K} is a given bounded closed convex set in \mathbb{R}^n containing zero and $\partial I_{\mathcal{K}}$ stands for the subdifferential of its indicator function $I_{\mathcal{K}}$:

\[I_{\mathcal{K}}(u) := \begin{cases} 0, & u \in \mathcal{K}, \\
\infty, & u \notin \mathcal{K}.
\end{cases}\]

(1.2)

We recall that the subdifferential $\partial I_{\mathcal{K}}$ consists in the set of vectors in \mathbb{R}^n such that $y \in \partial I_{\mathcal{K}}(x)$ if and only if $(y, x-w)_{\mathbb{R}^n} \geq 0$ for any $w \in \mathcal{K}$, where $(\cdot, \cdot)_{\mathbb{R}^n}$ is the scalar product in \mathbb{R}^n. It is also well known that $\partial I_{\mathcal{K}}$ turns out to be a multivalued maximal monotone operator (see [6], pg.25; see also Section 2 below for the rigorous definitions).

Equations and systems of the type (1.1) appear quite often in the mathematical analysis of phase transitions models or in reaction-diffusion processes with constraints. In the first physical situation, (1.1) rules the evolution of the so called order parameter, which is an n-dimensional vector in the case of multicomponent systems (see, e.g., [7]). Moreover, since the order parameter u is usually related to the pointwise proportions of the n independent phases shown by system under study, it is physically reasonable the fact that it attains values only in
a bounded (convex) subset of \mathbb{R}^n, usually an n-dimensional simplex

$$K := \left\{ p = (p_1, \ldots, p_n) \in \mathbb{R}^n \text{ such that } \sum_{i=1}^n p_i \leq 1, \ p_i \geq 0, \ i = 1, \cdots, n \right\}. \quad (1.3)$$

This is motivated by the requirement that no void nor overlapping should appear between the phases. In particular, equation (1.1) with $n = 2$ and $\lambda = 0$ appears in the Frémond models of shape memory alloys (see [16] also for other models of phase change showing the ubiquity of subdifferential operators in this framework) where the two components u_1 and u_2 denote the pointwise proportions of the two martensitic variants. Finally, in the simpler scalar case, i.e. $n = 1$ and $K = [0, 1]$ (for instance), equation (1.1) is usually referred as Allen-Cahn equation with double obstacle.

The mathematical analysis of equations of the type (1.1) (and more general equations associated with maximal monotone operators in Hilbert spaces) has attracted the attention of researchers for many years. In the particular case of equation (1.1), results concerning existence, approximation and long time behavior of solutions (e.g., in terms of global attractors) are known and by now classic (without any sake of completeness and referring only to results in the Hilbert space framework, we quote [5], [6], [3], [28], [26]).

However, to the best of our knowledge, the finite/infinite dimensionality of the global attractor associated with the obstacle problems has not been yet understood (even in the simplest case of Allen-Cahn equation with double obstacle). Indeed, the classical machinery for proving the finite-dimensionality (in terms of fractal or/and Hausdorff dimension) of the global attractor (which perfectly works in many cases of dissipative systems generated by non-linear PDEs with regular non-linearities, see [2] [28] and references therein) is based on the so-called volume contraction arguments and requires the associated solution semigroup to be (uniformly quasi-) differentiable with respect to the initial data at least on the attractor.

Unfortunately, this differentiability condition is usually violated if the underlying PDE has singularities or/and degenerations and, in particular, it is clearly violated for the obstacle problems like (1.1). Thus, the classical scheme is not applicable here and this makes the problem much more difficult and interesting. In fact, it has been recently shown that, contrary to the usual regular case, the singular/degenerate dissipative systems can easily generate infinite-dimensional attractors even in bounded domains. For instance, the global attractor of the degenerate analogue of the real Ginzburg-Landau equation

$$\partial_t u = \Delta_x(u^3) + u - u^3, \ u|_{\Omega} = 0 \quad (1.4)$$

is infinite-dimensional for any bounded domain Ω of \mathbb{R}^N (thanks to the degeneration at $u = 0$), see [11]. On the other hand, in recent years the finite-dimensionality of the global attractor result has been established for many important classes of degenerate/singular dissipative systems including Cahn-Hilliard equations with logarithmic potentials (see [22]), porous media equations (under some natural restrictions which exclude the example of (1.4), see [11]), doubly non-linear parabolic equations of different types (see [24] [25] [12], etc. In these papers, the finite dimensionality of the global attractor is typically a consequence of the existence of a more refined object called exponential attractor, whose existence proof is often based on proper forms of the so called squeezing/smoothing property for the differences of solutions.

We remind that the concept of exponential attractor has been introduced in [8] in order to overcome two major drawbacks of the global attractors: the slow (uncontrollable) rate of attraction and the sensitivity to perturbations. Roughly speaking, an exponential attractor (which always contains the global one) is a compact finite-dimensional set in the phase space
which attracts \textit{exponentially} fast the images of all bounded sets as time tends to infinity (see Section 3 for the rigorous definition). Thus it turns out that, in contrast to global attractors, the exponential attractors are much more robust to perturbations (usually, Hölder continuous with respect to the perturbation parameter). Moreover, the rate of convergence to the exponential attractor can be controlled in term of physical parameters of the system considered, see [8] and the more recent survey [23] (and also references therein) for more details. Finally, the finite dimensionality of the global attractor immediately follows from the finite dimensionality of the exponential attractor.

The main aim of the present paper is to extend the exponential attractors theory to some classes of reaction-diffusion problems with \textit{obstacle} potentials. Although the methods based on the proper squeezing/smoothing property for the differences of solutions do not require the differentiability with respect to the initial data and, in principle, can be applied also to the obstacle problem (1.1), this application is far from being straightforward in our situation since, to this end, one needs to produce estimates for the difference between the Lagrange multipliers (namely the selection of the subdifferential $\partial I_K(u)$ which turns the differential inclusion (1.1) into an equation) associated with two solutions $u_1(t)$ and $u_2(t)$. This kind of estimates, which form the Assumption \text{} (see (2.20) and (3.10) for the rigorous formulation), roughly speaking look as follows

$$
\int_0^1 \|\partial I_K(u_1(t)) - \partial I_K(u_2(t))\|_{L^1(\Omega)} dt \leq C \|u_1(0) - u_2(0)\|_{L^2}
$$

where u_1 and u_2 denote two solutions starting from the proper absorbing set and, with a little abuse of notation, we refer to ∂I_K as it were single valued. Such kind of estimates, to the best of our knowledge, do not seem to be already known.

This paper is organized as follows In Section 2, we recall the basic results related with the wellposedness and regularity of solutions of the obstacle problem (1.1). As usual, the results on the singular problem (1.1) are obtained by approximating the singular obstacle potential by more regular ones. The usual regularization used for this kind of problems is the Moreau-Yosida approximation (see, e.g., [6]). However, it turns out that, in order to prove estimates of the type (1.5), it is more convenient to implement different kind of approximation schemes. Thus, in Section 2 we also give a sketch of the wellposedness result for (1.1) (which is well known, see [6] and [3]) by introducing another approximation scheme. This scheme becomes also very useful to prove an L^∞-estimate for the approximation of ∂I_K (independent of the approximation parameter) via the maximum principle. This kind of estimate at the ε-level will guarantee that the same bound remains valid also for ∂I_K. This fact will be rather crucial in proving (1.5).

Under the assumption that the estimate (1.5) for the Lagrange multipliers is known, in Section 3 we give the \textit{conditional} proof of the existence of an exponential attractor for the solution semigroup $S(t)$ associated with equation (1.1). This result is obtained using some modification of the so-called method of l-trajectories which was originally introduced by Málek and Nečas in [19] and is widely used nowadays in the attractors theory, see [20, 2] and references therein.

Section 4 is the key part of the paper and it is devoted to verifying estimate (1.5) for the case in which the boundary $\partial \mathcal{K}$ of the convex set \mathcal{K} is regular enough. The proof is based on the maximum principle and the Kato inequality together with rather delicate construction of the approximating potentials. Unfortunately, the most relevant (from the applications point of view) choice of \mathcal{K} is that of the simplex (1.3) which does not fit with the regularity assumptions on the boundary of \mathcal{K}. Thus, we have to consider this particular case separately using a different approximation scheme for the subdifferential ∂I_K. As a result, the existence of an exponential
attractor is proved for the case in which the boundary of \(K \) is smooth and for the particular choice of \(K \) as a simplex (1.3) (although we expect that this result should be true for any closed and bounded convex set \(K \)). The section closes with some discussion on possible extensions of our result to more general classes of reaction-diffusion equations.

Finally, in the last Section 5, we study the convergence of the exponential attractors \(\mathcal{M}_\varepsilon \) for the regular approximating problems to the limit exponential attractor \(\mathcal{M}_0 \) of the singular problem (1.1). For simplicity, we restrict ourselves there only to the case of the simplex (1.3) and verify that

\[
\text{dist}^{\text{sym}}(L^\infty(\Omega)), (\mathcal{M}_\varepsilon, \mathcal{M}_0) \leq C\varepsilon^\kappa,
\]

where \(\text{dist}^{\text{sym}} \) stands for the symmetric Hausdorff distance and the positive constants \(C \) and \(\kappa \) are independent of \(\varepsilon \). The result is based on the proper application of the abstract theorem on perturbations of exponential attractors proved in [14] to the obstacle problem (1.1).

2 Well-posedness and regularity

The aim of this section is to recall some known facts about the solutions of reaction-diffusion problem (1.1) with obstacle potential and to formulate some additional estimates which will be crucial for what follows. We start with

A word on the notation: The unknown function \(u \) is actually a vector valued function but, for the sake of simplicity, will be denoted as a scalar valued function. Consequently, also the functional spaces we will use in the course of the paper will have a “scalar” notation. This means that a notation like, e.g., \(L^2 \) will be preferred to a (more precise) notation like \((L^2(\Omega))^n\). The same applies to dualities \(\langle \cdot, \cdot \rangle \) and scalar products \((\cdot, \cdot) \). Moreover, we will indicate with same symbols \(K \) and \(I_K \) the convex in \(\mathbb{R}^n \) and its indicator function and their realization in \(L^2 \) (see the next proposition 2.4). Thus, the definition of (weak) solutions of our problem is.

Definition 2.1. A function \(u = u(t, x) \) is a solution of the obstacle problem (1.1) if \(u(t, x) \in K \) for almost all \((t, x) \in [0, T] \times \Omega \),

\[
\begin{align*}
&u \in C([0, T]; L^2) \cap L^2(0, T; H^1_0), \quad \partial_t u \in L^2(0, T; H^{-1}), \\
&(\partial_t u(t), u(t) - z) + (\nabla u, \nabla (u - z)) \leq \lambda(u, u - z), \quad \text{for any } z \in H^1_0 \cap \mathcal{K}.
\end{align*}
\]

and the following variational inequality holds for almost every \(t \in (0, T] \)

\[
(\partial_t u(t), u(t) - z) + (\nabla u, \nabla (u - z)) \leq \lambda(u, u - z), \quad \text{for any } z \in H^1_0 \cap \mathcal{K}.
\]

The next theorem is a standard result in the theory of the evolution equations associated with maximal monotone operators (see the seminal references [5], [6] and [3]).

Theorem 2.2. [Well posedness] Let \(\mathcal{K} \) be a closed and bounded convex set containing the origin in \(\mathbb{R}^n \). The, for any given measurable \(u_0 \) such that \(u_0(x) \in \mathcal{K} \) for almost all \(x \in \Omega \) there exists a unique global solution \(u(t) \) of problem (1.1) in the sense of definition 2.1. Moreover, \(u(t) \in H^2 \) and \(\partial_t u(t) \in L^2 \) for \(t > 0 \) and the following estimate holds:

\[
\|\partial_t u(t)\|_{L^2} + \|u(t)\|_{H^2} \leq C \frac{t^{1/2} + 1}{t},
\]

where the constant \(C \) depends on \(\lambda \) and \(\mathcal{K} \), but is independent of \(u_0 \). If, in addition, \(u_0 \in H^2 \cap H^1_0 \), then the term with \(\frac{1}{t} \) in the right-hand side of (2.3) can be removed.
Proof. Although this result is well-known, for the convenience of the reader, we briefly recall one of its possible proof and deduce the regularity estimate (2.3).

We first note that the uniqueness follows immediately from the variational inequality (2.2). Indeed, let \(u \) and \(v \) be two solutions of (1.1). Then, taking a sum of (2.2) for \(u(t) \) and \(v(t) \) with (2.2) for \(v(t) \) with \(z = u(t) \), we have

\[
(\partial_t u(t) - \partial_t v(t), u(t) - v(t)) + \|\nabla_x (u(t) - v(t))\|_{L^2}^2 \leq \lambda \|u(t) - v(t)\|_{L^2}^2.
\]

Denoting now \(w(t) := u(t) - v(t) \) we arrive at the differential inequality

\[
\frac{1}{2} \frac{d}{dt} \|w(t)\|_{L^2}^2 + \|\nabla_x w(t)\|_{L^2}^2 \leq \lambda \|w(t)\|_{L^2}^2.
\] (2.4)

Applying the Gronwall inequality and using that, by definition \(u, v \in C^0([0, T]; L^2) \) for any \(T > 0 \), we finally have

\[
\|w(t)\|_{L^2}^2 + \int_0^t \|w(s)\|_{H^1_0}^2 \, ds \leq C e^{\lambda s} \|w(0)\|_{L^2}^2,
\] (2.5)

where the constant \(C \) is independent of \(u \) and \(v \). Thus, the uniqueness holds.

