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Abstract

A conservation law is said to be degenerate or critical if the Jacobian of the flux
vector evaluated on a constant state has a zero eigenvalue. In this paper, it is proved
that a degenerate conservation law with dissipation will generate dynamics on a
long time scale that resembles Burger’s dynamics. The case of k-fold degeneracy
is also treated, and it is shown that it leads to a reduction to a quadratically coupled
k-fold system of Burgers-type equations. Validity of the reduction and existence
for the reduced system is proved in the class of uniformly local spaces, thereby
capturing both finite and infinite energy solutions. The theory is applied to some
examples, from stratified shallow-water hydrodynamics, that model the birth of
hydraulic jumps.

1. Introduction

Consider a conservation law with dissipative regularization in one unbounded
space dimension,

Ut + F(U)x = DUxx , x ∈ R, U ∈ R
n, (1.1)

where U is the state variable, F : R
n → R

n is the flux vector which is assumed to
be smooth and D is a constant n × n matrix satisfying

D + DT > 0. (1.2)

Let U0 ∈ R
n be any constant vector. Then clearly U0 is a solution of (1.1). These

solutions are sometimes called uniform states in applications, and they form an
n-parameter family of solutions. A particular constant solution U0 := p ∈ R

n is
said to be critical if DF(p), the Jacobian of the flux vector, is singular

det[DF(p)] = 0. (1.3)
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The flux vector is assumed to be hyperbolic at criticality: DF(p) has only real
eigenvalues and is diagonalizable. The set of all p ∈ R

n satisfying (1.3) defines,
generically, a hypersurface in R

n . This hypersurface is called the criticality sur-
face. In compressible fluid flow criticality corresponds to the case where the Mach
number of a constant flow is unity, and in shallow water hydrodynamics, criticality
corresponds to the case where the Froude number of the uniform flow is unity.

The purpose of this paper is to investigate the nonlinear problem when the
system is near critical. It is found that the dynamics splits into a part governed by
the Burgers equation, or a system of Burgers-type equations, and a part which is
enslaved to the Burgers dynamics.

The Burgers equation has been used as a simplified model for compressible
flow (for example Chapter 4 of Whitham [29]), it has been widely used as model
equation in acoustics (for example Crighton [10]), and it is a model for metasta-
bility (for example Beck and Wayne [4]). Two coupled Burgers equations arise as
a model for polydispersive sedimentation (for example Esipov [14]).

Here, we are interested in showing that the Burgers equation or a coupled
Burgers equation emerges as a universal model from a larger set of PDEs. Burger’s
equation has been shown to be a universal model equation in other contexts: in the
complex Ginzburg-Landau equation (Bernoff [6]), for channel flow governed by
the Navier–Stokes equations (Hewitt and Hall [18]) and for phase dynamics in
reaction–diffusion equations (Doelman et al. [11]). In all three cases, a single
Burgers equation is generated by modulation of spatially periodic waves. In the
case of Doelman et al. [11], a rigorous validity proof of the reduction to the
Burgers equation is given.

The emergence of Burger’s equation in this paper is due to a different mech-
anism. The Burgers dynamics is generated by the geometry of the flux vector,
evaluated on spatially uniform states, and the basic state is not modulated.

The dimension of the reduced system of Burgers-type equations is dependent
on the rank deficiency of DF(p). We will treat in detail the two most interesting
cases, where DF(p) has a simple zero eigenvalue, in which case a single Burgers
equation governs the dynamics, and secondly when DF(p) has a double semisimple
zero eigenvalue in which case a coupled pair of Burgers equations governs the
dynamics.

The basic idea of the formal reduction to the Burgers equation can be seen by
considering the simplified case when D = νI, for some positive constant ν, and
DF(p) has a simple zero eigenvalue with right and left eigenvectors

DF(p)ξ = 0 and ηT DF(p) = 0, 〈η, ξ 〉 = 1. (1.4)

Here and throughout 〈·, ·〉 is the standard inner product on R
n . Let ε be a measure

of the distance between a constant state U0 and a point p on the criticality surface.
Express U(x, t) as a perturbation from the point p

U(x, t, ε) = p + εu(x, t, ε)ξ + ε2V(x, t, ε) with 〈η, V〉 = 0.
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Substitution into (1.1) splits it into two equations:

ut + 1

ε
〈η, F(p + εuξ + ε2V)〉x = νuxx

Vt + 1

ε2

(
PF(p + εuξ + ε2V)

)
x = νVxx ,

(1.5)

where P is a projection onto the complement of the kernel of DF(p). The second
term in the first equation simplifies to

1

ε
〈η, F(p + εuξ + ε2V)〉x = ε〈η, D2F(p)(ξ , ξ)〉uux + O(ε2),

using (1.4), reducing the first equation to a Burgers equation to leading order

ut + εκuux = νuxx + · · · , (1.6)

with

κ = d2

ds2

∣∣
∣∣
s=0

〈η, F(p + sξ)〉. (1.7)

By introducing the scaling

X = εx and T = ε2t (1.8)

into (1.6) it becomes ε-independent to leading order

uT + κuu X = νu X X , (1.9)

suggesting that it is natural in both the formal and rigorous reduction to work with
scaled time and space variables.

The parameter κ is associated with the nonlinearity. In order to have a non-
trivial nonlinearity, it will be assumed that κ �= 0, which is a condition on the flux
vector. The expression (1.7) is in fact the intrinsic second derivative of the flux
vector. It is intrinsic since it is evaluated on the kernel of the first derivative. This
terminology comes from singularity theory where it was introduced by Porteous
[25] and is now widely used (for example Arnold et al. [1], Golubitsky and
Guillemin [17]). In Section 8 a geometric interpretation of the condition κ �= 0 is
given.

If the second equation in (1.5) is well defined in the limit ε → 0, and can be
solved for V as a function of u—a strategy similar to a center-manifold reduction—
then one might expect the dynamics to be governed to leading order by the Burgers
equation (1.9).

The above formal argument can be extended to the case where DF(p) has an
k-fold (k < n) semisimple zero eigenvalue, leading to a k-fold coupled system of
Burgers equations,

uT + Q(u)X = D̂uX X , u ∈ R
k, (1.10)
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in scaled variables, which we call Q-Burgers. The reduced dissipation matrix has
entries

νi, j := D̂i, j = 〈ηi , Dξ j 〉, (1.11)

where {ξ1, . . . , ξ k} and {η1, . . . , ηk} are the right and left eigenvectors respectively
of DF(p). The reduced flux vector Q(u) is a homogeneous quadratic function. For
example, in the case k = 2, with u = (u1, u2),

Q(u) =
( 1

2Γ 1
11u2

1 + Γ 1
12u1u2 + 1

2Γ 1
22u2

2

1
2Γ 2

11u2
1 + Γ 2

12u1u2 + 1
2Γ 2

22u2
2

)

,

where the Γ l
i j are components of the intrinsic second derivative of the flux vector

generalizing (1.7). The geometry of the flux vector is presented in Section 8. The
formal argument reducing (1.1) to Q-Burgers when p lies in a criticality surface is
given in Section 2.

The main aim of this paper is to prove that the above formal argument makes
sense, and to identify appropriate function spaces in which it makes sense. The
choice of function space is dictated by the requirement that it is defined for functions
on the real line and it captures both finite energy and infinite energy solutions. An
example of the latter is fronts which are asymptotic to distinct nonzero constants
as x → ±∞. The classical Sobolev spaces based on L2(R) are inadequate and
can be naturally replaced by the so-called uniformly local spaces. These spaces
contain constant and non-decaying functions, as well as finite energy solutions
and are widely used in the analysis of PDEs in unbounded domains. These spaces
have been used in the validity argument for reduction of modulated wavetrains to
Burger’s equation (cf. Chapter 5 of Doelman et al. [11]), and have been widely
used in the study of attractors of parabolic PDEs (for example [23] and references
therein).

Uniformly local spaces are defined as follows. Let B1
x = { y ∈ R : |y−x | � 1 }

and let D ′(R) be the space of distributions on R. Then

L2
b(R) =

{

u ∈ D ′(R) : sup
x0∈R

(∫

B1
x0

|u(x)|2 dx

)

< ∞
}

, (1.12)

with norm

‖u‖L2
b

=
(

sup
x0

∫

B1
x0

|u|2 dx

)1/2

= sup
x0∈R

‖u‖L2([x0−1,x0+1]) (1.13)

and the uniformly local Sobolev spaces W l,2
b (R) are naturally defined as the spaces

of distributions whose derivatives up to order l belong to L2
b(R). The essential

properties of these spaces have been developed by Mielke and Schneider [22],
Zelik [30] and Efendiev and Zelik [12,13]. A comprehensive review of the
properties of these spaces is given in the encyclopedia article of Miranville and
Zelik [23].
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The main result of the paper is the long-time validity of the Q-Burgers reduction
(1.10) for system (1.1) in the uniformly local spaces. Namely, it will be shown
(see Theorem 6.1 and Corollary 6.1) that, for every sufficiently smooth solution
u = (u1, . . . , uk) of the Q-Burgers system (1.10) on the time interval T ∈ [0, T ],
there exists ε0 = ε(u, T ) > 0 such that, for every ε < ε0, there exists a solution
Uε(t, x) of the initial problem (1.1) such that

∥
∥∥∥∥∥

Uε(t, x) − p − ε

k∑

j=1

u j (ε
2t, εx)ξ j

∥
∥∥∥∥∥

W 1,2
b (R)

� Cε3/2, t ∈ [0, T /ε2],

(1.14)

where C is independent of ε. Solutions of Q-Burgers stay close to solutions of the
original problem for a time interval tending to infinity as ε → 0. These validity
results are in contrast to asymptotic results which work precisely with a neighbor-
hood of t = ∞ (for example Szepessy and Zumbrun [27] and references therein).
In [27] the large-time asymptotic behavior of a weak rarefaction wave, for a system
of the form (1.1), is analyzed and it is proved that the perturbed rarefaction data
converge in the limit t → ∞ to an approximate “Burgers” rarefaction wave.

Another approach which leads to a Burgers-type reduction is to use center-
manifold theory on the steady problem, and then an Evans function analysis on
the linear stability problem (for example Freistühler and Szmolyan [16] and
Plaza and Zumbrun [24]). In this approach, one studies the steady problem (1.1)
relative to a moving frame, which reduces to an ODE,

DUx = F(U) − cU, U ∈ R
n,

(modulo a vector-valued constant of integration). When [DF(U) − cI] has rank
n − k, then a center-manifold reduction can be used to reduce it to an ODE, which
is steady Burgers (or steady multi-fold Burgers). Denote the front solution by Û.
The linearization of (1.1) about this solution with the spectral ansatz, ∂t 
→ λ, is

λU − cUx − (DF(Û)U)x = DUxx .

Since Û tends to a constant as x → ±∞, this system can be reformulated as a
λ−dependent system of ODEs, of dimension 2n, in standard form for an Evans
function analysis. The advantage of this approach for Burgers shocks, or multi-fold
Burgers shocks, is that rigorous results on linear stability can be obtained. On the
other hand, the reduction to time-dependent Burgers, or Q-Burgers, invites analysis
of all solutions of (1.10), with the proviso that their relevance for (1.1) can only be
guaranteed for a time interval of order ε−2.

There are three steps in the proof of validity in this paper. The first step is to
prove that the reduced Q-Burgers (1.10) is well posed in L2

b for some time interval
[0, T ]. In the case k = 1, it follows from a maximum principle argument that
T = ∞. When k > 1 it is not in general true that solutions of Q-Burgers exist
globally in time. However, we are able to prove global existence of Q-Burgers
for any k when Q(u) is a gradient function. In the case k = 2 we can appeal to a
result of Schaeffer and Shearer [26] that assures that Q(u) is a gradient function
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if DQ is hyperbolic. The proof of regularity, uniqueness and global existence for
Q-Burgers is presented in Section 4.

The second stage of the proof is to derive estimates in L2
b for the class of linear

parabolic PDEs

ut + 1

ε
Aux − Duxx = h(t), (1.15)

for given h, where A is a constant symmetrizable matrix. Systems of this type
arise when analyzing the second equation of (1.5). The regularity properties of the
solutions of (1.15) are presented in Section 5.

The third stage is the validity proof. Take initial data for (1.1) and take the
projection of this initial data onto the kernel of DF(p) as initial data for Q-Burgers.
Look at the distance between these two solutions over time, measured in a uniformly
local norm. In Section 6 it is proved that the distance between these two solutions
is of order ε3/2 for a time interval which tends to infinity as ε → 0, confirming the
estimate (1.14).

In Sections 9 and 10 the theory is applied to examples from shallow water
hydrodynamics, and it is shown there that the reduction to Burgers is associated
with the generation of hydraulic jumps. We also show how to modify the theory if
dissipation does not act on all components; for example, when one of the equations
in (1.1) is a pure conservation law.

2. Formal Reduction to Burgers Equations

Let ε be a small parameter that measures the distance from the criticality surface.
Suppose that DF(p) has a k-fold semisimple zero eigenvalue with

Ker(DF(p)) = span{ξ1, . . . , ξ k} and Ker(DF(p)T ) = span{η1, . . . , ηk},
with the standard normalization 〈ηi , ξ j 〉 = δi, j .

Introduce the Burgers scaling (1.8) into the full equation (1.1),

UT + 1

ε
F(U)X = DUX X , (2.1)

and express U(x, t) in (1.1) in terms of functions of the scaled variables,

U(x, t, ε) = p + ε

k∑

j=1

u j (X, T, ε)ξ j + ε2V(X, T, ε), (2.2)

with

〈η j , V(X, T, ε)〉 = 0, for j = 1, . . . , k.

The space R
n has been split into the kernel of DF(p) and its complement. Let P

denote the projection onto the complement of the kernel of DF(p).
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Substitute (2.2) into (1.1)

Ut = ε3
k∑

j=1

∂u j

∂T
ξ j + ε4VT

F(U)x = ε3DF(p)VX + 1
2ε3D2F(p)

⎛

⎝
k∑

j=1

u jξ j + εV,

k∑

j=1

u jξ j + εV

⎞

⎠

X

+ · · ·

Uxx = ε3

⎛

⎝
k∑

j=1

∂2u j

∂ X2 ξ j + εVX X

⎞

⎠ .

Split into two parts according to the splitting of R
n

∂u	

∂T
+ ∂

∂ X

⎛

⎝ 1
2

k∑

i=1

k∑

j=1

Γ 	
i j ui u j

⎞

⎠ =
k∑

j=1

ν	j
∂2u j

∂ X2 + εS	, 	 = 1, . . . , k, (2.3)

with νi, j defined in (1.11), and

ε VT + PDF(p)VX + 1
2 PD2F(p)

⎛

⎝
k∑

j=1

u jξ j ,

k∑

j=1

u jξ j

⎞

⎠

X

= PD

⎛

⎝
k∑

j=1

ξ j
∂2u j

∂ X2

⎞

⎠ + εPDVX X + · · · ,

or

d

dX

⎡

⎣PDF(p)V + 1
2 PD2F(p)

⎛

⎝
k∑

j=1

u jξ j ,

k∑

j=1

u jξ j

⎞

⎠

−PD

⎛

⎝
k∑

j=1

ξ j
∂u j

∂ X

⎞

⎠

⎤

⎦ = εT, (2.4)

where S	, 	 = 1, . . . , k, and T are remainder terms.
The leading order term in the first set of equations (2.3) is Q-Burgers (1.10).

The complementary equation (2.4) appears to be solvable for V as a function of
u1, . . . , uk .

Consider a perturbation expansion for u1, . . . , uk and V,

u	(X, T, ε) = u0
	(X, T ) + εu1

	(X, T ) + O(ε2), l = 1, . . . , k,

V(X, T, ε) = V0(X, T ) + εV1(X, T ) + O(ε2).
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Substitution shows that u0
l , . . . , u0

k satisfy Q-Burgers and V0 can be determined as
a function of u0

1, . . . , u0
k ,

V0(X, T ) = [PDF(p)]−1

⎛

⎝− 1
2 PD2F(p)

⎛

⎝
k∑

j=1

u0
jξ j ,

k∑

j=1

u0
jξ j

⎞

⎠

+PD

⎛

⎝
k∑

j=1

ξ j

∂u0
j

∂ X

⎞

⎠

⎞

⎠ + V(0)
0 (T ), (2.5)

where V(0)
0 (T ) is an arbitrary function of T . The invertibility of PDF(p) follows

since P is projection onto the complement of the kernel of DF(p). The successive
terms in the series for u	 and V then satisfy linear inhomogeneous PDEs. Formally,
each term in the series can be determined.