The existence part is slightly more delicate and requires the approximations of the singular convex potential \(I_K \) by suitable regular ones \(F_\varepsilon \). In fact, thanks to the uniqueness result this approximation can be done in several ways. The typical choice is usually the Moreau-Yosida approximation (see [6]). However, in view of the next results (see in particular Proposition 2.5 and Theorems 4.1 and 4.6), it is more convenient to adopt another kind of approximation. To this end, we let \(M(u) \) be the distance from the point \(u \in \mathbb{R}^n \) to the convex set \(\mathcal{K} \), namely the real valued function

\[
M(u) := \text{dist}(u, \mathcal{K}).
\] (2.6)

Then, \(M \) is convex, globally Lipschitz continuous and smooth outside \(\mathcal{K} \). In addition there holds that

\[
M(u) \geq 0, \quad M(u) = 0, \text{ if } u \in \mathcal{K},
\] (2.7a)

\[
|\nabla M(u)| = 1, \text{ if } u \notin \mathcal{K}.
\] (2.7b)

Now for any \(\varepsilon > 0 \), we introduce the real function

\[
f_\varepsilon(z) := \begin{cases} 0, & z \leq \varepsilon, \\ \varepsilon^{-1}(z - \varepsilon)^2, & z \geq \varepsilon. \end{cases}
\] (2.8)

Finally, the desired approximation is defined a

\[
F_\varepsilon(u) := f_\varepsilon(M(u)).
\] (2.9)

Then, obviously, \(F_\varepsilon(u) \) is convex and smooth (at least \(C^{1,1} \)) and \(F_\varepsilon(u) = F'_\varepsilon(u) = 0 \) for all \(u \in \mathcal{K} \), where \(F'_\varepsilon \) denotes the gradient of \(F_\varepsilon \). We thus consider the following approximation of the problem (1.1):

\[
\begin{align*}
\partial_t u - \Delta_x u + F'_\varepsilon(u) &= \lambda u, \\
|u|_{\partial \Omega} &= 0, \quad |u|_{t=0} = u_0,
\end{align*}
\] (2.10)

where the initial data \(u_0 \in L^\infty(\Omega) \) and \(u_0(x) \in \mathcal{K} \) a.e. in \(\Omega \).
Our next step is to obtain a number of uniform (with respect to \(\varepsilon \to 0 \)) estimates for the solutions of the regular problems (2.10). We start with the usual \(L^2 \)-estimate. Indeed, multiplying equation (2.10) by \(u \), integrating over \(\Omega \) and using the obvious facts that

\[
\frac{1}{2} (F'_\varepsilon(u), u) - \lambda \|u\|_{L^2}^2 \geq -C, \quad (F'_\varepsilon(u), u) = (F'_\varepsilon(u) - F'_\varepsilon(0), u) \geq 0
\]

where the constant \(C \) depends only on \(\lambda \) and on \(\Omega \) but is independent of \(\varepsilon \setminus 0 \), we arrive at

\[
\frac{1}{2} \frac{d}{dt} \|u(t)\|_{L^2}^2 + \|\nabla u(t)\|_{L^2}^2 + \frac{1}{2}(F'_\varepsilon(u), u) \leq C.
\]

Applying the Gronwall inequality to this relation, we see that

\[
\|u(t)\|_{L^2}^2 + \int_t^{t+1} \|u(s)\|_{H^1_0}^2 + (F'_\varepsilon(u(s)), u(s)) \, ds \leq C.
\]

(2.11)

Here we have implicitly used that \(\mathcal{K} \) is bounded and, therefore, \(\|u_0\|_{L^2} \) is uniformly bounded for all admissible initial data \(u_0 \).

Next, we obtain the uniform energy estimate for the solutions of (2.10). To this end, we multiply the equation (2.10) by \(\partial_t u(t) \) and integrate over \(x \):

\[
\frac{d}{dt} \left(\|\nabla u(t)\|_{L^2}^2 + 2 (F(u(t)), 1) \right) + \|\partial_t u(t)\|_{L^2}^2 \leq \lambda \|u(t)\|_{L^2}^2.
\]

Integrating this estimate with respect to time, using (2.11) together with the obvious estimate

\[
0 \leq (F\varepsilon(u), 1) \leq (F'_\varepsilon(u), u)
\]

(which is an immediate consequence of the convexity of \(F\varepsilon \) and arguing in a standard way (see, e.g., [29]), we deduce the desired \(H^1 \)-energy estimate

\[
\|u(t)\|_{H^1_0}^2 + (F\varepsilon(u(t)), 1) + \int_t^{t+1} \|\partial_t u(s)\|_{L^2}^2 \, ds \leq C \left(\frac{t^2}{t+1} \right), \quad t > 0,
\]

(2.12)

where the constant \(C \) is independent of \(u_0 \) and \(\varepsilon \).

We are now ready to verify the analogue of (2.3) for the approximate solutions. We start with the estimate of \(\partial_t u(t) \). To this end, we differentiate (2.10) with respect to time and denote \(v(t) := \partial_t u(t) \). Then, we have

\[
\partial_t v - \Delta_x v + F''\varepsilon(u) v = \lambda \partial_t u.
\]

Multiplying this equation by \(v(t) \) integrating with respect to time, using (2.12) together with the monotonicity of \(F'_\varepsilon(u) \) and arguing in a standard way (see again [29] for details), we have

\[
\|\partial_t u(t)\|_{L^2}^2 \leq C \left(\frac{(1 + t)^2}{t^2} \right)
\]

(2.13)

for some constant \(C \) independent of \(u_0 \) and \(\varepsilon \).

Now, in order to obtain the \(H^2 \)-part of estimate (2.3), it is sufficient to rewrite equation (2.10) in the form of elliptic equation (for every fixed \(t \))

\[
\Delta_x u(t) - F'_\varepsilon(u(t)) = \partial_t u(t) - \lambda u(t), \quad u(t)|_{\partial\Omega} = 0,
\]

(2.14)
multiply it by $\Delta_x u(t)$, integrate over Ω and use the fact that, thanks to the convexity of F, the term $(F'_\varepsilon(u), -\Delta_x u)$ is nonnegative. Then, due to (2.13), (2.12) and the elliptic regularity result for the Laplacian (recall that the domain Ω is assumed to be smooth enough),

$$
\|u(t)\|_{H^2} \leq C \|\Delta_x u(t)\|_{L^2} \leq C(\|\partial_t u(t)\|_{L^2} + \lambda \|u(t)\|_{L^2}) \leq C't + \frac{1}{t}, \tag{2.15}
$$

where the constants C' and C are independent of ε and u_0. Furthermore, from equation (2.14), we now conclude that

$$
\|F'_\varepsilon(u(t))\|_{L^2} \leq C't + \frac{1}{t}.
$$

Finally, we are now ready to pass to the limit $\varepsilon \to 0$ in equations (2.10) and verify the existence of a solution u for the limit obstacle problem. Indeed, let $\varepsilon_n > 0$ be a sequence of positive numbers such that $\varepsilon_n \to 0$ as $n \to \infty$. Assume for the first that the initial data u_0 is smooth enough and verify the constraint, namely

$$
u_0 \in H^2 \cap H^1_0 \text{ and } u_0(x) \in \mathcal{K}, \quad \text{a.e. in } \Omega.
$$

Let $u_n(t) = u_{\varepsilon_n}(t)$ be the corresponding solution of the approximating problem (2.10). Then, analogously to the derivation of (2.9) for u_n, but using in addition that u_0 is regular, we have

$$
\|\partial_t u_n(t)\|_{L^2} + \|u_n(t)\|_{H^2} + \|F'_\varepsilon(u_n(t))\|_{L^2} + \|F_\varepsilon(u_n(t))\|_{L^1} \leq Q(||u_0\|_{H^2}), \tag{2.16}
$$

where the function Q is independent of n and $t \geq 0$. Thus, up to not relabeled subsequence, we have that u_n converges weakly star in

$$
X := L^\infty(0, T; H^2) \cap W^{1,\infty}(0, T; L^2)
$$

and strongly (thanks to [22, Cor. 4]) in $C^0([0, T]; H^1_0)$ to some function $u \in X \cap C^0([0, T]; H^1_0)$. So, we only need to check that u is a desired solution of (1.1) in the sense of Definition (2.1). Indeed, the regularity of u is obvious. The fact that $u(t, x) \in \mathcal{K}$ for almost $(t, x) \in [0, T] \times \Omega$ follows in a standard way from the uniform bounds for $F_{\varepsilon_n}(u_n(t))$ in the L^1-norm and from the fact that $F_{\varepsilon_n}(w) \to \infty$ for all $w \notin \mathcal{K}$. So, we only need to check the variational inequality (2.2). Let $z = z(x)$ be any admissible test function. Then, using the monotonicity of $F'_\varepsilon(u)$ and the fact that $F'_\varepsilon(v) = 0$ for all $v \in \mathcal{K}$, we see that

$$
(F'_\varepsilon(u(t)), u(t) - z) = (F'_\varepsilon(u(t)) - F'_\varepsilon(z), u - z) \geq 0.
$$

Multiplying now (2.10) by $u(t) - z$, integrating over Ω and using the last inequality, we arrive at

$$
\langle \partial_t u_n(t), u_n(t) - z \rangle + \langle \nabla_x u_n(t), \nabla_x (u_n(t) - z) \rangle \leq \lambda(u_n(t), u_n(t) - z).
$$

Passing to the limit $n \to \infty$ in this inequality and using the above convergences, we see that (2.2) holds for almost any t and all admissible test functions z. Thus, we have proved the existence of the desired solution u for the case of smooth initial data u_0.

For general initial data u_0, the corresponding solution can be now constructed by approximating the non-smooth initial data u_0 by smooth ones u_0^n and passing to the limit $n \to \infty$. To conclude, we finally recall that the continuity of the limit function near zero ($u \in C([0, T], L^2)$) follows from the global Lipschitz continuity (2.5)). Theorem 2.2 is proved.

Remark 2.3. The above proof reveals that the concrete form of the functionals $F_\varepsilon(u)$ is not essential for the proof of the existence result. In fact, the solutions u_ε of the approximating problems (2.10) will converge to the unique solution u of the obstacle problem if the following assumptions are satisfied:
1. The functions F_ε are convex and regular enough
2. $F'_\varepsilon \to \partial I_K$ as $\varepsilon \searrow 0$.

Where the last condition means that

\begin{itemize}
 \item[i)] $F'_\varepsilon(v) \to 0$, $\forall v \in \mathcal{K}$,
 \item[ii)] $|F'_\varepsilon(v)| \to +\infty$, $\forall v \notin \mathcal{K}$.
\end{itemize}

In other words, we only need the subdifferential $F'_\varepsilon(u)$ of F_ε to be an approximation, via graph convergence, of the subdifferential ∂I_K (see, e.g., [1, Proposition 3.60 and Theorem 3.66]). However, as we have already mentioned, the choice of suitable approximating functionals $F_\varepsilon(u)$ turns out to be crucial for our method of estimating the dimension of the global attractor. Thus we will construct this approximation in a rather specific way depending on the structure of the convex set \mathcal{K} (see, however, the next sections).

For the long time analysis it is actually more convenient to reformulate the variational inequality (2.2) in terms of an equation coupled with a differential inclusion for the subdifferential of the indicator function of K. Thus (see, e.g., [2.2] and the next Proposition 2.4). Thus, we introduce the function (named Lagrange multiplier in what follows)

$$h_u(t) := -\partial_t u(t) + \Delta_x u(t) + \lambda u, \quad h_u(t) \in \partial I_\mathcal{K}(u). \quad (2.17)$$

Then, due to Theorem 2.2, $h_u \in L^\infty(\tau, T; L^2)$, for any $\tau > 0$. Moreover, the definition of subdifferential (w.r.t. the L^2 scalar product) gives (2.2),

$$(h_u(t), u(t) - z) \geq 0, \text{ for almost all } t \in [0, T] \quad (2.18)$$

and any admissible test function $z = z(x)$. The last inequality can be also written in a point-wise form.