3. Towards a Proof of Validity

In this section we attempt to justify the formal argument in Section 2. Let
U(X, T, ε) be an exact solution of (1.1) in the scaled form (2.1) and define

z(X, T, ε) = 1

ε

(
U(X, T, ε) − p). (3.1)

Then z(X, T, ε) satisfies

zT + 1

ε2 F(p + εz)X = DzX X ,

or, after expanding F in a Taylor series,

zT + ε−1
(

DF(p)z + 1

2
εD2F(p)(z, z) + ε2Φε(z)

)

X
= D zX X , (3.2)

where the remainder function Φε(z) remains regular as ε → 0.
Now split z into a leading order part and a remainder

z(X, T, ε) = w(X, T, ε) + R(X, T, ε), (3.3)

with

w(X, T, ε) = w0(X, T ) + εV0(X, T ). (3.4)

The perturbation V0(X, T ) is the leading order term in the asymptotic expansion
(2.5). The first term in (3.4) is

w0(X, T ) :=
k∑

j=1

u j (X, T )ξ j , (3.5)

where (u1(X, T ), . . . , uk(X, T )) is an exact associated solution of the Q-Burgers
equation (1.10) with initial data
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w0(X, 0) = lim
ε→0

ε−1(I − P
)(

U(X, 0, ε) − p
)
. (3.6)

Using Q-Burgers and the equation for V in (2.4), the vector-valued function w
satisfies

wT + 1

ε

(
DF(p)w + 1

2
εD2F(p)(w, w)

)

X
− D wX X = εh, (3.7)

where the function

h := h(∂T w0, ∂X w0, ∂
2
X w0, ∂

3
X w0, ∂T ∂X w0)

is a cubic polynomial determined by the solution (u1, . . . , uk)(X, T ) of the Q-
Burgers equation (1.10). Moreover, it is linear with respect to the higher derivatives
∂T ∂X w0 and ∂3

X w0:

h = h0(∂T w0, ∂X w0, ∂
2
X w0) + C1 ∂T ∂X w0 + C2 ∂3

X w0, (3.8)

where C1 and C2 are constant matrices depending only on D, DF(p) and D2F(p).
Thus, the difference R solves

RT + ε−1DF(p)RX − DRX X = H, (3.9)

with

H := εh − ∂X (εΦε(z) − 1

2
D2F(p)(R, 2w + R)). (3.10)

Equation (3.9) is the key equation that needs to be understood. The validity proof
reduces to showing that the remainder function R(X, T, ε) is well behaved. To
show this we need two results: first we need to show that the solution w0(X, T )

of Q-Burgers is well-behaved and secondly we need to show that solutions of the
linear parabolic equation (3.9) are well-defined in the uniformly local spaces. These
questions are made precise and addressed in the next sections. The first question is
addressed in Section 4 and the second question is addressed in Section 5.

4. The Reduced Q-Burgers System

In this section, we study the global well-posedness and regularity of Q-Burgers
type systems without remainder (1.10). Consider the Q-Burgers system in the form

∂t u = E ∂2
x u + ∂x Q(u), x ∈ R, u

∣∣
t=0 = u0, (4.1)

where the k-component vector-valued function u(x, t) is the k-component vector-
valued unknown function, E is a given constant matrix satisfying the uniform par-
abolicity assumption

Re σ(E) > 0 (4.2)
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and Q : R
k → R

k is a given nonlinearity satisfying

|DQ(u)| � C(1 + |u|) for all u ∈ R
k, (4.3)

for some constant C (throughout of the paper the constants whose concrete values
are not important will be denoted by the letter C and this notation will not change
even if the constant changes).

We are interested in weak solutions of problem (4.1) in the uniformly local
spaces. To be more precise, a function u = u(t, x) is a weak solution of (4.1) on
the time interval t ∈ [0, T ] if

u ∈ L∞([0, T ], L2
b(R)) ∩ C([0, T ], L2

loc(R)), ux ∈ L2
b([0, T ] × R) (4.4)

and satisfies (4.1) in the sense of distributions.
The section is organized as follows. In the first subsection, we briefly discuss the

key technical tools associated with weighted and uniformly local Sobolev spaces
which will be used throughout of the paper. In the second subsection, we verify
the uniqueness of a weak solution and its additional regularity. Finally, in the third
subsection, we establish the global existence of weak solutions under additional
assumptions on Q and E.

Note also that the critical growth of the nonlinearity Q in the class of energy
solutions is cubic, so most of the results of this section remain true for the nonlin-
earities Q of a cubic growth. However, since in all our applications Q is a quadratic
polynomial, we impose condition (4.3) and restrict the possible growth of Q to be
at most quadratic.

4.1. Weighted and Uniformly Local Sobolev Spaces

A key feature of the analysis is the intermediate step of proving existence in
weighted spaces. In this subsection, the key properties needed in the analysis are
recorded, see [23] for the more detailed exposition. We start with introducing the
class of suitable weight functions.

A function φ ∈ L∞
loc(R) is called a weight function with exponential rate of

growth (ν > 0) if the conditions

φ(x) > 0 and φ(x + y) � Ceν|x |φ(y), (4.5)

are satisfied for every x, y ∈ R.
Any weight function with growth rate ν also satisfies

φ(x + y) � C−1e−ν|x |φ(y)

for all x, y ∈ R. Important examples needed here, of weight functions with growth
rate ν, are

φμ(x) = 1

(1 + 1
2 |μx |2) 1

2

and θμ(x) = e−μ|x |, (4.6)
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where μ < ν in the second example. Crucial for what follows is the fact that these
functions satisfy (4.5) uniformly with respect to μ → 0. Moreover, if φ(x) satisfies
(4.5), then the shifted weight function φ(x − x0), x0 ∈ R, also satisfies (4.5) with
the same constants C and ν.

For any weight function φ(x) with exponential rate of growth and any 1 � p �
∞, the weighted Lebesgue spaces are defined as follows:

L p
φ(R) =

{

u ∈ L p
loc(R) : ‖u‖L p

φ
:=

(∫

R

φ(x)p|u(x)|p dx

)1/p

< ∞
}

.

Analogously, the weighted Sobolev spaces W l,p
φ (R) are defined as subspaces of

D ′(R) of distributions whose derivatives up to order l inclusively belong to L p
φ(R)

(this works for natural l only, the weighted Sobolev spaces with fractional/negative
number of derivatives can be also defined in a standard way using interpola-
tion/duality).

The following proposition gives the technical tool for estimating the uniformly
local norms of solutions using the energy estimates in weighted Sobolev spaces.

Proposition 4.1. Let φ be a weight function with exponential growth such that
‖φ‖L p(R) < ∞ and let u ∈ L p

b (R) for some 1 � p < ∞. Then, u ∈ L p
φ(R) and

‖u‖L p
φ

� C1‖φ‖L p
φ
‖u‖L p

b
, (4.7)

where the constant C1 depends only on p and the constants C and ν in (4.5) (and
is independent of the concrete choice of the functions φ and u). Moreover,

‖u‖L2
b

� C1 sup
s∈R

‖u‖L2
φ(·−s)

, (4.8)

where C1 is also independent of the concrete choice of u and φ.

For the proof of this proposition, see [30].
We will mainly use estimate (4.7) in the situation where φ = φμ is one of the

special weight functions of (4.6) and μ > 0 is a small parameter. In this case, for
p > 1, ‖φμ‖L p ∼ μ−1/p and (4.7) reads

‖v‖L p
φμ

� Cμ−1/p‖v‖L p
b

(4.9)

where the constant C > 0 is independent of μ → 0.
The next standard proposition gives a useful equivalent form of the weighted

norms.

Proposition 4.2. Let φ be a weight function with exponential rate of growth and
let u ∈ L p

φ(R). Then

C1‖u‖p
L p

φ

�
∫

R

φ p(x0)‖u‖p
L p(x0,x0+1) dx0 � C2‖u‖p

L p
φ

(4.10)

where the constants C1 and C2 depend only on the constants involving (4.5) and
are independent of the concrete choice of p, φ and u.
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Finally, we will need Gagliardo–Nirenberg type interpolation inequalities in
weighted Sobolev spaces. We state below only 2 of them which will be used in the
paper and refer to [30] or [31] for more detailed exposition.

Proposition 4.3. Let φ be a weight function with sufficiently small exponential rate
of growth ν and let u ∈ W 1,2

φ (R). Then, for every 2 � p � ∞,

‖u‖L p
φ

� C‖u‖
1
2 + 1

p

L2
φ

‖u‖
1
2 − 1

p

W 1,2
φ

, (4.11)

where the constant C is independent of p and of the concrete choice of φ and u. In
addition, if u ∈ W 2,2

φ (R), then

‖u‖W 1,2
φ

� C‖u‖
1
2

L2
φ

‖u‖
1
2

W 2,2
φ

(4.12)

and C is also independent of φ and u.