Proposition 2.4. Let the assumptions of Theorem 2.2 hold and let $h_u = h_u(t, x)$ be the Lagrange multiplier associated with the solution $u(t)$ of problem (1.1). Then

$$(h_u(t, x), u(t, x) - Z)_{\mathbb{R}^N} \geq 0, \forall Z \in \mathcal{K} \quad (2.19)$$

and almost all $(t, x) \in [0, T] \times \Omega$, which means

$$h_u(t, x) \in \partial I_\mathcal{K}(u(t, x)), \text{ a.e. in } [0, T] \times \Omega.$$

Proof. Indeed, arguing as in the proof of Theorem 2.2 we see that $h_u(t) := F'_\varepsilon(u_n(t)) \to h_u(t)$ weakly-star in the space $L^\infty(\tau, T; L^2)$, for any $\tau > 0$. Thus, it is sufficient to verify (2.19) for the functions $h_u(n)$ only. But these inequalities are immediate due to the monotonicity of F'_ε and the fact that $F'_\varepsilon(Z) = 0$ if $Z \notin \mathcal{K}$. Indeed,

$$(h_u(t, x), u_n(t, x) - Z)_{\mathbb{R}^N} = (F'_\varepsilon(u_n(t, x)) - F'_\varepsilon(Z), u_n(t, x) - Z)_{\mathbb{R}^N} \geq 0.$$

Passing to the limit $n \to \infty$ in that inequalities, we deduce (2.19) and finish the proof of the proposition.
Thus, the obstacle problem (1.1) can be rewritten in terms of functions u and h_u as follows:

$$
\begin{aligned}
&\partial_t u - \Delta_x u + h_u = \lambda u, \quad \text{in the sense of distributions}, \\
&h_u(t,x) \in \partial I_\mathcal{H}(u(t,x)), \quad \text{for almost all } (t,x) \in \mathbb{R}_+ \times \Omega, \\
&u|_{t=0} = u_0, \quad u|_{\partial \Omega} = 0.
\end{aligned}
$$

(2.20)

The next proposition shows that the function h_u is, in a fact, globally bounded in the L^∞-norm.

Proposition 2.5. Let the assumptions of Theorem 2.2 hold and let $h_u(t)$ be the Lagrange multiplier associated with the solution $u(t)$ of problem (1.1). Then, $h_u \in L^\infty(\mathbb{R}_+ \times \Omega)$ and

$$
||h_u(t)||_{L^\infty} \leq C,
$$

(2.21)

where the constant C depends only on \mathcal{H} and λ (and is independent of u and $t \geq 0$).

Proof. Thanks to the lower semicontinuity of norms with respect to the weak convergence, we will verify (2.21) only in the case in which h_u in equation (2.20) is replaced by its approximation $h_{u_n}(t) := F_{\varepsilon_n}(u_n(t))$. To this end, we test equation (2.10) in the scalar product of \mathbb{R}^n with $\nabla M(u)$ (where the function M is the same as in the proof of Theorem 2.2), and use that, due to the convexity of M,

$$
(-\Delta_x u, \nabla M(u))_{\mathbb{R}^n} = -\Delta_x (M(u)) + (H(M(u))\nabla_x u, \nabla_x u)_{\mathbb{R}^n} \geq -\Delta_x (M(u))
$$

where $H(M)$ denotes the Hessian matrix of M (actually, $H(M)(u)$ does not exist if $u \notin \mathcal{H}$, but the inequality still holds and can be easily verified, say, by approximating the non-smooth convex function M by the smooth convex ones). Then, we arrive at the differential inequality for the function $M(u)$

$$
\partial_t M(u) - \Delta_x M(u) + f'_{\varepsilon_n}(M(u)) \leq \lambda u, \nabla M(u), \quad M(u)|_{t=0} = 0,
$$

where we have implicitly used that $|\nabla M(u)|^2 = 1$ for $u \notin \mathcal{H}$ (see (2.11)). Furthermore, since $|u| \leq M(u) + C_\mathcal{H}$, where $C_\mathcal{H} := \text{diam}(\mathcal{H})$, we finally have

$$
\partial_t M(u) - \Delta_x M(u) + f'_{\varepsilon_n}(M(u)) \leq \lambda M(u) + \lambda C_\mathcal{H}, \quad M(u)|_{t=0} = 0.
$$

(2.22)

Applying the comparison principle to the scalar parabolic equation (2.22), we see that

$$
M(u(t,x)) \leq v_{\varepsilon_n}, \quad \text{for a.e. } (t,x) \in \mathbb{R}_+ \times \Omega,
$$

where the constant (w.r.t. x and t) $v_{\varepsilon_n} > 0$ is the solution of the following equation

$$
f'_{\varepsilon_n}(v_{\varepsilon_n}) = \lambda v_{\varepsilon_n} + \lambda C_\mathcal{H}.
$$

In addition, from (2.8), we see that $v_{\varepsilon} \to 0$ as $\varepsilon \to 0$ (i.e. $n \not\to +\infty$). For this reason

$$
f'_{\varepsilon_n}(M(u)) \leq f'_{\varepsilon_n}(v_{\varepsilon_n}) = \lambda v_{\varepsilon_n} + \lambda C_\mathcal{H} \leq C_\lambda.
$$

and, therefore,

$$
|h_{\varepsilon_n}(t)| = f'_{\varepsilon_n}(M(u_n(t)) \leq C_\lambda
$$

uniformly with respect to $n \not\to \infty$. Finally, passing to the limit $n \not\to \infty$, we arrive at (2.21) (with $C = \lambda \text{diam}(\mathcal{H})$) and finish the proof of the proposition. \square
Remark 2.6. In contrast to Theorem 2.2 and Proposition 2.4 which are based only on the energy type estimates which are valid for much more general equations, e.g., with non-scalar diffusion matrix, etc., the L^∞-estimate obtained in Proposition 2.5 is based on the maximum/comparison principle and requires the diffusion matrix to be scalar. In particular, we do not know whether or not this estimate remains true even for the case of diagonal, but non-scalar diffusion matrix.

As direct consequence of the previous Proposition, we have that (2.20) could be understood as the heat equation
\[\partial_t u - \Delta_x u = \lambda u - h_u \]
with the external forces belonging to L^∞. Thus, the parabolic interior regularity estimates give (see, e.g., [18])

Corollary 2.7. Let the assumptions of Theorem (2.2) hold and let $u(t)$ be a solution of problem (1.1). Then, for every $\nu > 0$, $u(t) \in C^{2-\nu}(\Omega)$ for $t > 0$ and the following estimate holds:
\[\|u(t)\|_{C^{2-\nu}(\Omega)} \leq C_\nu \frac{1 + t^{\alpha}}{t^{\nu}}, \] (2.23)
where the positive constants C_ν and α are independent of t and u. If, in addition, $u_0 \in C^{2-\nu} \cap H_0^1$, then (2.23) holds with $\alpha = 0$.

3 Global and exponential attractors

The aim of this section is to study the long-time behavior of solutions of problem (1.1) in terms of global and exponential attractors. We first recall that, due to Theorem 2.2, equation (1.1) generate a (dissipative) semigroup $\{S(t), t \geq 0\}$ in the phase space
\[\Phi = \Phi_{K} = \left\{ u \in L^\infty : u(x) \in K \text{ for almost all } x \in \Omega \right\}, \] (3.1)
i.e.,
\[S(t) : \Phi \to \Phi, \quad S(t)u_0 := u(t), \] (3.2)
where $u(t)$ is the solution to (1.1) at time t. Moreover, due to estimate (2.5) this semigroup is globally Lipschitz continuous in the L^2-metric
\[\|u_1(t) - u_2(t)\|_{L^2} + \|u_1(t) - u_2(t)\|_{H^1} ds \leq C \mu^t \|u_0^1 - u_0^2\|_{L^2}, \] (3.3)
where the positive constants C and μ are independent of t and of the initial data $u_0^1, u_0^2 \in \Phi$. In addition, due to Corollary 2.7 we have the following regularization estimate
\[\|\partial_t u(t)\|_{L^2} + \|u(t)\|_{C^{2-\nu}(\Omega)} \leq C_\nu \frac{1 + t^{\alpha}}{t^{\nu}}, \] (3.4)
where $\nu > 0$ is arbitrary and the positive constants C_ν and M are independent of the initial condition u_0 and of t. These two estimates immediately imply the existence of a global attractor A for the semigroup $S(t)$ associated with the obstacle problem (1.1). We recall that, by definition, a set $A \subset \Phi$ is a global attractor for the semigroup $S(t) : \Phi \to \Phi$ if

1. The set A is compact in Φ;
2. It is strictly invariant: \(S(t)A = A, \ t \geq 0 \);

3. For every neighborhood \(\mathcal{O} = \mathcal{O}(A) \) of \(A \) in \(\Phi \) there exists a time \(T = T(\mathcal{O}) \) such that
\[
S(t)\Phi \subset \mathcal{O}(A), \quad t \geq T.
\]

Remark 3.1. The attraction property (3.5) is usually formulated not for the whole phase space \(\Phi \), but for the bounded subsets of it only. In our case, however, the whole phase space \(\Phi \) is automatically bounded (since \(K \) is bounded in \(\mathbb{R}^n \)), so we need not to use bounded sets to define the attractor. Note also that the attraction property (3.5) can be reformulated as follows:
\[
\text{dist}_{L^\infty}(S(t)\Phi, A) \to 0 \quad \text{as} \quad t \to \infty,
\]
where \(\text{dist}_V(X, Y) := \sup_{x \in X} \inf_{y \in Y} d_V(x, y) \) is the non-symmetric Hausdorff distance between the subsets \(X \) and \(Y \) of the metric space \(V \).

Theorem 3.2. [Global Attractor] Under the assumptions of Theorem 2.2, the semigroup \(S(t) \) associated with the obstacle equation (1.1) possesses the global attractor \(A \) in \(\Phi \) which is bounded in \(C^{2-\nu}(\Omega) \) for every \(\nu > 0 \). This attractor is generated by all the trajectories of the semigroup \(S(t) \) defined for all \(t \in \mathbb{R} \):
\[
A = K \bigg|_{t=0},
\]
where \(K \subset L^\infty(\mathbb{R}, \Phi) \) is a set of all solutions of (1.1) defined for all \(t \in \mathbb{R} \).

Proof. The proof of this theorem is standard and well known (see, for instance [2], [28], or [17]). Indeed, due to estimate (3.4) the semigroup \(S(t) \) possesses an absorbing set which is bounded in \(C^{2-\nu}(\Omega) \) and, therefore, compact in \(L^\infty(\Omega) \) and estimate (3.3) guarantees that the semigroup has a closed graph. Thus, all assertions of the theorem follow from the abstract attractor existence criterium, see [2].

Recall that the semigroup \(S(t) \) associated with the obstacle problem (1.1) possesses a global Lyapunov function of the form
\[
\mathcal{L}(u) := \|\nabla_x u\|^2_{L^2} - \lambda \|u\|^2_{L^2}.
\]
Indeed, using the test function \(z = u(t-h) \) in the variational inequality (2.2), dividing it by \(h > 0 \) and passing to the limit \(h \to 0 \), we arrive at
\[
\|\partial_t u(t)\|^2_{L^2} + \frac{d}{dt} \mathcal{L}(u(t)) \leq 0.
\]
Therefore, according to the general theory (see e.g., [2]), every trajectory \(u(t) = S(t)u_0 \) tends as \(t \to \infty \) to the set \(\mathcal{R} \) of all equilibria of problem (1.1)
\[
\text{dist}(S(t)u_0, \mathcal{R}) \to 0, \quad t \to \infty.
\]
However, in contrast to the case of regular systems, the equilibra set \(\mathcal{R} \) is generically not discrete for the obstacle type singular problems. Thus, in our situation, the existence of a Lyapunov function does not allow to obtain the stabilization of every trajectory to a single equilibrium even in "generic" situation. In addition, the semigroup \(S(t) \) is not differentiable with respect to the initial data (it is in fact only globally Lipschitz continuous), so we are not able to construct the stable/unstable manifolds associated with an equilibrium. Thus, the so-called theory of regular attractors is not applicable to equations of the type (1.1). Moreover, due to the above
mentioned non-differentiability, the standard way of proving the finite-dimensionality of the global attractor based on the volume contraction method does not work here. So, the existence of the finite-dimensional reduction for the associated long time dynamics becomes a non-trivial problem which, to the best of our knowledge, it has not been yet tackled. In this paper we will prove that the global attractor for (1.1) has finite fractal dimension by using the concept of the so-called exponential attractor and the estimation of the dimension based on the proper chosen squeezing/smoothing property for the difference between two solutions. This method has the advantage that it does not require the differentiability with respect to the initial data. The existence of an exponential attractor is interest in itself. In fact, we recall once more that the global attractor represents the first (although extremely important) step in the understanding of the long-time dynamics of a given evolutive process. However, it may also present some severe drawbacks. Indeed, as simple examples show, the rate of convergence to the global attractor may be arbitrarily slow. This fact makes the global attractor very sensitive to perturbations and to numerical approximation. In addition, it is usually extremely difficult to estimate the rate of convergence to the global attractor and to express it in terms of the physical parameters of the system. In particular, it may even be reduced to a single point, thus failing in capturing the very rich and most interesting transient behavior of the system considered. The simplest example of such a system is the following 1D real Ginzburg-Landau equation

$$\partial_t u = \epsilon \partial_x^2 u + u - u^3, \quad x \in [0,1], \quad u\big|_{x=0} = u\big|_{x=1} = -1.$$

In that case, the global attractor $A = \{-1\}$ is trivial for all $\epsilon > 0$. However, this attractor is, factually, invisible and unreachable if ϵ is small enough since the transient structures (which are very far from the attractor) have an extremely large lifetime $T \sim \epsilon^{1/\sqrt{\pi}}$.

In order to overcome these drawbacks, the concept of exponential attractor has then been proposed in [8]) to possibly overcome this difficulty. We recall below the definition of an exponential attractor adopted for our case, see e.g., [8] and [23] for more detailed exposition.