Remark 4.1. In this section the parameter μ in the weight function can be chosen
independently. This choice is to be contrasted with Section 5 where the choice of
weight function parameter will be linked to the parameter ε.

4.2. Uniqueness and Further Regularity of Weak Solutions

In this subsection, we show that the weak solution of equation (4.1), if it exists,
is unique and is smooth if the initial data and Q are regular enough. We start with
uniqueness.

Proposition 4.4. Let the diffusion matrix E and the nonlinearity Q satisfy (4.2) and
(4.3). Then the weak solution u of (4.1) which satisfies (4.4) is unique.

Proof. Without loss of generality, we may assume that

E + E∗ > 0. (4.13)

Indeed, if (4.2) holds, one always can fix an inner product in R
k in such way that

(4.13) will be also satisfied.
Let u and v be two solutions of (4.1) belonging to the class (4.4) and let w =

u − v. Then, by taking the difference of two equations (4.1) (with solutions u and
v respectively), we have

∂t w − Ewxx = ∂x Q(u) − ∂x Q(v),

where w = u − v. Take the dot product of this equation with θ2
μw (see (4.6), where

μ > 0 is small enough) and integrate the result over R to obtain

d

dt
‖w‖2

L2
θμ

+ ((E + E∗)(θμwx ), (θμwx ))L2 + 2(Ewx , ∂x (θ
2
μ)w)L2

+(Q(u) − Q(v), ∂x (θ
2
μw))L2 = 0, (4.14)
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where (u, v)L2 denotes the usual inner product in L2(R) (all the integrals make
sense since u and v belong to the class (4.4)). Note that, due to (4.13), there exists
a positive constant α such that E + E∗ � 2α, and the weight function θμ satisfies

|θ ′
μ(x)| � μθμ(x), x ∈ R. (4.15)

Using these facts together with the Cauchy–Schwarz inequality, we transform (4.14)
to

d

dt
‖w‖2

L2
θμ

+ α‖wx‖2
L2

θμ

� C‖Q(u) − Q(v)‖2
L2

θμ

+ Cμ2‖w‖2
L2

θμ

. (4.16)

As usual, we estimate the first term in the right-hand side using the integral mean
value theorem in the form

Q(u) − Q(v) =
∫ 1

0
Q′(su + (1 − s)v) ds(u − v),

so, using assumption (4.3), we obtain

‖Q(u) − Q(v)‖L2
θμ

� C‖(1 + |u| + |v|)w‖L2
θμ

.

To estimate the right-hand side of this inequality, we use Proposition 4.2 together
with the fact that ‖u‖L2

b
and ‖v‖L2

b
are under control. Then,

‖Q(u) − Q(v)‖2
L2

θμ

� C
∫

R

θ2
μ(s)‖(1 + |u| + |v|)w‖2

L2(s,s+1)
ds

� C1

∫

R

θ2
μ(s)‖w‖2

L∞(s,s+1)(1 + ‖u‖2
L2(s,s+1)

+‖v‖2
L2(s,s+1)

) ds

� C2(1 + ‖u‖2
L2

b
+ ‖v‖2

L2
b
)

∫

R

θ2
μ(s)‖w‖2

L∞(s,s+1) ds

� C3

∫

R

θ2
μ(s)‖w‖2

L∞(s,s+1) ds. (4.17)

The right-hand side of (4.17) is estimated using the standard (non-weighted) inter-
polation inequality

‖w‖2
L∞(s,s+1) � C‖w‖L2(s,s+1)‖w‖W 1,2(s,s+1),

the Cauchy–Schwarz inequality and again Proposition 4.2:

‖Q(u) − Q(v)‖2
L2

θμ

� C3

∫

R

θ2
μ(s)‖w‖2

L∞(s,s+1) ds

� C
∫

R

θ2
μ(s)‖w‖L2(s,s+1)‖w‖W 1,2(s,s+1) ds
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� C4

(∫

R

θ2
μ(s)‖w‖2

L2(s,s+1)
ds

) 1
2

(∫

R

θ2
μ(s)‖w‖2

W 1,2(s,s+1)
ds

) 1
2

� C5‖w‖L2
θμ

‖w‖W 1,2
θμ

� C‖w‖2
L2

θμ

+ α

2
‖wx‖2

L2
θμ

. (4.18)

Inserting this estimate into the right-hand side of (4.16), we end up with

1

2

d

dt
‖w‖2

L2
θμ

� C‖w‖2
L2

θμ

.

Integrating this inequality and using that u(0) = v(0), we prove that ‖w(t)‖L2
θμ

≡
0. Thus, u(t) ≡ v(t) and the proposition is proved. ��

We now turn to proving the extra regularity of a weak solution. We start with
the uniformly local analogue of the second energy estimate.

Proposition 4.5. Let the assumptions of Proposition 4.2 hold and let u be a weak
solution of (4.1) on the time interval t ∈ [0, T ] such that

‖u‖L∞([0,T ],L2
b(R)) � K , u0 ∈ W 1,2

b (R). (4.19)

Then, u ∈ L∞([0, T ], W 1,2
b (R)), uxx ∈ L2

b([0, T ] × R) and

‖u‖L∞([0,T ],W 1,2
b (R))

+‖uxx‖L2
b([0,T ]×R) �C(‖u0‖W 1,2

b (R)
+ K 5 + 1), (4.20)

where the constant C is independent of u, T and u0.

Proof. Take the dot product of Equation (4.1) with −∂x (θ
2
μux ), where θμ is defined

by (4.6) and integrate in space. This gives

d

dt
‖ux‖2

L2
θμ

+ ((E + E∗)(θμuxx ), (θμuxx ))L2 + 2(E ∂x (θ
2
μ)ux , uxx )L2

= −2(∂x Q(u), ∂x (θ
2
μux ))L2 . (4.21)

As in the proof of Proposition 4.4, we may assume that (4.13) holds. Then, using
(4.15), we obtain

|(E ∂x (θ
2
μ)ux , uxx )L2 | � α

4
‖uxx‖2

L2
θμ

+ μ2

α
‖ux‖2

L2
θμ

, (4.22)

and again using, in addition, the Cauchy–Schwarz inequality, we estimate the right-
hand side of (4.21) as follows

|(∂x Q(u), ∂x (θ
2
μux ))L2 | � C‖∂x Q(u)‖2

L2
θμ

+ Cμ2‖ux‖2
L2

θμ

+ α

4
‖uxx‖2

L2
θμ

.
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Inserting these estimates into (4.21) and using that μ is small enough, we arrive at

d

dt
‖ux‖2

L2
θμ

+ α

2
‖uxx‖2

L2
θμ

� C‖∂x Q(u)‖2
L2

θμ

+ C‖ux‖2
L2

θμ

. (4.23)

Thus, it now remains to estimate the ∂x Q(u) term. Using the growth restriction
(4.3) and assumption (4.19) and arguing exactly as in (4.17) and (4.18) (where w
should be replaced by ux ), we get

C‖∂x Q(u)‖2
L2

θμ

� C1‖(1 + u) · ux‖2
L2

θμ

� C2‖u‖2
L2

b
‖ux‖L2

θμ
‖ux‖W 1,2

θμ

� C3(K 2 + 1)2‖ux‖2
L2

θμ

+ α

4
‖uxx‖2

L2
θμ

,

and, therefore, (4.23) now reads

d

dt
‖ux‖2

L2
θμ

+ ‖ux‖2
L2

θμ

+ α

4
‖uxx‖2

L2
θμ

� C(K 2 + 1)2‖ux‖2
L2

θμ

. (4.24)

Finally, using the weighted interpolation inequality

‖ux‖2
L2

θμ

� C‖u‖2
L2

θμ

+ C‖u‖L2
θμ

‖uxx‖L2
θμ

,

and assumption (4.19) again, we end up with

d

dt
‖ux‖2

L2
θμ

+ ‖ux‖2
L2

θμ

+ α

8
‖uxx‖2

L2
θμ

� C(K 4 + 1)2‖u‖2
L2

θμ

� C(K 5 + 1)2.