Definition 3.3. A compact subset M of the phase space Φ is called an exponential attractor for the semigroup $S(t)$ if the following conditions are satisfied:

(E1) The set M is positively invariant, i.e., $S(t)M \subset M$ for all $t \geq 0$;
(E2) The fractal dimension (see, e.g., [21, 28]) of M in Φ is finite;
(E3) The set M attracts exponentially fast the image the phase space Φ. Namely, there exist $C, \beta > 0$ such that

$$\text{dist}_{L^\infty}(S(t)\Phi, M) \leq Ce^{-\beta t}, \quad \forall t \geq 0. \quad (3.9)$$

Thanks to the control of the convergence rate (E3) it follows that, compared to the global attractor, an exponential attractor is much more robust to perturbation (usually it is Hölder continuous with respect to the perturbation parameter, see Section 5 below). However, since the the exponential attractor M is only positively invariant (see (E1)), it is obviously not unique. Thus, the concrete choice of an exponential attractor and its explicit construction becomes essential. We recall also that, in the original paper [5] the construction was extremely implicit (involving the Zorn lemma) and this fact did not allow to develop a reasonable perturbation theory. This drawback has been overcome later in [9] and [10] where an alternative and relatively simple and explicit construction for the exponentially attractor has been suggested. Note also that the construction of [10] gives an exponential attractor which is automatically Hölder continuous with respect to the reasonable perturbations of the semigroup considered and this somehow resolves the non-uniqueness problem. We refer the reader to the recent survey [23] for the detailed informations on the exponential attractors theory.
The proof of the existence of an exponential attractor for our obstacle problem \[1.1\] will be organized as follows. First of all, we establish (in a quite standard way) the existence of an exponential attractor under a crucial additional (for this moment only) assumption on the differences of the Lagrange multiplies \(h_{u_1}\) and \(h_{u_2}\) of two different solutions \(u_1(t)\) and \(u_2(t)\) of \([1.1\)\]. This assumption is the core of the exponential attractor existence Theorem and it is the main result of the paper. The next section \([4\) will be dedicated to its proof in two different situations: the convex set \(\mathcal{K}\) is smooth, or the convex set is an \(n\)-dimensional simplex.

Assumption \(\mathcal{L}\): There exist a closed positively invariant absorbing set \(B_0 \subset \Phi\) for the semigroup \(S(t)\) such that, for every two solutions \(u_1\) and \(u_2\) of \([2.20\) starting from \(B_0\) (i.e., \(u_i(0) \in B_0\)), the corresponding Lagrange multipliers \(h_{u_1}\) and \(h_{u_2}\) satisfy the following estimates:

\[
\|h_{u_1} - h_{u_2}\|_{L^1([0,1] \times \Omega)} \leq C\|u_1(0) - u_2(0)\|_{L^2},
\]

where the constant \(C\) is independent of \(u_1\) and \(u_2\).

Under Assumption \(\mathcal{L}\), in the next Theorem we prove the existence of an exponential attractor (and thus the finite dimensionality of the global attractor).

Theorem 3.4. Let the assumption of Theorem \([2.2\) hold and let, in addition, the semigroup \(S(t)\) associated with equation \([1.1\) satisfy Assumption \(\mathcal{L}\). Then, \(S(t)\) possesses an exponential attractor \(M \subset \Phi\) in the sense of Definition \([3.3\). Moreover, \(M\) is a bounded subset of \(C^{2-\nu}\), for all \(\nu > 0\). Finally, the global attractor \(\mathcal{A}\) constructed in the Theorem \([3.2\) has finite fractal dimension.

Proof. Recall that, since \(B_0\) is a semi-invariant absorbing set for \(S(t)\), it is sufficient to verify the existence of the exponential attractor for the restriction of \(S(t)\) on \(B_0\) only. As usual, we first verify the existence of such attractor for the discrete semigroup generated by the map \(S = S(1)\) and then extend to the continuous time. To this end, we will use the following abstract exponential attractor existence theorem suggested in \([9\).

Lemma 3.5. Let \(\mathcal{H}\) and \(\mathcal{H}_1\) be two Banach spaces such that \(\mathcal{H}_1\) is compactly embedded to \(H\). Let \(B_0\) be a bounded closed subset of \(\mathcal{H}\) and a map

\[S : B_0 \rightarrow B_0\]

be such that

\[
\|Sb_1 - Sb_2\|_{\mathcal{H}_1} \leq K\|b_1 - b_2\|_{\mathcal{H}}, \hspace{1cm} b_1, b_2 \in B_0,
\]

where the constant \(K\) is independent of \(b_1\) and \(b_2\). Then, the discrete semigroup \(\{S(n), n \in \mathbb{N}\}\) generated on \(B_0\) by the iterations of the map \(S\) possesses an exponential attractor, i.e., there exists a compact set \(M_d \subset B_0\) such that

- (E1) \(M_d\) is positively invariant: \(S M_d \subset M_d\);
- (E2) The fractal dimension of \(M_d\) in \(\mathcal{H}\) is finite:

\[
\dim_f(M_d, \mathcal{H}) \leq M < \infty;
\]

and

- (E3) \(M_d\) attracts exponentially the images of \(B_0\) under the iterations of the map \(B_0\):

\[
\text{dist}_{\mathcal{H}}(S(n)B_0, M_d) \leq C e^{-kn}.
\]

Moreover, the positive constants \(M, C\) and \(k\) can be expressed explicitly in terms of the squeezing constant \(K\), the size of the set \(B_0\) and the entropy of the compact embedding \(\mathcal{H}_1 \subset \mathcal{H}\).
We will use the so-called method of "l-trajectories (introduced by Málek and Nečas in [19], see also [20] and [29]) in order to construct the proper spaces \mathcal{H} and \mathcal{H}_1 and to verify the assumptions of Lemma 3.5.

Namely, let us consider the trajectory space B_0 consisting of the pieces of trajectories of the solution semigroup $S(t)$ of length one starting from B_0:

$$B_0 := \{ u \in L^\infty([0, 1], \Phi), \ u(0) = u_0 \in B_0, \ \ u(t) = S(t)u_0, \ t \in [0, 1] \}. \tag{3.12}$$

Then, there is a one-to-one correspondence between B_0 and B_0 generated by the solution map

$$T : B_0 \to B_0, \ \ (Tu_0)(t) := S(t)u_0$$

and, therefore, we may lift the semigroup $S(t) : B_0 \to B_0$ to the conjugated semigroup $S(t)$ acting on the trajectory space B_0:

$$S(t) : B_0 \to B_0, \ \ S(t) := T \circ S(t) \circ T^{-1}. \tag{3.13}$$

We intend to apply Lemma 3.6 to the map $S = S(1)$ acting on the trajectory space B_0. To this end, we define the spaces \mathcal{H} and \mathcal{H}_1 as follows:

$$\mathcal{H} := L^2(0, 1; L^2), \ \ \mathcal{H}_1 := L^2(0, 1; H^s_0) \cap W^{1,1}(0, 1; H^{-s}), \tag{3.14}$$

where $s > \max\{1, N/2\}$ is a fixed exponent. Then, obviously, the embedding $\mathcal{H}_1 \subset \mathcal{H}$ is compact and we only need to check the smoothing property (3.11). To this end, we need (together with Assumption L and estimate (3.3)) the following additional regularization property of the semigroup $S(t)$.

Lemma 3.6. Let $u_1(t)$ and $u_2(t)$ be two solutions of problem (1.1). Then, the following estimate holds:

$$\|u_1(1) - u_2(1)\|_{L^2}^2 \leq (2\lambda + 1) \int_0^1 \|u_1(t) - u_2(t)\|_{L^2}^2 \, dt. \tag{3.15}$$

Indeed, multiplying the differential inequality (2.4) by u_i, integrating $t \in [0, 1]$, we arrive at (3.15).

We are now ready to verify the smoothing property (3.11).

Lemma 3.7. Let the assumptions of Theorem 2.2 hold and, in addition, Assumption L be satisfied. Then the following estimate holds for every two solutions $u_1(t)$ and $u_2(t)$ such that $u_i \in B_0, i = 1, 2$:

$$\|u_1 - u_2\|_{L^2(1, 2; H^s_0)} + \|\partial_t u_1 - \partial_t u_2\|_{L^1(1, 2; H^{-s})} \leq L\|u_1 - u_2\|_{L^2(0, 1; L^2)}, \tag{3.16}$$

where the constant L is independent of u_1 and u_2.

Proof. First of all we recall that, for $v \in L^1(1, 2; H^{-s})$,

$$\|v\|_{L^1(1, 2; H^{-s})} = \sup_{\varphi} \{ \int_1^2 \langle v, \varphi \rangle \, dr \},$$

where the sup is taken over the $\varphi \in L^\infty(1, 2; H^s_0)$ such that $\|\varphi\|_{L^\infty(1, 2; H^s_0)} = 1$ and the duality pairing is of course between H^{-s} and H^s_0. Consequently, there holds

$$\int_1^2 \|\partial_t u_1(t) - \partial_t u_2(t)\|_{H^{-s}} \, dt \leq \int_1^2 \|u_1(t) - u_2(t)\|_{H^s_0} \, dt + \int_1^2 \|h_{u_1}(t) - h_{u_2}(t)\|_{L^1} \, dt + \lambda \int_1^2 \|u_1(t) - u_2(t)\|_{L^2} \, dt.$$
(here we have implicitly used that \(s > \max\{1, N/2\} \) which implies that \(H^s_0 \subset L^\infty \)). Using now Assumption \(\mathcal{L} \), together with the global Lipschitz continuity \((3.3) \), we have
\[
\|u_1 - u_2\|_{L^2(1, 2; H^s_0)} + \|\partial_t u_1 - \partial_t u_2\|_{L^1(1, 2; H^{-s})} \leq C\|u_1(1) - u_2(1)\|_{L^2}.
\]
Combining this estimate with \((3.15) \), we arrive at \((3.16) \) and finish the proof of the lemma.

We are now ready to finish the proof of Theorem 3.4. Indeed, we have verified that the map \(S := S(n), n \in \mathbb{N} \) possesses an exponential attractor \(\mathcal{M}_d \) in the trajectory space \(\mathcal{B}_0 \) endowed with the topology of \(\mathcal{H} = L^2(0, 1; L^2) \). Projecting it back to the phase space \(\mathcal{B}_0 \subset \Phi \) via \(\mathcal{M}_d \) and using estimate \((3.15) \), we see that \(\mathcal{M}_d \) is indeed the exponential attractor for the discrete semigroup \(\{S(n), n \in \mathbb{Z}\} \) acting on \(\mathcal{B}_0 \) endowed with the topology of \(L^2 \). In addition, we see that
\[
\mathcal{M}_d \subset S(1)\mathcal{B}_0 \subset S(1)\Phi \quad (3.18)
\]
which implies that \(\|\partial_t u(t)\|_{L^2} \leq C \) for every trajectory \(u(t) \) starting from \(\mathcal{M}_d \) (due to estimate \((2.23) \)). Thus, thanks to \((3.3) \), the map \((t, u_0) \rightarrow S(t)u_0 \) is globally Lipschitz continuous on \([0, 1] \times \mathcal{M}_d \) (in the \(\mathbb{R} \times L^2(\Omega) \)-metric). Thus, the desired exponential attractor for the solution semigroup \(S(t) \) with continuous time can be now constructed by the following standard expression (see [8] for the details):
\[
\mathcal{M} := \bigcup_{t \in [0, 1]} \mathcal{M}_d.
\]
Note that, up to now, we have verified that \(\mathcal{M} \) has the finite fractal dimension and possesses the exponential attraction property in the topology of \(L^2 \) only. In order to verify that these properties actually hold in the \(L^\infty \)-topology of the phase space \(\Phi \), we use (in a standard way) the additional regularity of \(\mathcal{M} \) and a proper interpolation inequality. Indeed, by our construction, \(\mathcal{M} \subset S(1)\Phi \) and, therefore, due to estimate \((2.23) \), \(\mathcal{M} \) is globally bounded in \(C^{2-\nu} \). Using now the following interpolation inequality
\[
\|u - v\|_{L^\infty} \leq C_\nu\|u - v\|_{L^\infty} \|u - v\|_{C^{2-\nu}}^{1-\kappa}, 0 < \kappa < 1, \quad (3.19)
\]
we see that the dimension of \(\mathcal{M} \) is finite not only in \(L^2 \), but also in \(L^\infty \) and that the attraction property holds in \(L^\infty \) as well. Thus, the desired exponential attractor \(\mathcal{M} \) in the phase space \(\Phi \) is constructed and Theorem 3.4 is proved.

Remark 3.8. Note once more that the method of proving the conditional result of Theorem 3.4 (which is more or less standard variation of the \(l \)-trajectories method) is widely used nowadays in the exponential attractors theory, see e.g., [23] and the references therein. Thus, the major difficulty here (and the major novelty of the paper) is related with the verification of the Assumption \(\mathcal{L} \) for the solution semigroup \(S(t) \) associated with the obstacle problem \((1.1) \).

4 Estimates on the difference of the Lagrange multipliers and verification of Assumption \(\mathcal{L} \)

The aim of this section is to verify the Assumption \(\mathcal{L} \) under some additional assumptions on the structure of the convex set \(\mathcal{K} \). We start with the case in which \(\mathcal{K} \) has a smooth boundary.
4.1 The case of regular \mathcal{K}.

The main result of this subsection is the following Theorem.

Theorem 4.1. Let the assumptions of Theorem 2.2 hold and let, in addition, the boundary $S = \partial \mathcal{K}$ be smooth enough (at least, $C^{2,1}$). Then, the solution semigroup $S(t)$ associated with equation (1.1) satisfies Assumption \mathcal{L}.

Proof. The proof is based on an argument that combines a proper choice of an approximation scheme and the maximum principle similar to the one devised to prove Proposition 2.5. However, since the function $M(u) = \text{dist}(u, \mathcal{K})$ used to define F_ε in the existence Theorem 2.2 is not smooth enough near the boundary, we should introduce another approximation of the singular potential. The smooth correction of M is given by the following Lemma.

Lemma 4.2. Let \mathcal{K} be a bounded convex set with the $C^{2,1}$-smooth boundary S. Then, there exists a function $M: \mathbb{R}^n \to \mathbb{R}$ with the following properties:

\begin{align}
M & \in C^{2,1}(\mathbb{R}^n); \tag{4.1a} \\
M & \text{ is convex}; \tag{4.1b} \\
S & = \partial \mathcal{K} = \{ z \in \mathbb{R}^n \text{ such that } M(z) = 0 \}; \tag{4.1c} \\
|\nabla M(z)| & = \theta(M(z)), \tag{4.1d}
\end{align}

where $\theta = \theta(z)$ is a monotone increasing function which is smooth near $z = 0$ and such that $\theta(0) \neq 0$.

Proof. The function M can be constructed as follows. First of all, for any $\delta > 0$, we introduce the following set:

$$S_{-\delta} := \left\{ z_0 \in \mathring{K} : \text{dist}(z_0, S) = \delta \right\}. \tag{4.2}$$

Then, we consider the subset $\mathcal{K}_{-\delta} \subset \mathcal{K}$ whose boundary is $S_{-\delta}$. It turns out that, being \mathcal{K} convex, the domain $\mathcal{K}_{-\delta}$ is convex too. Moreover, by possibly taking δ small, the boundary $S_{-\delta}$ has the same regularity of S. The candidate for M is thus the function

$$M(z) := \text{dist}(z, \mathcal{K}_{-\delta})^3 - \delta^3. \tag{4.3}$$

In fact, M is clearly convex and regular. Moreover, by choosing $\theta = \theta(w) = 3(w + \delta^3)^{2/3}$ and using the identity

$$|\nabla (\text{dist}(z, \mathcal{K}_{-\delta}))| = 1,$$

one sees that the condition (4.1d) is satisfied.

Finally, by possibly taking a small δ, the smoothness of the boundary S entails the validity of (4.1d). Note also that M has the additional property of qualifying the fact that $v \in \mathcal{K}$, namely it turns out that $v \in \mathcal{K}$ if and only if $-\delta^3 \leq M(v) \leq 0$.

Now, we introduce the approximations $F_\varepsilon(u)$ of the indicator function $I_{\mathcal{K}}$ as in (2.9) using the above defined function M. Let now $u(t)$ and $v(t)$ be two solutions of the singular equation (2.20) with initial conditions

$$u_0, v_0 \in C^{2-\nu} \cap H_0^1,$$

with sufficiently small positive ν (actually, $\nu = 1$ is sufficient for what follows). Then, let $u_\varepsilon(t)$ and $v_\varepsilon(t)$ be their approximations, namely the solutions of the approximate problems (2.10).
such that estimate (3.10) in the limit \(\epsilon \rightarrow 0 \) with a sufficiently large radius \(Q \) weakly star in \(L^\infty \) with initial data \(u_0 \) for this new approximation entailing the validity of the following two estimates
\[
\|u_\varepsilon(t)\|_{C^2,\nu} + \|v_\varepsilon(t)\|_{C^2,\nu} \leq Q(\|u_0\|_{C^2,\nu} + \|v_0\|_{C^2,\nu}), \quad t \geq 0,
\]
and
\[
\|F'_\varepsilon(u_\varepsilon(t))\|_{L^\infty} + \|F'_\varepsilon(v_\varepsilon(t))\|_{L^\infty} \leq C,
\]
where the monotone function \(Q \) and the constant \(C \) are both independent of \(\varepsilon \). Thus, up to not relabeled subsequence,
\[
h_{u_\varepsilon} := F'_\varepsilon(u_\varepsilon) \rightarrow h_u, \quad h_{v_\varepsilon} := F'_\varepsilon(v_\varepsilon) \rightarrow h_v
\]
weakly star in \(L^\infty([0,T] \times \Omega) \). Thus, in order to prove the theorem, we only need to verify that
\[
\|F'_\varepsilon(u_\varepsilon) - F'_\varepsilon(v_\varepsilon)\|_{L^1([0,1] \times \Omega)} \leq Q(\|u_0\|_{C^2,\nu} + \|v_0\|_{C^2,\nu})\|u_0 - v_0\|_{L^2}
\]
with the function \(Q \) not depending on \(\varepsilon \) and then by semicontinuity we obtain the desired estimate \((4.10)\) in the limit \(\varepsilon \rightarrow 0 \). This estimate will hold for every two trajectories \(u \) and \(v \) such that \(u_0 \) and \(v_0 \) are bounded in \(C^2,\nu \). In order to construct the desired positively invariant absorbing set \(B_0 \), it is sufficient to take a ball
\[
B := \{ u \in C^{2-\nu/2} \cap H^1 \cap \Phi, \quad \| u \|_{C^{2-\nu}} \leq R \}
\]
with a sufficiently large radius \(R \). Then, thanks to Corollary \((2.7)\) \(B \) will be an absorbing set for the semigroup \(S(t) \) associated with equation \((1.1)\) and, therefore, the closure \(B_1 := [B]_\Phi \) of the set \(B \) in the topology of \(\Phi \) will be a bounded in \(C^2,\nu \) and closed in \(\Phi \) absorbing set for the semigroup \(S(t) \). Applying Corollary \((2.7)\) again, we see that the set
\[
B_0 := \bigcup_{t \geq 0} B_t
\]
will be the desired positively invariant, closed in \(\Phi \) and bounded in \(C^2,\nu(\Omega) \) absorbing set for semigroup \(S(t) \) and estimate \((4.7)\) will guarantee that \((3.11)\) will hold uniformly with respect to all trajectories starting from \(B_0 \).

Thus, it only remains to verify the uniform estimate \((4.6)\). The first step is, roughly speaking, to reduce \((1.1)\) to an equation with scalar constraint (actually to an approximation of). This is done using the function \(M \) as we did in \((2.22)\). Indeed, testing equation \((2.10)\) in the scalar product \((\cdot, \cdot)_{\mathbb{R}^n} \) of \(\mathbb{R}^n \) with \(\nabla M(u) \) and using the condition \((4.10)\), we obtain
\[
\partial_t(M(u_\varepsilon)) - \Delta(M(u_\varepsilon)) + F'_\varepsilon(M(u_\varepsilon)) + D(u_\varepsilon) = 0,
\]
with \(F'_\varepsilon(z) := f'_\varepsilon(z)\theta^2(z) \) and
\[
D(u) := \sum_{i=1}^{N} \sum_{j,k=1}^{n} M''_{j,k}(u)\partial_{x_i}u_j\partial_{x_i}u_k - \lambda \sum_{j} M'_j(u)u_j,
\]
where \(\{M_{j,k}\}_{j,k=1}^{n} \) denotes the entries of the Hessian matrix \(\mathcal{H}(M) \) of the function \(M \) (and the analogous equation holds for \(v_\varepsilon \)). Let now \(w_\varepsilon := M(u_\varepsilon) - M(v_\varepsilon) \). Then
\[
\partial_t w_\varepsilon - \Delta w_\varepsilon + [F'_\varepsilon(M(u_\varepsilon)) - F'_\varepsilon(M(v_\varepsilon))] + [D(u_\varepsilon) - D(v_\varepsilon)] = 0.
\]
We now multiply this equation by $\text{sgn } w_\varepsilon$ and integrate over Ω obtaining

$$
\frac{d}{dt} \|u_\varepsilon - v_\varepsilon\|_{L^1} + \|F'_\varepsilon(M(u_\varepsilon)) - F'_\varepsilon(M(v_\varepsilon))\|_{L^1} = - \int_\Omega (D(u_\varepsilon) - D(v_\varepsilon)) \text{sgn } w_\varepsilon \, dx =: R,
$$

(4.11)

where we have used the monotonicity of $F'_\varepsilon(z)$ (recall in particular that $\partial(z) = (z + \delta^1)^{2/3}$) and the Kato inequality. To estimate the term with R we start to rewrite it in the more explicit form

$$
R = \sum_{i=1}^N \int_\Omega ((H(M(u_\varepsilon))) - (H(M(v_\varepsilon)))\partial_{x_i}, u_\varepsilon, \partial_{x_i}, u_\varepsilon)_{\mathbb{R}^n} \text{sgn}(w_\varepsilon) \, dx
$$

$$+ \sum_{i=1}^N \int_\Omega (H(M(v_\varepsilon)))\partial_{x_i}, u_\varepsilon - \partial_{x_i}, v_\varepsilon), \partial_{x_i}, u_\varepsilon)_{\mathbb{R}^n} \text{sgn}(w_\varepsilon) \, dx
$$

$$+ \sum_{i=1}^N \int_\Omega (H(M(v_\varepsilon)))\partial_{x_i}, u_\varepsilon - \partial_{x_i}, v_\varepsilon), \partial_{x_i}, v_\varepsilon)_{\mathbb{R}^n} \text{sgn}(w_\varepsilon) \, dx
$$

$$+ \lambda \int_\Omega (\nabla M(u_\varepsilon), u_\varepsilon)_{\mathbb{R}^n} \text{sgn}(w_\varepsilon) \, dx - \lambda \int_\Omega (\nabla M(v_\varepsilon), v_\varepsilon)_{\mathbb{R}^n} \text{sgn}(w_\varepsilon) \, dx.
$$

(4.12)

Thus, thanks to the assumed $C^{2,1}$ regularity on the function M (which follows from the smoothness of the boundary of \mathcal{K}) and the C^1-regularity of u_ε and v_ε which follows from [4.4], it is not difficult to realize that

$$
\|R(t)\|_{L^1(\Omega)} \leq C\|u_\varepsilon(t) - v_\varepsilon(t)\|_{H^1} \text{ for any } t \geq 0,
$$

(4.13)

where the constant C depends on the C^1-norms of u_0 and v_0, but is independent of $\varepsilon > 0$.

Integrating the differential inequality \([1.11]\) with respect to $t \in [0, 1]$ and using \([4.13]\) and the analog of \([3.3]\) for the solutions u_ε and v_ε of the approximate problems \([2.14]\), we arrive at (recall also that $u_\varepsilon(0) = u_0$ and $v_\varepsilon(0) = v_0$)

$$
\int_0^1 \|F'_\varepsilon(M(u_\varepsilon)) - F'_\varepsilon(M(v_\varepsilon))\|_{L^1} \, dt \leq \|u_0 - v_0\|_{L^1} + \int_0^1 R(t) \, dt
$$

$$\leq \|u_0(0) - v_0(0)\|_{L^1} + C \int_0^1 \|u_\varepsilon(t) - v_\varepsilon(t)\|_{H^1} \, dt
$$

$$\leq C_1 \|u_0 - v_0\|_{L^2},
$$

(4.14)

where the constants C and C_1 depend on the C^1-norms of $u(0)$ and $v(0)$, but are independent of ε.

The next step is to estimate the difference $f'_\varepsilon(M(u_\varepsilon)) - f'_\varepsilon(M(v_\varepsilon))$ in terms of the difference of $F'(M(u_\varepsilon))$ and $F'_\varepsilon(M(v_\varepsilon))$. To this end, we note that $f'_\varepsilon(z) \equiv 0$ if $z \leq 0$, so, without loss of generality, we may assume that, say, $M(u_\varepsilon) \geq 0$. Then, if $M(v_\varepsilon) \leq 0$

$$
|f'_\varepsilon(M(u_\varepsilon)) - f'_\varepsilon(M(v_\varepsilon))| = f'_\varepsilon(M(u_\varepsilon)) = \theta^{-2}(M(u_\varepsilon))F'_\varepsilon(M(u_\varepsilon))
$$

$$\leq \theta^{-2}(0)F'_\varepsilon(M(u_\varepsilon)) = C|F'_\varepsilon(M(u_\varepsilon)) - F'_\varepsilon(v_\varepsilon)|.
$$

(4.15)
Let now $M(v_ε) ≥ 0$. Then,

$$|F'_ε(M(u_ε)) - F'_ε(M(v_ε))| = |F'_ε(M(u_ε))θ^{-2}(M(u_ε)) - F'_ε(M(v_ε))θ^{-2}(M(v_ε))|$$

$$≤ θ^{-2}(M(u_ε)) · |F'_ε(M(u_ε)) - F'_ε(M(v_ε))| + |F'_ε(M(v_ε))θ^{-2}(M(u_ε)) - θ^{-2}(M(v_ε))|$$

$$≤ θ^{-2}(0)|F'_ε(M(u_ε)) - F'_ε(M(v_ε))| + ∥F'_ε(u_ε)∥_{L_∞}θ^{-3}(0)∥θ^2(M(u_ε)) - θ^2(M(v_ε))∥$$

$$≤ C(∥F'_ε(M(u_ε)) - F'_ε(M(v_ε))∥ + |u_ε - v_ε|),$$

(4.16)

where the constant C is independent of $ε$ (here we have implicitly used that the $L_∞$-norms of $F'_ε(u_ε)$ are uniformly bounded, thanks to (4.5)). Thus, due to (4.14), (4.16) and (4.15)

$$∫_0^1 ∥f'_ε(M(u_ε(t))) - f'_ε(M(v_ε(t)))∥_{L_1} dt ≤ C∥u_ε(0) - v_ε(0)∥_{L_2}.$$

Finally, since M is at least C^2,

$$∥F'_ε(u_ε) - F'_ε(v_ε)∥_{L_1} = ∥f'_ε(M(u_ε))M'(u_ε) - f'_ε(M(v_ε))M'(v_ε)∥_{L_1}$$

$$≤ ∥M'(u_ε)∥_{L_∞}∥f'_ε(M(u_ε)) - f'_ε(M(v_ε))∥_{L_1} + ∥f'_ε(M(u_ε))∥_{L_∞}∥M'(u_ε) - M'(v_ε)∥_{L_1}$$

$$≤ C(∥f'_ε(M(u_ε)) - f'_ε(M(v_ε))∥_{L_1} + ∥u_ε - v_ε∥_{L_1})$$

and

$$∫_0^1 ∥F'_ε(M(u_ε(t))) - F'(M(v_ε(t)))∥_{L_1} dt ≤ C∥u_ε(0) - v_ε(0)∥_{L_2}.$$

Thus, estimate (4.6) is verified and Theorem 4.1 is proved.