(4.25)

Applying the Gronwall inequality, we arrive at the desired weighted analogue of
the second energy estimate:

‖ux (t)‖2
L2

θμ

+
∫ max{t+1,T }

t
‖uxx (s)‖2

L2
θμ

ds � C(‖u0‖W 1,2
θμ

+ 1 + K 5)2. (4.26)

Moreover, since the shifted weight function θμ,s(x) := θμ(x − s) satisfies esti-
mates (4.5) and (4.15) uniformly with respect to s ∈ R, arguing as before, we see
that estimate (4.26) remains true if we replace θμ by θμ,s and the constant C is
independent of s ∈ R. Taking now the supremum over s ∈ R from both parts of
the obtained inequality and using estimates (4.7) and (4.8), we end up with (4.20)
and finish the proof of Proposition 4.5. ��

The regularity of the solution u can be further improved in a straightforward way
if additional smoothness of Q and u0 is known. In particular, the following result
holds.



Thomas Bridges, Jonathan Pennant & Sergey Zelik

Corollary 4.1. Let the assumptions of Proposition 4.5 hold and let, in addition,

Q ∈ C2(R2, R
2) and u0 ∈ W 2,2

b (R). Then, the solution u of the Q-Burgers system
(4.1) satisfies:

u ∈ L∞([0, T ], W 2,2
b (R)), ut x , uxxx ∈ L2

b([0, T ] × R),

and the following estimate holds:

‖u‖L∞([0,T ],W 2,2
b (R)

+ ‖ut x‖L2
b([0,T ]×R) + ‖uxxx‖L2

b([0,T ]×R)

� C
(
‖u0‖W 2,2

b (R)
+ CK

)
, (4.27)

where the constant CK depends on K (from (4.19)), but is independent of T and
u.

The proof of this corollary is analogous to Proposition 4.5: we just need to differ-
entiate (4.1) with respect to x (denoting v = ux ) and then multiply the obtained
equation by (θμvx )x , so we leave it to the reader.

4.3. A Priori Estimates and Global Existence

In this subsection, we present some results on the global existence of weak
solutions of the Q-Burgers system. As we have seen before, the control of the
L2

b(R)-norm of a solution is enough to estimate the higher norms, so finding an
appropriate a priori estimate of this norm is sufficient for the global existence of
weak/strong solutions (which can be proved in a straightforward way, for example,
by approximating the problem in unbounded domains by the analogous problems
in large bounded domains, say, with periodic boundary conditions and by passing to
the limit, see Efendiev and Zelik [12,13]). Thus, we will concentrate on deriving
proper a priori estimates for the L2

b-norm of the solution only.
Note that, in contrast to the scalar case k = 1, where such an estimate is

immediate due to the maximum principle, the vector case looks much more delicate
since the maximum principle fails and one should use principally different methods
to bound the L2

b-norm of the solution. In particular, based on some techniques,
initially developed for infinite energy solutions for the Navier–Stokes equations in
a strip [31], we succeed in finding such an estimate under the additional assumption
that the nonlinearity Q is gradient

Q(u) = ∇uΨ (u), (4.28)

for some potential Ψ ∈ C2(R2) and the diffusion matrix E satisfying (4.13) (which
is now essential since the trick with changing the inner product in R

k used before
may destroy the gradient structure of the problem). Note also that, again in contrast
to the scalar case, our estimate allows the norm ‖u(t)‖L2

b
to grow at most linearly in

time although we do not know of any examples of growing solutions in that class.
To be more precise, the following result holds.



Reduction and Validity of Burgers Dynamics

Theorem 4.1. Let the assumptions of Proposition 4.4 hold and let, in addition,

(4.13) and (4.28) hold. Then, for every initial data u0 ∈ L2
b(R), there exists a

unique global weak solution u of the Q-Burgers system (4.1) and the following
estimate is valid:

‖u(t)‖L2
b(R) � R(‖u0‖L2

b(R))(t + 1) (4.29)

for some monotone increasing function R which is independent of t and u0.

Proof. As was already mentioned, we only need to derive an a priori estimate (4.29).
To this end, we will use as before the weighted energy estimates, in contrast to the
previous subsection, the exponential weight function θμ(x) is no longer appropriate
for our purposes and is replaced by the polynomial one φμ(x) (see (4.6)). The reason
is that the polynomial weight function satisfies a stronger inequality than (4.15),
namely,

|φ′
μ(x)| � 1

2μφ2
μ(x) and sup

x∈R

φμ(x) � 1, (4.30)

which is crucial to handle the nonlinearity.
Multiplying Equation (4.1) by φ2

μu, where μ > 0 is a small parameter which
will be fixed below, and integrating in space, we have

1

2

d

dt
‖u‖2

L2
φμ

+ 1

2
((E + E∗)ux , φ

2
μux ) + (E ux , u∂x (φ

2
μ))L2

= (∂x (Q(u)), φ2
μu)L2 . (4.31)

Note that condition (4.13) implies that there exists a positive constant α such that
E+E∗ � 2α and since the weight φμ satisfies (4.15), we may estimate the last term
in the left-hand side of (4.31) analogously to the third term in (4.14). Moreover,
using that Q is gradient, we simplify the right-hand side by integrating by parts:

(∂x (Q(u)), φ2
μu)L2 = −(Q(u), uxφ

2
μ)L2 − (Q(u), u∂x (φ

2
μ))L2

= −((Ψ (u))x , φ
2
μ)L2 − (Q(u), u∂x (φ

2
μ))L2

= (Ψ (u) − Q(u) · u, ∂x (φ
2
μ)))L2 .

Thus, (4.31) reads

1

2

d

dt
‖u‖2

L2
φμ

+α‖ux‖2
L2

φμ

�Cμ2‖u‖2
L2

φμ

+2
(
Ψ (u)−u · Q(u), ∂x (φ

2
μ)

)
L2 , (4.32)

where the constant C is independent of μ → 0.
Now using that Ψ (u) and Q(u) · u are at most cubic, namely,

|DQ(u)| � C(1 + |u|) implies |Q(u)| � C(1 + |u|2)
and |Ψ (u)| � C(1 + |u|3),

together with (4.30) and the fact that
∫
R

φμ(x) dx = Cμ−1, we estimate the last
term in the right-hand side as follows:

2
(
Ψ (u) − u · Q(u), ∂x (φ

2
μ)

)
L2 � Cμ(|u|3 + 1, φ3

μ)L2 = C(μ‖u‖3
L3

φμ

+ 1),
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where C is again independent of μ → 0. Using now the weighted interpolation
inequality (4.11) with p = 3, we get

Cμ‖u‖3
L3

φμ

� C1μ‖u‖5/2
L2

φμ

‖u‖1/2

W 1,2
μ

� C1μ‖u‖3
L2

φμ

+ C1μ‖u‖5/2
L2

φμ

‖ux‖1/2
L2

φμ

� C1μ‖u‖3
L2

φμ

+ Cμ4/3‖u‖10/3
L2

φμ

+ α‖ux‖2
L2

φμ

. (4.33)

Inserting these estimates into the right-hand side of (4.32), we arrive at

d

dt
‖u‖2

L2
φμ

� C

(
μ2‖u‖2

L2
φμ

+ μ‖u‖3
L2

φμ

+ μ4/3‖u‖10/3
L2

φμ

+ 1

)
. (4.34)

We may simplify (4.34) furthermore using again Young’s inequality

μ2‖u‖2
L2

φμ

� 2

3
μ3‖u‖3

L2
φμ

+ C and μ‖u‖3
L2

φ

� μ7/6‖u‖10/3
L2

φμ

+ Cμ− 1
2 ,

and using that μ is small. This gives, finally,

d

dt
‖u‖2

L2
φμ

� C

(
μ7/6‖u‖10/3

L2
φμ

+ μ−1/2
)

. (4.35)

In addition, due to (4.9), we also have

‖u0‖2
L2

φμ

� Cμ−1‖u0‖2
L2

b
. (4.36)

Crucial for us is that the constant C in (4.35) and (4.36) is independent of μ → 0.
Indeed, for every fixed μ, the solutions of the differential inequality (4.35) may blow
up in finite time. Nevertheless, choosing properly the parameter μ, dependence of
the initial data and the time interval, we gain the global existence as well as the
linear growth estimate (4.29). In order to see that, we introduce the function Yμ(t)
as a solution of the following ODE:

Y ′
μ = C

(
μ7/6Y 5/3

μ + μ−1/2
)

with Yμ(0) = Cμ−1‖u0‖2
L2

b
.

Then, due to the comparison principle,

‖u(t)‖2
L2

φμ

� Yμ(t), t � 0. (4.37)

After scaling the variables Zμ(t) = μYμ(tμ−1/2), we see that the new function
Zμ(t) = Z(t) is independent of μ and solves

Z ′ � C(Z5/3 + 1), Z(0) = C‖u0‖2
L2

b
.