Corollary 4.3. Let the assumptions of Theorem 4.2 hold and let boundary $S = ∂Ω$ be of class $C^{2,1}$. Then, the semigroup $S(t)$ associated with the obstacle problem (1.1) possesses an exponential attractor M in the sense of Definition 3.3 in the phase space $Φ$. Moreover, the global attractor has finite fractal dimension.

Indeed, this assertion is an immediate corollary of Theorems 3.4 and 4.1

4.2 The case of an irregular convex $Ω$: the simplex (1.3).

As we saw in the former section, the the smoothness of the boundary $S = ∂Ω$ seems crucial for the method of verifying Assumption $ζ$ suggested in the proof of Theorem 4.2. First of all, the $C^{2,1}$ smoothness of M is necessary in order to obtain estimate (4.13). Secondly, the fact that $θ(0) ≠ 0$ in (4.12a), which is crucial to obtain estimates (4.16) and (4.15) implies that $∇M(z) ≠ 0$ for all $z ∈ S$. Thus, by the implicit function theorem, the boundary S also must be at least $C^{2,1}$-smooth. However, from the possible applications to phase transition problems, one of the most important examples for the set $Ω$ is the n-dimensional simplex, namely the set

$$Ω := \{ p = (p_1, \ldots, p_n) ∈ R^n \text{ such that } ∑_{i=1}^n p_i ≤ 1, \ p_i ≥ 0, \ i = 1, \ldots, n \}$$

(4.18)

which is a polyhedron and its boundary is only piece-wise smooth. Thus, Theorem 4.1 is not directly applicable here. Nevertheless, as we will show below, Assumption $ζ$ remains valid for the non-regular case (4.18). Again, the verification of Assumption $ζ$ will rely on an
approximation argument and, to this purpose, we will consider a slightly different approximation for the indicator function I_K, namely, let us introduce

$$F_\varepsilon(u) := f_\varepsilon(\sum_{i=1}^n u_i - 1) + \sum_{i=1}^n f_\varepsilon(-u_i),$$

(4.19)

where the function f_ε is defined by (2.8). Obviously, $F_\varepsilon(u)$ is convex and satisfies the conditions of Remark 2.3. Therefore, we can indeed use it for approximating the singular problem (1.1). Consequently, all of the estimates and convergences obtained in the proof of Theorem 2.2 hold for this new approximation.

On the other hand, an inspection in the proof of the L^∞ estimate in Proposition 2.5 reveals that one of keys point was the structure of the approximations. It is also evident that the new defined approximation for the simplex is structurally different from the approximation introduced before; thus the L^∞ bound of Proposition 2.5 need a different proof. In particular, having in mind also the study of the approximation of the exponential attractor (see the next section), we formulate the analogue of Proposition 2.5 in a slightly stronger form by indicating also the invariant regions at the ε-level. Thus, the global bound result on the Lagrange multipliers takes this form

Theorem 4.4. Let $\varepsilon > 0$ be small enough and let the function $F_\varepsilon(u)$ be defined by (4.19). Then, there exists a positive constant p (independent of ε) such that the set

$$\mathcal{K}_\varepsilon := \{ u \in \mathbb{R}^n, \ F_\varepsilon(u) \leq p\varepsilon \}$$

(4.20)

is an invariant region for the solution semigroup $S_\varepsilon(t)$ of the approximate problems (2.10), namely

$$S_\varepsilon(t) : \Phi_\varepsilon \rightarrow \Phi_\varepsilon, \ t \geq 0,$$

(4.21)

where

$$\Phi_\varepsilon := \{ u \in L^\infty(\Omega), \ u(x) \in \mathcal{K}_\varepsilon \ for \ almost \ all \ x \in \Omega \}.$$

(4.22)

Finally, the approximations $h_{u_\varepsilon}(t) := F_\varepsilon'(u_\varepsilon(t))$ (where $u_\varepsilon(t) := S_\varepsilon(t)u_0, u_0 \in \Phi_\varepsilon$) are uniformly bounded in the L^∞-norm:

$$\|h_{u_\varepsilon}(t)\|_{L^\infty(\Omega)} \leq C$$

(4.23)

where the constant C is independent of ε and of the concrete choice of $u_0 \in \Phi_\varepsilon$.

Proof. First of all, we need the following Lemma which clarifies the relations between $|F_\varepsilon'(u)|$ and $F_\varepsilon(u)$.

Lemma 4.5. Let the function F_ε be defined by (4.19) and the function $f_\varepsilon(z)$ be given by (2.8). Then, there exist two positive constants κ_1 and κ_2 (independent of ε) such that

$$\frac{\kappa_2}{\varepsilon} F_\varepsilon(u) \leq |F_\varepsilon'(u)|^2 \leq \frac{\kappa_1}{\varepsilon} F_\varepsilon(u)$$

(4.24)

for all $\varepsilon > 0$ and all $u \in \mathbb{R}^n$.

Proof. Indeed, let $f'_\varepsilon := -f'_\varepsilon(-u_i)$ and $f'_0 := f'_\varepsilon(\sum_{i=1}^n u_i - 1)$. Then,

$$|F_\varepsilon'(u)|^2 = \sum_{i=1}^n (f'_\varepsilon + f'_0)^2 = n|f'_0|^2 + \sum_{i=1}^n |f'_i|^2 + 2(f'_0 \sum_{i=1}^n f'_i).$$

(4.25)
Let us consider two cases:

Case I: \(f'_n = f'_c(\sum u_i - 1) = 0 \). Then, \(4.25 \) simply reads as

\[
|F'_c(u)|^2 = \sum_{i=1}^n |f'_i|^2 = \sum_{i=0}^n |f'_i|^2.
\]

Case II: \(f'_n = f'_c(\sum u_i - 1) \neq 0 \). Then, keeping in mind the definition of the function \(f_c \), we conclude that at least one of \(u_i, \ i = 1, \cdots, n \) (say, \(u_n \) for definiteness) must be positive and, therefore, without loss of generality, we may assume that \(u_n > 0 \) and, consequently, \(f'_n = -f'_c(-u_n) = 0 \). Then, using the elementary inequality \(ab \geq -\frac{1}{2}(a^2 + b^2), \alpha > 0 \), we arrive at

\[
n|f'_0|^2 + \sum_{i=1}^{n-1} |f'_i|^2 + f'_0 f'_i \geq (n - \alpha(n-1))|f'_0|^2 + (1 - \alpha^{-1})\sum_{i=1}^{n-1} |f'_i|^2.
\]

Choosing the positive \(\alpha = \alpha(n) \) in an optimal way as a solution of the equation

\[
1 - \alpha^{-1} = n(1 - \alpha) + \alpha,
\]

we see that, in the second case

\[
|F'_c(u)|^2 \geq \theta(n) \sum_{i=0}^n |f'_i|^2
\]

with \(\theta(n) := \frac{n+1-\sqrt{(n+1)^2-4}}{4} > 0 \). Thus, in both cases

\[
|F'_c(u)|^2 \geq \theta(n) \sum_{i=0}^n |f'_i|^2 = \theta(n) \left(|f'_0|^2 + \sum_{i=1}^n |f'_i|^2\right).
\]

Since the upper bound is obvious, we arrive at the following inequality

\[
\theta(n) \left(\sum_{i=1}^n |f'_c(-u_i)|^2 + |f'_c(\sum u_i - 1)|^2\right) \leq |F'_c(u)|^2 \leq \sum_{i=1}^n |f'_c(-u_i)|^2 + |f'_c(\sum u_i - 1)|^2.
\]

(4.26)

It only remains to note that, due to our choice \(2.25 \) of the function \(f_c \),

\[
|f'_c(z)|^2 = \frac{4}{\varepsilon} f_c(z)
\]

and, consequently, \(4.26 \) implies \(4.23 \) and finishes the proof of the Lemma. \qed

With the help of Lemma 4.15, it is now not difficult to complete the proof of Theorem 4.4. Indeed, testing equation \(2.10 \) in the scalar product of \(\mathbb{R}^n \) with \(F'_c(u) \) and using that \(F''_c(u) \geq 0 \), we have (compare with \(2.22 \))

\[
\partial_t F_c(u) - \Delta_x(F_c(u)) + |F'_c(u)|^2 \leq \lambda(u, F'_c(u)) u_n.
\]

Using now Lemma 4.16 together with the obvious fact that

\[
|u| \leq F_c(u) + C,
\]

21
where C is independent of $\varepsilon \to 0$, we arrive at the differential inequality for the scalar function $V(t) := F_\varepsilon(u(t))$:

$$\partial_t V - \Delta_x V + \left(\frac{\kappa_2}{2\varepsilon} - \lambda^2\right)V \leq C_1, \quad V|_{\partial \Omega} = 0,$$

(4.27)

where the positive constants C_1 and κ are independent of ε and the concrete choice of the solution u. Applying the comparison principle for the heat equations to (4.27), we see that the region $\{u, V(u) \leq p_\varepsilon\}$ will be invariant if

$$p_\varepsilon \geq \frac{C_1}{2\varepsilon - \lambda^2} = \frac{2C_1\varepsilon}{\kappa_2 - \lambda^2\varepsilon}.$$

Thus, taking $p := \frac{2C_1\varepsilon}{\kappa_2 - \lambda^2\varepsilon}$, we see that the region \mathcal{K}_ε defined by (4.20) will be indeed invariant with respect to the semi-flow $S_\varepsilon(t)$ if $\varepsilon > 0$ is small enough. Thus, we only need to check estimate (4.29). To this end, it remains to observe that, due to Lemma 4.5

$$|F'_\varepsilon(u(t))|^2 \leq \frac{\kappa_1}{\varepsilon} F_\varepsilon(u(t)) \leq \frac{\kappa_1}{\varepsilon} \cdot p_\varepsilon = \kappa_1 p.$$

Theorem 4.4 is proved. \hfill \blacksquare

We are now ready to formulate the main result of this subsection.

Theorem 4.6. Let the assumptions of Theorem 4.4 hold and $\varepsilon > 0$ be small enough. Then, for any two solutions $u_\varepsilon(t) := S_\varepsilon(t)u_0$ and $v_\varepsilon(t) := S_\varepsilon(t)v_0$ of the approximate problems (2.10) starting from $\Phi_\varepsilon (u_0, v_0 \in \Phi_\varepsilon)$, the associated Lagrange multipliers $h_{u_\varepsilon}(t) := F'_\varepsilon(u_\varepsilon(t))$ and $h_{v_\varepsilon}(t) := F'_\varepsilon(v_\varepsilon(t))$ satisfy the following estimate:

$$\int_0^1 \|h_{u_\varepsilon}(t) - h_{v_\varepsilon}(t)\|_{L^1(\Omega)} dt \leq L\|u_0 - v_0\|_{L^2(\Omega)},$$

(4.28)

where the constant L is independent of ε, u_0 and v_0. In particular, the limit semigroup $S(t)$ associated with the obstacle problem (1.1) satisfies Assumption \mathcal{L} with $B_0 := \Phi$.