This ODE is locally solvable in time and we have

Z(t) � 2C(‖u0‖2
L2

b
+ 1), t � β(‖u0‖2

L2
b
) > 0,
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for some monotone decreasing positive function β. Thus, due to (4.37),

‖u(t)‖2
L2

φμ

� 2Cμ−1(‖u0‖2
L2

b
+ 1), t � μ−1/2β(‖u0‖L2

b
). (4.38)

Moreover, as in the previous subsection, this estimate remains valid if we replace
φμ(x) on the shifted one φμ,s(x) := φμ(x − s) uniformly with respect to the shift
s ∈ R. Taking after that the supremum over s ∈ R and using (4.8), we end up with

‖u(t)‖2
L2

b
� 2Cμ−1(‖u0‖2

L2
b
+ 1), t � μ−1/2β(‖u0‖L2

b
). (4.39)

We are now ready to optimize this estimate with respect to μ. Namely, for every
large enough time moment T , we fix μ = T −2β2(‖u0‖L2

b
). Then, (4.39) holds for

t = T and this gives

‖u(T )‖2
L2

b
� 2CT 2β2(‖u0‖)(‖u0‖2

L2
b
+ 1)

which coincides with (4.29) and finishes the proof of the theorem. ��

5. The Analysis of the Scaled Linearized System

As we have seen in Section 3, in order to justify the validity of the Q-Burgers
reduction, we need to study Equation (3.9) for small ε > 0. Note that the case
ε = 1 of that equation corresponds to the linearization of the initial problem (1.1)
about a constant solution U = p. The aim of this section is to state the conditions
which guarantee the spectral stability of that linearized problem and derive several
uniform with respect to ε → 0 estimates which are crucial for the validity proof.

5.1. Spectral Properties of the Linearized System

Of interest is the following ε−family of parabolic PDEs,

ut + 1

ε
Aux − Duxx = h(t), u

∣∣
t=0 = u0, (5.1)

for the vector-valued function u(x, t). Here ε > 0 is any given small parameter,
u = (u1, . . . , un), h(t) are given external forces, and A = DF(p) and D are given
constant matrices with the following properties:

(1) : A has real eigenvalues and is diagonalizable (5.2)

(2) : Re σ(D) > 0 (5.3)

(3) : Re σ(Dk2 + ikA) > 0, ∀k ∈ R \ {0} (5.4)

(4) : Re σ(DA) > 0. (5.5)

In the hypothesis (5.5) DA is a block diagonal matrix built up by the following
rule: let ω ∈ σ(A) be the eigenvalue of A of multiplicity l and let {ξ1, . . . , ξ l} and
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{η1, . . . , ηl} be the normalized right and left eigenvectors respectively associated
with the eigenvalue ω. Then, the entries of the block in DA associated with ω are
Dω := (〈Dξ i , η j 〉)l

i, j=1. Thus,

DA = diag
(
Dω1 , . . . , Dωm

)

where ω1, . . . , ωm are all different eigenvalues of A.
We first clarify the above conditions. To this end, we note that the spectral

stability requirement for the linearized system (5.1) is necessary for the validity of
the reduction and reads

Re σ(Lε, L2(R)) � 0, Lεu := 1

ε
Aux − Duxx . (5.6)

The spectrum of this differential operator is independent of ε up to the scaling factor
ε−2 and can be easily found using the Fourier transform:

σ(Lε) = ε−2σ(L1) = ε−2{λ ∈ σ(Dk2 + ikA), k ∈ R}. (5.7)

Thus, assumption (5.4) is close to being necessary (the necessary non-strict inequal-
ity is replaced by the strict one) and guarantees that the spectrum of the operator
Lε touches the imaginary axis only at wavenumber k = 0 and λ = 0. Furthermore,
looking at large wavenumbers k, we see that the spectrum of D should not contain
eigenvalues with negative real part. The slightly stricter assumption (5.3) guaran-
tees in addition the uniform parabolicity of (5.1) and is posed for technical reasons.
Although the case of zero eigenvalues of the dissipation matrix D is interesting
from the applications point of view (see Section 9), its rigorous treatment requires
essentially more complicated technique and will be not considered here.

Analogously, considering the case of small wavenumbers k → 0, we see that
(5.4) is possible only if the spectrum of A is real. The rest of hypothesis (5.2)
that A is diagonalizable is also a simplifying assumption, some discussion on what
happens in the non-semi-simple case is given in Section 11. Finally, for clarifying
hypothesis (5.5), we need the following lemma.

Lemma 5.1. . Let ω ∈ σ(A) be a semi-simple eigenvalue of the matrix A of multi-
plicity l. Then, it generates l-branches λ j (k), j = 1, . . . , l, of the spectrum of Lε

near k = 0 and the following asymptotic expansions hold:

λ j (k) = iωk + μ j k
2 + o(k2), μ j ∈ σ(Dω) (5.8)

for j = 1, . . . , l.

The proof of the expansions (5.8) is standard and straightforward and is therefore
omitted.

Thus, hypothesis (5.5) is also ”almost” necessary and prevents the branches of
spectrum of Lε from crossing the imaginary axis for small wavenumbers k. Note
also that D̂ = D0, see (1.11), and hypothesis (5.5) also guarantees the uniform
parabolicity (and, therefore, the local well-posedness) of the reduced Q-Burgers
equations (1.10).
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5.2. Uniform Estimates: The Unweighted Case

We now turn to the study of the linear problem (5.1). We start with the homoge-
neous system in non-weighted Sobolev spaces. Set h = 0 in (5.1). The following
standard Lemma shows that Equation (5.1) generates a uniformly (with respect to
ε → 0) stable semigroup in the space H = L2(R).

Lemma 5.2. Let the above assumptions (5.2)–(5.5) hold. Then, the solution u(t),
t � 0, of Equation (5.1) with h = 0 satisfies

‖u(t)‖Hs (R) � C ‖u(0)‖Hs (R), for any s � 0, (5.9)

where the constant C is independent of s, ε > 0 and t � 0.

Proof. It is sufficient to verify the estimate for s = 0 only, since the equation is
spatially-homogeneous. Applying the x-Fourier transform to equation (5.1) gives

ût = −
(

Dk2 + 1

ε
Ak

)
û(t). (5.10)

Thus, due to Parseval’s equality, we only need to check that

∥∥∥e−(ikε−1A+Dk2)t
∥∥∥ � C,

where the constant C is independent of ε, t � 0 and k. Or, scaling t → ε2t ,
k → ε−1k, this requirement is transformed to the case of ε = 1:

∥∥∥e−t (ikA+Dk2)
∥∥∥ � C. (5.11)

Due to assumption (5.3) on the spectrum of the matrix D, (5.11) is satisfied
uniformly for large k, say, for |k| > k+ � 1. On the other hand, due to assumption
(5.4), (5.11) is satisfied for every fixed k �= 0. Consequently, using a compactness
argument, (5.11) holds uniformly for all |k| � k− � 1 (where k− can be cho-
sen arbitrarily small). Finally, the validity of (5.11) for small k is assured by the
hypothesis that the matrix A is diagonalizable and the following expansion: let λ0

j ,
j = 1, . . . , k be the eigenvalues of A. Then, due to Lemma 5.1, the eigenvalues of
Dk2 + ikA near k = 0 have the form

λ j (ikA + k2D) = ikλ0
j + μk2 + o(k2), (5.12)

for some μ ∈ σ(DA). The assumption (5.4) assures that Re μ > 0 in the expansion
(5.12). This completes the proof of estimate (5.11) and finishes the proof of the
lemma. ��

Now suppose that h �= 0.
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Lemma 5.3. Let the above assumptions (5.2)–(5.5) hold, and suppose that h ∈
L2(Rt × Rx ). Then, there exists a unique solution u(t) of (5.1) satisfying the
following inequality

∥∥
∥∥
∂2u
∂x2

∥∥
∥∥

L2(Rt ×Rx )

� C‖h‖L2(Rt ×Rx ), (5.13)

where the constant C is independent of ε and h.

Proof. Applying the (t, x)-Fourier transform to Equation (5.1),

[iω + ε−1ikA + Dk2 ]̂u(ω, k) = ĥ(ω, k), (ω, k) ∈ R
2.

Using Parseval’s equality, the estimate (5.13) is satisfied if (and only if) the follow-
ing inequality holds

k2
∥∥∥[iω + ε−1ikA + Dk2]−1

∥∥∥ � C,

where C is independent of ε, k and ω. Scaling ω → ε2ω and k → kε−1, the
problem is reduced to the case ε = 1:

k2
∥∥∥[iω + ikA + Dk2]−1

∥∥∥ � C. (5.14)

Estimate (5.14) holds uniformly for all ω ∈ R and large k (|k| > k+ � 1) due
to the assumption (5.3) on the matrix D, so only the case of |k| bounded need be
considered. In that case, (5.14) is trivially satisfied if |ω| → ∞, so only the case of
bounded (ω, k) need be considered.

Now, due to (5.4), the matrix on the left-hand side of (5.14) is invertible for
k �= 0. Thus, using a compactness argument, Equation (5.14) needs to be verified
only for the case k → 0. To this end, scale ω̃ = ωk−1 and transform (5.14) to

k
∥∥∥[iω̃ + iA + Dk]−1

∥∥∥ � C, (5.15)

which should be satisfied for all ω̃ ∈ R and |k| � 1.
Let {λ0

1, . . . , λ
0
m} be the (real) eigenvalues of the matrix A. Then, (5.15) may

be violated only in the case where |ω̃ − λ0
i | � 1, i = 1, . . . , m and the necessary

and sufficient condition for (5.15) to be satisfied in that region of parameters is that

|λi (iω̃ + iA + Dk)| � C |k|. (5.16)

But this condition is guaranteed by assumption (5.4) and Lemma 5.1. This com-
pletes the proof of Lemma 5.3. ��

The next lemma allows for the reduction of the general case of Equation (5.1)
to the particular case u(0) = 0.
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Lemma 5.4. Let the above assumptions (5.2)–(5.5) hold. Then, for every u0 ∈
H1(R) and every ε > 0, there exists a function w ∈ C(R, H1) ∩ L2(R, H2) such
that w(t) ≡ 0 for t /∈ [−1, 1], w(0) = u0 and

‖w‖C([−1,1],H1)∩L2([−1,1],H2) � C‖u0‖H1(R), (5.17)

where C is independent of ε �= 0 and u0. Moreover,

wt + 1

ε
Awx − Dwxx = f,

and

‖f‖L2([−1,1]×R) � C1‖u0‖H1 ,

where C1 is also independent of ε and u0.

Proof. It is sufficient to prove the lemma for D = I, where I is the identity matrix.
Fix D = I. Without loss of generality, A can be assumed to be symmetric. Construct
the function w̃(t) as a solution of the following equations:

w̃t + 1
ε
Aw̃x − w̃xx = 0, t � 0, w̃(0) = u0,

w̃t + 1
ε
Aw̃x + w̃xx = 0, t � 0, w̃(0) = u0.

⎫
⎬

⎭
(5.18)

Then, since A is symmetric, multiplication of the first of (5.18) by w̃ − w̃xx , and
integrating over time and space,

1

2
‖w̃‖2

C(0,1;H1(R))
+

∫ 1

0
‖w̃x (t)‖2

H1(R)
dt � ‖w̃(0)‖2

H1(R)
.

For negative times, multiply the second equation of (5.18) by w̃ − w̃xx giving

1

2
‖w̃‖2

C(−1,0;H1(R))
+

∫ 0

−1
‖w̃x (t)‖2

H1(R)
dt � ‖w̃(0)‖2

H1(R)
.

These estimates combine to give the desired estimate (5.17). Finally, setting

w(t, x) := w̃(t, x)χ(t),

where χ(t) is a cut-off function which equals one at t = 0 and is zero outside of
the interval [−1, 1], gives the desired extension w. ��

The main result of this section can now be formulated and proved.

Theorem 5.1. Let the assumptions of Lemma 5.2 and 5.3 hold. Then, the solution
u(t) of problem (5.1) satisfies

‖u(t)‖2
H1(R)

+
∫ t

0
‖uxx‖2

H(R) ds � C

(
‖u(0)‖2

H1(R)
+

∫ t

0
‖h(s)‖2

H(R) ds

)
,

(5.19)

where the constant C is independent of ε, h and t � 0.
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Proof. Due to Lemma 5.4, it can be assumed, without loss of generality that u(0) =
0. The general case is reduced to that particular one just by replacing u by u − w
where w is constructed in Lemma 5.4. Now apply Lemma 5.3 with h̃(s) = h(s),
for s ∈ [0, t] and h(s) = 0 for s /∈ [0, t]. Then, estimate (5.13) reads

∫ t

0
‖uxx‖2

H ds � C
∫ t

0
‖h(s)‖2

H ds. (5.20)

Thus, it is only necessary to verify the estimate of the H1-norm of the solution.
To this end, due to the estimate (5.20), the term Duxx may be interpreted as the
right-hand side and write problem (5.1) in the form

ut + 1

ε
Aux = h̃ := h + Duxx . (5.21)

Without loss of generality, assume that A is symmetric here. Multiply this equation
by uxx and integrate over t and x to obtain the desired estimate for the H1-norm
of u, thus finishing the proof. ��

5.3. Uniform Estimates: The Weighted and Uniformly Local Case

Our aim now is to obtain the analogue of (5.19) in weighted and uniformly
local spaces.

A novelty in this section is that ε, which is a measure of the distance from
the criticality surface, will also be used for the parameter in the definition of the
weighted space: μ = ε. Indeed, it will be shown that this choice is essential. On
the other hand, this use of ε is only an intermediate step as the final results are in
terms of the uniformly local spaces which are independent of the choice of weight
function.

To this end, we consider the case of weighted spaces with the weight function

θε(x) := e−ε|x |,

where the parameter ε in the weight is the same as in (5.1).

Corollary 5.1. Let the assumptions of Theorem 5.1 hold and let θε(x) := e−ε|x |
be an exponential weight function with the same exponent ε as in (5.1). Then the
solution u of Equation (5.1) satisfies the following estimate:

‖u(t)‖2
H1

θε

+
∫ t

0
eC(t−s)‖u(s)‖2

H2
θε

ds �CeCt‖u(0)‖2
H1

θε

+C
∫ t

0
eC(t−s)‖h(s)‖2

L2
θε

ds, (5.22)

where the constant C is independent of ε.
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Proof. Let θ̄ε(x) = e−ε
√

x2+1 be the smooth analogue of the weight θε(x) and let
w(t) = θ̄εu(t). Then, this function solves the following equation

wt + 1

ε
Awx − wxx = h̃ := θ̄εh + 1

ε
θ̄ ′
ε(θ̄ε)

−1w − 2(θ̄ε)
−1θ̄ ′

εwx − (θ̄ε)
−1θ ′′

ε w.

(5.23)

Using the obvious formula

|θ̄ ′
ε(x)| + |θ̄ ′′

ε (x)| � Cεθ̄ε(x), (5.24)

where the constant C is independent of ε, we see that

‖̃h(t)‖2
L2(R)

� C‖θ̄εh(t)‖2
L2(R)

+ C‖w(t)‖2
H1(R)

. (5.25)

Applying estimate (5.19) to Equation (5.23) gives

‖w(t)‖2
H1 +

∫ t

0
‖wxx (s)‖2

L2 ds � C‖w(0)‖2
H1 + C

∫ t

0
‖θ̄εh(s)‖2

L2 ds

+C
∫ t

0
‖w(s)‖2

H1 ds. (5.26)

This estimate together with Gronwall’s inequality and the equivalence

‖u‖Hs
θε

∼ ‖θ̄εu‖Hs ,

give

‖u(t)‖2
H1

θε

+
∫ t

0
eC(t−s)‖u(s)‖2

H2
θε

ds � C‖u(0)‖2
H1

θε

eCt

+C
∫ t

0
eC(t−s)‖h(s)‖2

L2
θε

ds, (5.27)

which is equivalent to (5.22). ��
Corollary 5.2. Let the assumptions of Theorem 5.1 hold and let h ∈ L2

b(R+ × R)

and u(0) ∈ H1
b (R). Then, the following estimate holds for the solution u(t) of

Equation (5.1):

‖u(t)‖H1
b

+ ‖uxx‖L2
b([0,t]×R) � Cε−1/2eCt

(
‖u(0)‖H1

b (R) + ‖h‖L2
b([0,t]×R)

)

(5.28)

where the constant t is independent of ε, v and t � 0.