Proof. In order to simplify the notations we forget for a while the ε dependence and will write $u(t) := S_\varepsilon(t)u_0$ and $v(t) := S_\varepsilon(t)v_0$. Then, the function $w(t) := u(t) - v(t)$ solves

$$\partial_t w_i - \Delta_x w_i + [f'_\varepsilon(-v_i) - f'_\varepsilon(-u_i)] + [f'_\varepsilon(\sum_{i=1}^n u_i - 1) - f'_\varepsilon(\sum_{i=1}^n v_i - 1)] = \lambda w_i, \quad i = 1, \ldots, n. \quad (4.29)$$

Multiply now the ith equation of (4.29) by $\text{sgn } w_i$ and integrate over Ω. Then, taking the sum over i and using the Kato inequality, we arrive at

$$\partial_t \|w\|_{L^1} - \lambda \|w\|_{L^1} + \sum_{i=1}^n \|f'_\varepsilon(-u_i) - f'_\varepsilon(-v_i)\|_{L^1} \leq - \left(\|f'_\varepsilon(\sum_{i=1}^n u_i - 1) - f'_\varepsilon(\sum_{i=1}^n v_i - 1)\|_{L^1} \right) \sum_{i=1}^n \text{sgn } w_i.)$$

(4.30)

Let us estimate the right-hand side of this inequality. To this end, we first note that

$$|\sum_{i=1}^n \text{sgn } w_i| \leq n.$$
In addition, in the worst case where the equality holds, all \(w_i \) are of the same sign. Therefore, at that point the term \(f'_\varepsilon(\sum_{i=1}^{n} u_i - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i - 1) \) will also have the same sign and its product with \(\sum_{i=1}^{n} \text{sgn} \, w_i \) will be non-negative. Thus,

\[
- [f'_\varepsilon(\sum_{i=1}^{n} u_i - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i - 1)] \cdot \sum_{i=1}^{n} \text{sgn} \, w_i \leq (n - 1)[f'_\varepsilon(\sum_{i=1}^{n} u_i - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i - 1)]
\]

and

\[
\partial_t \| w \|_{L^1} + \sum_{i=1}^{n} \| f'_\varepsilon(-u_i) - f'_\varepsilon(-v_i) \|_{L^1} \leq \lambda \| w \|_{L^1} + (n - 1)\| f'_\varepsilon(\sum_{i=1}^{n} u_i - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i - 1) \|_{L^1}.
\] (4.31)

Next, in order to estimate the right-hand side of (4.31), we sum all the equations (4.29) and multiply the obtained relation by \(\text{sgn}(\sum_{i=1}^{n} u_i - \sum_{i=1}^{n} v_i) \). Then, using again the Kato inequality, we have

\[
\partial_t \| \sum_{i=1}^{n} w_i \|_{L^1} + n\| f'_\varepsilon(\sum_{i=1}^{n} u_i - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i - 1) \|_{L^1} \leq \lambda \| \sum_{i=1}^{n} w_i \|_{L^1} + n\| f'_\varepsilon(-u_i) - f'_\varepsilon(-v_i) \|_{L^1}.
\] (4.32)

Multiplying inequality (4.32) by \(\frac{n}{n+1} \) and summing it to inequality (4.31), we finally arrive at

\[
\partial_t \left(\| w \|_{L^1} + \frac{n}{n+1} \| \sum_{i=1}^{n} w_i \|_{L^1} \right)
+ \frac{1}{n+1} \left(\| f'_\varepsilon(\sum_{i=1}^{n} u_i - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i - 1) \|_{L^1} + \sum_{i=1}^{n} \| f'_\varepsilon(-u_i) - f'_\varepsilon(-v_i) \|_{L^1} \right)
\leq \lambda \left(\| w \|_{L^1} + \frac{n}{n+1} \| \sum_{i=1}^{n} w_i \|_{L^1} \right).
\] (4.33)

Applying the Gronwall inequality to this relation, we infer

\[
\int_{0}^{1} \| f'_\varepsilon(\sum_{i=1}^{n} u_i(t) - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i(t) - 1) \|_{L^1} + \sum_{i=1}^{n} \| f'_\varepsilon(-u_i(t)) - f'_\varepsilon(-v_i(t)) \|_{L^1}, dt
\leq (n + 1)e^{\lambda} \left(\| w(0) \|_{L^1} + \frac{n}{n+1} \| \sum_{i=1}^{n} w_i(0) \|_{L^1} \right) \leq C \| u(0) - v(0) \|_{L^2}
\] (4.34)

which together with the obvious inequality

\[
\| h_{u_i} - h_{v_i} \|_{L^1} \leq C \left(\| f'_\varepsilon(\sum_{i=1}^{n} u_i - 1) - f'_\varepsilon(\sum_{i=1}^{n} v_i - 1) \|_{L^1} + \sum_{i=1}^{n} \| f'_\varepsilon(-u_i) - f'_\varepsilon(-v_i) \|_{L^1} \right)
\]

finishes the proof of estimate (4.28). Passing now to the limit \(\varepsilon \to 0 \) in that estimate (analogously to the proof of Theorem 4.1), we see that the limit semigroup \(S(t) \) generated by the obstacle problem \(F \) satisfies indeed Assumption \(\mathcal{A} \) with \(B_0 := \Phi \). Theorem 4.0 is proved.
Corollary 4.7. Let the assumptions of Theorem 2.2 hold and let the set \mathcal{K} be an n-dimensional simplex (4.18). Then, the semigroup $S(t)$ associated with the obstacle problem (1.1) possesses an exponential attractor \mathcal{M} in the sense of Definition 3.3. Moreover, the global attractor A has finite fractal dimension.

Indeed, this assertion is an immediate corollary of Theorems 3.4 and 4.6.

4.3 Some generalizations

We now discuss the applications of our method to more general problems. We start with the obvious observation that all the above results remain valid if we replace the term λu in the left-hand side of equation (1.1) by any sufficiently regular interaction function $g(u, x)$. Namely, consider the problem

$$\partial_t u - \Delta_x u + \partial I_K(u) + g(x, u) \ni 0,$$

where $g \in C(\Omega, C^1(\mathbb{R}^n, \mathbb{R}^n))$ is an arbitrary interaction function. Then, the following result holds.

Theorem 4.8. Let \mathcal{K} be a convex bounded set of \mathbb{R}^n containing zero with a smooth boundary (or let \mathcal{K} be an n-dimensional simplex (1.18)) and let $g \in C(\Omega, C^1(\mathbb{R}^n, \mathbb{R}^n))$ be an arbitrary (not necessarily a gradient!) non-linear interaction function. Then, the solution semigroup $S(t)$ associated with equation (4.35) possesses an exponential attractor \mathcal{M} in the sense of Definition 3.3. Moreover, the fractal dimension of the global attractor is finite.

Indeed, since \mathcal{K} is bounded, the solution u is also automatically bounded in L^∞ (and the same will be true for the solutions u_ε of the approximate problems (2.10) if $\varepsilon > 0$ is small enough no matter how the regular interaction function g looks like). So, the term $g(u, x)$ can be treated as a perturbation and the proof of Theorem 4.8 repeats word by word the given proof for the particular case $g(u, x) := -\lambda u$.

Remark 4.9. The function $g(x, u)$ may even depend explicitly on the gradient $\nabla_x u$, namely $g = g(x, u, \nabla_x u)$. However, in that case we already need to impose some restrictions on the growth of g with respect to $\nabla_x u$ (since the obstacle potential controls only the L^∞-norm of a solution and the control of its $W^{1, \infty}$-norm should be then additionally obtained). In particular, if g does not grow with respect to $\nabla_x u$, i.e.,

$$|g(x, u, \nabla_x u)| \leq Q(|u|)$$

for some monotone function Q independent of x and $\nabla_x u$, the proof of Theorem 4.8 still repeats word by word the case of $g(u) = -\lambda u$. However, our conjecture here is that the result remains true under the standard sub-quadratic growth restriction

$$|g(x, u, \nabla_x u)| \leq Q(|u|)(1 + |\nabla_x u|^q)$$

with $q < 2$.

Remark 4.10. As we have already pointed out, our method of estimating the Lagrange multipliers is strongly based on the maximum principle for the leading linear part of equation (1.1). For this reason, we are unable in general to extend it to the case of non-scalar diffusion matrix. However, we point out that for some particular convexes Assumption L can be verified also for diffusion matrices (say diagonal). This is the case of the convex

$$\mathcal{K} := [0, L]^n, \quad L > 0.$$
In this case, Assumption L can be easily verified (just multiplying the kth equation of (2.10) by $\text{sgn}(u_k^1 - u_k^2)$ even in the case of diagonal diffusion matrix

$$\partial_t u - a \Delta_x u + \partial I_K(u) - \lambda u \ni 0, \quad (4.36)$$

with $a = \text{diag}(a_1, \cdots, a_k)$, $a_i > 0$ for $i = 1, \cdots, n$.

One more generalization can be obtained replacing the Laplacian $\Delta_x u$ in equations (1.1) by the quasi-linear second order differential operator

$$A(u) := \text{div}(a(|u|^2)\nabla u), \quad u = (u_1, \cdots, u_n), \quad |u|^2 := u_1^2 + \cdots + u_n^2$$

with some natural assumptions on the scalar diffusion function a. Then, it is not difficult to verify that the proofs of Assumption L given above remain true and the associated solution semigroup possesses an exponential attractor under the assumptions of Theorem 4.8.

5 Approximations of exponential attractors: the case of a simplex

The aim of this section is to show that the exponential attractor M of the singular problem (1.1) can be approximated by the sequence of exponential attractors M_ε of the regular equations (2.10). For simplicity, we consider below only the case in which \mathcal{X} is an n-dimensional simplex (the case of an arbitrary bounded convex set with smooth boundary can be considered analogously). To be more precise, the main result of this section is the following Theorem.

Theorem 5.1. Let the assumptions of Theorem 4.4 hold. Then, for any sufficiently small $\varepsilon \geq 0$, there exists an exponential attractor M_ε for the semigroup $S_\varepsilon(t): \Phi \rightarrow \Phi$ associated with the approximation problem (2.10) (and the case $\varepsilon = 0$ corresponds to the semigroup $S_0(t): \Phi \rightarrow \Phi$ associated with the limit singular problem (1.1)). Moreover, the following conditions hold:

- The exponential attractors M_ε are uniformly bounded in $C^{2-\nu}$ for any $\nu > 0$.
- $S_\varepsilon(t)M_\varepsilon \subset M_\varepsilon$ and the rate of convergence is uniform with respect to $\varepsilon \to 0$:
 $$\text{dist}_{L^\infty}(S_\varepsilon(t)\Phi_\varepsilon, M_\varepsilon) \leq Ce^{-\alpha t}, \quad \varepsilon \geq 0, \quad (5.1)$$
 where the positive constants C and α are independent of ε.
- The fractal dimension also remains bounded as $\varepsilon \to 0$:
 $$\dim_f(M_\varepsilon, L^\infty) \leq C < \infty, \quad (5.2)$$
 where C is independent of ε.
- The family M_ε is Hölder continuous at $\varepsilon = 0$:
 $$\text{dist}^{\text{sym}}_{L^\infty}(M_\varepsilon, M_0) \leq C\varepsilon^\kappa, \quad (5.3)$$
 where the positive constants C and κ are independent of ε and dist^{sym} stands for the symmetric Hausdorff distance between sets.
Proof. The proof of this Theorem is based on the following abstract result taken from [14] (see also [10]).

Proposition 5.2. Let \mathcal{H} and \mathcal{H}_1 be two Banach spaces such that \mathcal{H}_1 is compactly embedded in \mathcal{H} and let, for any $\varepsilon > 0$ there exists a bounded closed set $B_\varepsilon \subset \mathcal{H}$, a map $S_\varepsilon : B_\varepsilon \to B_\varepsilon$ and two (nonlinear) projectors $\Pi_\varepsilon : B_\varepsilon \to B_0$ and $Q_\varepsilon : B_0 \to B_\varepsilon$ such that the following properties hold:

1) Uniform smoothing property: for every $h_1, h_2 \in B_\varepsilon$,
 \[||S_\varepsilon h_1 - S_\varepsilon h_2||_{\mathcal{H}_1} \leq L ||h_1 - h_2||_{\mathcal{H}}, \tag{5.4} \]
 where $L > 0$ is independent of $\varepsilon \geq 0$ and $h_1, h_2 \in B_\varepsilon$.

2) The maps S_ε and S_0 are close in the following sense:
 \[
 \begin{align*}
 &||S_\varepsilon \circ Q_\varepsilon h - S_0 h||_{\mathcal{H}} \leq C_\varepsilon, \quad \forall h \in B_0, \\
 &||S_0 \circ \Pi_\varepsilon h - S_\varepsilon h||_{\mathcal{H}} \leq C_\varepsilon, \quad \forall h \in B_\varepsilon,
 \end{align*}
 \tag{5.5}
 \]
 where the constant C is independent of ε and h.

Then, the discrete semigroups $S_\varepsilon(n)$ generated by the maps S_ε possess a uniform family of exponential attractors $\mathcal{M}_\varepsilon \subset B_\varepsilon$ such that the following properties hold:

1) Uniform rate of attraction:
 \[\text{dist}_{\mathcal{H}}(S_\varepsilon(n)B_\varepsilon, \mathcal{M}_\varepsilon) \leq C e^{-\alpha n} \]
 for some positive C and α independent of ε.

2) Uniform bounds for the fractal dimension:
 \[\dim_f(\mathcal{M}_\varepsilon, \mathcal{H}) \leq C, \]
 where C is independent of ε.

3) Hölder continuity at $\varepsilon = 0$:
 \[\text{dist}_{\mathcal{H}}^{\text{sym}}(\mathcal{M}_\varepsilon, \mathcal{M}_0) \leq C \varepsilon^{\kappa} \]
 for some positive C and κ independent of ε.

We can now prove Theorem 5.1 by combining (as we did in the proof of Theorem 3.4) the Proposition above with the ℓ trajectory approach. Namely, we define the spaces \mathcal{H} and \mathcal{H}_1 by (3.14) and introduce the trajectory phase spaces

\[B_\varepsilon := \{ u \in \mathcal{H}_1, \quad u(t) = S_\varepsilon(t)u_0, \quad t \in [0, 1], \quad u_0 \in \Phi_\varepsilon \} \tag{5.9} \]

and, using the lifting solution operator
\[T_\varepsilon : \Phi_\varepsilon \to B_\varepsilon, \quad (T_\varepsilon u_0)(t) := S_\varepsilon(t)u_0, \]
we lift the solution semigroup $S_\varepsilon(t)$ to the trajectory phase space B_ε:
\[S_\varepsilon(t) := T_\varepsilon \circ S_\varepsilon(t) \circ T_\varepsilon^{-1}, \quad S_\varepsilon(t) : B_\varepsilon \to B_\varepsilon \]
and set, finally, $S_\varepsilon := S_\varepsilon(1)$.

Let us verify the assumptions of the abstract proposition for the maps thus defined. To this end, we note that, thanks to Theorem 4.6, we have the uniform estimate for
the approximations to the Lagrange multipliers \(h_{u_1} - h_{u_2} \) associated with two trajectories \(u^*_i := S_{\varepsilon}(t)u^*_i, i = 1, 2 \). Therefore, arguing exactly as in the proof of Lemma 5.4, we conclude that
\[
\|u^*_1 - u^*_2\|_{L^2(1,2;H^1_0)} + \|\nabla u^*_1 - \nabla u^*_2\|_{L^1(1,2;H^{-1})} \leq L\|u^*_1 - u^*_2\|_{L^2(0,1;L^2)} \tag{5.10}
\]
for some positive \(L \) which is independent of \(\varepsilon \) and \(u^*_i, i = 1, 2 \). Thus, assumption (5.4) is verified.

In order to verify (5.5), we first fix an arbitrary interior point \(u_0 \in \mathbb{R}^n \) of \(K_0 := K \) and introduce the linear contraction map \(\tilde{E}_\varepsilon : K_\varepsilon \to K \) (where \(K_\varepsilon \) is defined by (4.20)) by the following expression:
\[
\tilde{E}_\varepsilon(u) := \frac{1}{1 + r\varepsilon}u - \frac{1}{1 + r\varepsilon}u_0, \tag{5.11}
\]
where \(r \) is a sufficiently large (but independent of \(\varepsilon \)) positive constant. Indeed, it is not difficult to see using the explicit expression for the set \(K_\varepsilon \) and for the function \(F_\varepsilon \), that \(\tilde{E}_\varepsilon(K_\varepsilon) \subset K_0 \) if \(r > 0 \) is large enough. Finally, we define the map \(E_\varepsilon : \Phi_\varepsilon \to \Phi \) as follows
\[
E_\varepsilon(u)(x) := \varphi_\varepsilon(x)\tilde{E}_\varepsilon(u(x)),
\]
where the cut-off function \(\varphi_\varepsilon(x) \in C^1(\mathbb{R}^N) \) is such that \(0 \leq \varphi_\varepsilon(x) \leq 1, \varphi_\varepsilon(x) = 0 \) if \(x \in \partial \Omega \) and \(\varphi_\varepsilon(x) = 0 \) if \(\text{dist}(x, \partial \Omega) > \varepsilon \). Then, obviously,
\[
\| (1 - E_\varepsilon)v \|_{L^2} \leq C\varepsilon \|v\|_{L^2}, \quad \forall v \in \Phi_\varepsilon \tag{5.12}
\]
and for some positive \(C \) independent of \(\varepsilon \) and \(v \).

We now need the following crucial lemma.

Lemma 5.3. Let the assumptions of Theorem 5.1 and let \(E_\varepsilon \) be defined by (5.11). Then, for every \(u^*_i \in \Phi_\varepsilon \) and every \(u_0 \in K_0 \), the following estimate holds:
\[
\|S_\varepsilon(t)u^*_0 - S_\varepsilon(t)u_0\|_{L^2} \leq C(\varepsilon^{1/2} + \|u_0 - u^*_0\|_{L^2})e^{Kt}, \tag{5.13}
\]
where the positive constants \(C \) and \(K \) are independent of \(\varepsilon \), \(u^*_0 \in \Phi_\varepsilon \) and \(u_0 \in \Phi \).

Proof. Let \(\bar{u}(t) := S_\varepsilon(t)u_0, u_\varepsilon(t) := S_\varepsilon(t)u^*_0 \) and \(v_\varepsilon(t) := E_\varepsilon(u_\varepsilon(t)) \). Then, since \(v_\varepsilon(t, x) \in K \) for all \(t \geq 0 \), it is an admissible test function for the variational inequality (5.2). Therefore,
\[
(\partial_t \bar{u}(t), \bar{u}(t) - v_\varepsilon(t)) + (\nabla_x \bar{u}(t), \nabla_x \bar{u}(t) - \nabla_x v_\varepsilon(t)) \leq \lambda(\bar{u}(t), \bar{u}(t) - v_\varepsilon(t)) \tag{5.14}
\]
for almost all \(t > 0 \). Introducing the function \(w_\varepsilon(t) := u_\varepsilon(t) - v_\varepsilon(t) = (1 - E_\varepsilon)u_\varepsilon(t) \) and (5.12), we have
\[
(\partial_t \bar{u}(t), \bar{u}(t) - u_\varepsilon(t)) + (\nabla_x \bar{u}(t), \nabla_x \bar{u}(t) - \nabla_x u_\varepsilon(t)) - \lambda(\bar{u}(t), u_\varepsilon(t) - u_\varepsilon(t)) = \\
= (\partial_t \bar{u}(t), \bar{u}(t) - v_\varepsilon(t)) + (\nabla_x \bar{u}(t), \nabla_x \bar{u}(t) - \nabla_x v_\varepsilon(t)) - \lambda(\bar{u}(t), \bar{u}(t) - v_\varepsilon(t)) + \\
+ (\partial_t \bar{u}(t), u_\varepsilon(t) - v_\varepsilon(t)) - (\Delta_x \bar{u}(t), u_\varepsilon(t) - v_\varepsilon(t)) - \lambda(\bar{u}(t), u_\varepsilon(t) - v_\varepsilon(t)) \leq \\
\leq -(h_{u_\varepsilon}(t), w_\varepsilon(t)) \leq C\varepsilon, \tag{5.15}
\]
where we have implicitly used that the Lagrange multiplier \(h_{\bar{u}}(t) \) associated with the solution \(\bar{u}(t) \) of the singular problem (2.20) is uniformly bounded (see Proposition 2.5). Moreover,
multiplying equation (2.10) by \(u_\varepsilon(t) - \bar{u}(t) \), integrating over \(x \in \Omega \) and using the monotonicity of \(F_\varepsilon \) and the fact that \(F_\varepsilon(\bar{u}(t)) \equiv 0 \), we arrive at

\[
(\partial_t u_\varepsilon(t), u_\varepsilon(t) - \bar{u}(t)) + (\nabla_x u_\varepsilon(t), \nabla_x u_\varepsilon(t) - \nabla_x \bar{u}(t)) - \lambda(u_\varepsilon(t), u_\varepsilon(t) - \bar{u}(t)) \leq 0
\]

which holds for almost all \(t \geq 0 \). Taking a sum of (5.15) and (5.16), we finally have

\[
\frac{1}{2} \frac{d}{dt} \|u_\varepsilon(t) - \bar{u}(t)\|_{L^2}^2 + \|\nabla_x u_\varepsilon(t) - \nabla_x \bar{u}(t)\|_{L^2}^2 - \lambda \|u_\varepsilon(t) - \bar{u}(t)\|_{L^2}^2 \leq C \varepsilon
\]

which, together with the Gronwall inequality, gives (5.13) and finishes the proof of the Lemma.

It is now not difficult to finish the proof of the Theorem. To this end, we set \(\Pi \equiv \Pi_\varepsilon \) and (5.12) that the projectors \(\Pi_\varepsilon \) and \(Q_\varepsilon \) satisfy estimates (5.5). Thus, all of the assumptions of the abstract Proposition 5.2 are verified and, consequently, the discrete semigroups \(S_\varepsilon(n) \) acting on the trajectory phase spaces \(B_\varepsilon \) possess the uniform family of exponential attractors \(\mathcal{M}_\varepsilon \) which satisfies conditions (5.9), (5.7), and (5.8) of Proposition 5.2.

The rest of the proof can be made exactly as in Theorem 3.4. Indeed, arguing as in Lemma 3.6 we see that

\[
\|u_\varepsilon(1) - u^2(1)\|_{L^2}^2 \leq (2\lambda + 1) \int_0^1 \|u_\varepsilon(t) - u^2(t)\|_{L^2}^2 dt
\]

for any two solutions \(u_\varepsilon \) and \(u^2 \) of the approximation problems (5.1). In addition, multiplying (5.17) by \(t \) and integrating over \(t \in [0,1] \), we see that

\[
\|u_\varepsilon(t) - \bar{u}(t)\|_{L^2}^2 \leq (2\lambda + 1) \int_0^1 \|u_\varepsilon(t) - \bar{u}(t)\|_{L^2}^2 dt.
\]

Thus, projecting the constructed exponential attractors \(\mathcal{M}_\varepsilon \) back to the physical phase spaces \(\Phi_\varepsilon \) by

\[
\mathcal{M}_\varepsilon := \mathcal{M}_\varepsilon |_{t=1},
\]

we obtain the uniform family of exponential attractors for the discrete semigroups \(S_\varepsilon(n) : \Phi_\varepsilon \to \Phi_\varepsilon \) which satisfy (5.11), (5.2) and (3.8) in a weaker space \(L^2 \) instead of \(L^\infty \). In addition, we have also that

\[
\mathcal{M}_\varepsilon \subset S_\varepsilon(1)\Phi_\varepsilon
\]

and, therefore, due to estimate (1.23) and to Corollary 2.7, these attractors are uniformly bounded in \(C^{2-\nu}(\Omega) \) for all \(\nu > 0 \) and the maps \((t, u_0) \to S_\varepsilon(t)u_0 \) are uniformly Lipschitz continuous on \([0,1] \times \mathcal{M}_\varepsilon \) (with the Lipschitz constant independent of \(\varepsilon \) as well). Thus, the standard formula

\[
\mathcal{M}_\varepsilon := \cup_{t\in[0,1]} S_\varepsilon(t)\mathcal{M}_\varepsilon^t
\]

gives the desired uniform family of exponential attractors for the semigroups \(S_\varepsilon(t) : \Phi_\varepsilon \to \Phi_\varepsilon \) with continuous time. This family of exponential attractors satisfies (5.1), (5.2) and (5.3) in a weaker topology of \(L^2(\Omega) \) instead of \(L^\infty(\Omega) \) but, using the fact that \(\mathcal{M}_\varepsilon \) are uniformly bounded in \(C^{2-\nu}(\Omega) \) together with the interpolation inequality (3.19), we see that (5.1), (5.2) and (5.3) hold in the initial topology of \(L^\infty \) as well. Theorem 5.1 is thus completely proved.
Remark 5.4. It is not difficult to show that, under the assumptions of Theorem 5.1, the solution semigroups $S_\varepsilon(t)$ are actually defined not only on the space Φ_ε, but in much larger phase spaces, namely, on L^2. Moreover, arguing analogously to the proof of Theorem 4.4, one can see that the set Φ_ε is an absorbing set for the semigroup $S_\varepsilon(t)$. This means that, for every bounded $B \subset L^2(\Omega)$ there exists $T = T(\|B\|)$ (independent of ε) such that

$$S_\varepsilon(t)B \subset \Phi_\varepsilon, \quad t \geq T.$$

Thus, the constructed exponential attractors M_ε attract (uniformly with respect to ε) the bounded sets of $L^2(\Omega)$ as well.

Finally, one may even extend the solution semigroup $S(t)$ associated with the obstacle equation (1.1) on the whole space L^2 as well. To this end, we just need to pass to the limit $\varepsilon \to 0$ in the solutions of the approximate problems (2.10). It is not difficult to show that the associated solution $u(t) := S(t)u_0$ will belong to Φ for every $t > 0$ and, in the case $u_0 \notin \Phi$, it will have a jump at $t = 0$ and the L^2-limit

$$\overline{u}_0 := \lim_{t \to 0^+} u(t) \in \Phi$$

will exist. Thus, we factually have

$$u(t) = S(t)u_0 = S(t)\Pi_\Phi(u_0),$$

where $\Pi_\Phi : L^2(\Omega) \to \Phi$ is a non-linear ”projector” to the set Φ.

However, in contrast to the semigroup $S(t) : \Phi \to \Phi$ which is uniquely defined by the singular equation (1.1), the above non-linear ”projector” Π_Φ essentially depends on the particular choice of the approximation of the obstacle potential and, therefore, is not canonically defined by the problem (1.1) itself. For this reason, we have preferred not to use such projectors in our paper and to define the solution $u(t)$ for the initial data $u(0) \in \Phi$ only.

References