Proof. Indeed writing out the space-shifted version of estimate (5.22) (with the
weight function θε(x) replaced by θε(x − s)), taking the supremum with respect
to s ∈ R from both sides of the obtained inequality and using estimate (4.9) with
p = 2, gives the desired inequality. ��
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6. Validity of the Reduction to Q-Burgers Equation

We now have the technical tools required to study the the remainder equation
(3.9) and to verify the long-time validity of the reduced Q-Burgers equations. The
strategy is to apply Corollary 5.1 to Equation (3.9). To this end, the following
assumptions on the linear part of this equation are required:

The matrices A := DF(p) and D satisfy the assumptions of Theorem 5.1.(6.1)

In addition, we assume that there exists a solution w0 = (u1, . . . , uk) of the reduced
Q-Burgers equations which does not blow up on the interval T ∈ [0, T ] and satisfies

‖w0(T )‖L2
b(R) :=

k∑

j=1

‖u j (T )‖L2
b(R) � K , T ∈ [0, T ], (6.2)

for some constant K > 0. Then, according to Proposition 4.5 and Corollary 4.1,
the higher norms of w0 do not blow up as well and, in particular, if the initial data
satisfies

‖w0
∣∣
t=0‖W 2,2

b (R)
� K , (6.3)

we have

‖w0‖L∞([0,T ],W 2,2
b )

+ ‖∂T ∂X w0‖L2
b([0,T ]×R) + ‖∂3

X w0‖L2
b([0,T ]×R) � C, (6.4)

where the constant C depends only on K and is independent of T . Therefore, the
corrector h in equation (3.7) satisfies the estimate

‖h‖L2
b([0,T ]×R) � C, (6.5)

where the constant C depends only on K and is independent of T .
Finally, we assume that the initial data U (X, 0) for equation (1.1) is ε2 close to

the initial data for the Q-Burgers approximation, namely,
∥
∥R

∣
∣
t=0

∥
∥

W 1,2
b (R)

� K ε, (6.6)

where R is defined via (3.3).
We are now ready to formulate the main result of the section.

Theorem 6.1. Suppose assumptions (6.1), (6.2), (6.5) and (6.6) hold. Then, for
every K > 0 and T > 0, there exists ε0 = ε0(K , T ) > 0 such that, for all
ε < ε0, the trajectory U (X, T, ε) of (1.1) remains ε3/2 close to the corresponding
trajectory of the Q-Burgers approximation on the time interval T ∈ [0, T ], namely,
the following estimate holds

‖z(T ) − w(T )‖W 1,2
b (R)

� Cε1/2, T ∈ [0, T ], (6.7)

for all ε � ε0. We remind that z(X, T ) := ε−1(U (X, T, ε)−p) and the approxima-
tion w(X, T ) is built up based on the solution w0 = (u1, . . . , uk) of the Q-Burgers
equation via (3.4) and (2.5).
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Remark 6.1. As we have seen in (6.4), the solution w0(T ) is uniformly bounded
in the W 2,2

b -norm as T ∈ [0, T ]. By this reason, the component V0(X, T ) is also

uniformly bounded in the W 1,2
b -norm and, consequently, εV0(X, T ) is of order ε

uniformly with respect to T . Thus, estimate (6.9) can be rewritten as follows:

‖z(T ) − w0(T )‖W 1,2
b (R)

� Cε1/2. (6.8)

However, it is more convenient to include the term εV0(T ) into the approximation
z(X, T, ε).

Proof. It is not difficult to see that, in order to prove the theorem, it is sufficient to
verify the following conditional result: the estimate

‖z(T ) − w(T )‖W 1,2
b (R)

� Cε1/2eκT , T ∈ [0, T ], (6.9)

holds if

‖z(T ) − w(T )‖W 1,2
b (R)

� 1 for T � T . (6.10)

Here C and κ are some constants depending on K , but they are independent of
ε > 0. Thus, we only need to prove (6.9) under the assumption that (6.10) is valid.

Note that, due to (6.10) and (6.4)

‖z(T )‖W 1,2
b (R)

� C, (6.11)

and therefore, since W 1,2 is an algebra (in one space dimension)

‖∂XΦε(z(T ))‖L2
b(R) � χ

(
‖z(T )‖W 1,2

b (R)

)
� C, (6.12)

for some function χ(·). Analogously,

‖D2F(p)[R(T ), 2w(T) + R(T )]‖W 1,2
θε,s

(R)
� C‖R(T )‖W 1,2

θε,s
(R)

, (6.13)

where θε,s(X) := e−ε|X−s|. Therefore, using (4.9) with p = 2,

‖H(t)‖L2
θε,s

(R) � Cε1/2 + C‖R(T )‖W 1,2
θε,s

(R)
, (6.14)

where H(t) is defined in (3.10). Applying now estimate (5.22) to equation (3.9),
and using estimate (6.14), we have

‖R(T )‖2
W 1,2

θε,s
(R)

� CεeκT + C
∫ T

0
eκ(T −τ)‖R(τ )‖2

W 1,2
θε,s

(R)
, (6.15)

where the constants C and κ are independent of T and ε. Applying the Gronwall
inequality, we finally arrive at

‖R(T )‖2
W 1,2

θε,s
(R)

� C1εeκ1T ,

for some new uniform constants C1 and κ1. Taking the supremum over s ∈ R from
both sides of the last inequality, we deduce (6.9) and finish the proof of the theorem.
��
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Note that Theorem 6.1 gives the long-time validity of the Q-Burgers approximation
for the trajectories U (X, T, ε) starting from the small neighborhood of a single
smooth solution w0 of the Q-Burgers equation only. This result can be essentially
improved if the global solvability of the Q-Burgers equations is known.

Corollary 6.1. Let the assumption (6.1) hold and suppose the associated Q-
Burgers system is globally solvable on any time interval T ∈ [0, T ] and the
following estimate holds:

‖w0(T )‖L2
b(R) � χ(T, ‖w0(0)‖L2

b(R)), (6.16)

for some monotone increasing (in both arguments) function χ . Then, for every
K > 0 and T > 0, there exists ε0 = ε0(K , T ) such that, for every ε < ε0 and
every initial data U (X, 0, ε) satisfying

‖P(U (·, 0, ε) − p)‖W 2,2
b (R)

� K ε, ‖Q(U (·, 0, ε) − p)‖W 1,2
b (R)

� K ε2, (6.17)

the trajectory U (X, T, ε) is ε3/2-close to the Q-Burgers approximation with the
initial data

w0(X, 0, ε) = ε−1P(U (X, 0, ε) − p),

namely,

‖z(T ) − w(T )‖W 1,2
b (R)

� Cε1/2, (6.18)

for all T � T .

Proof. Indeed, due to the first assumption of (6.17), ‖w0(0)‖W 2,2
b

� K . Then

assumption (6.16) guarantees that the corresponding solution w0(T ) of the Q-
Burgers system exists on the time interval T ∈ [0, T ] and estimate (6.2) holds for
some K which is independent on ε. Finally, due to the second inequality of (6.17),
assumption (6.6) is also satisfied. Thus, applying Theorem 6.1, we get (6.18) and
prove the corollary. ��

Remark 6.2. For the case of scalar Burgers equation (k = 1), assumption (6.16) is
automatically satisfied due to the maximum principle. However, there is no maxi-
mum principle for the Q-Burgers equations in the vector case (k > 1) and we do
not know whether or not the global solvability holds in general (some particular
cases where (6.16) holds are considered in Sections 4 and 7). For this reason, we
have to postulate the existence of a smooth solution w0 in Theorem 6.1.
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7. Q-Burgers and Gradient Structure

When k = 1 the reduced equation is the classical scalar Burgers equation

uT + κuu X = νu X X , (7.1)

about which much is known (for example Burgers [9], Beck and Wayne [3],
Doelman et al. [11] and references therein). The canonical solution is the trav-
eling front

u(X, T ) = c

κ
− c

κ
tanh

( c

2ν
(X − cT )

)
.

This front connects two constant states as X → ±∞:

lim
X→−∞ u(X, T ) = 2c

κ
and lim

X→+∞ u(X, T ) = 0 (T fixed).

The maximum principle can be used to prove global existence of solutions of
scalar Burgers in L2

b(R), and that result is a by-product of the more general proof
in Section 4. In the context of shallow water hydrodynamics (for example [2,15,
19,28]), the travelling front is called a hydraulic jump.

When k � 2 the reduced equation has non-trivial coupling and so the analysis
is more difficult. For general non-gradient quadratic nonlinearity a global existence
proof for the reduced equations is elusive and we have to assume the non-linearity
to be gradient in order to be able to establish such a global existence, see subsection
Section 4.3.

However, in the case k = 2 there is a theorem of Schaeffer and Shearer [26]
which relates the gradient structure with the more natural (from the point of view
of conservation laws) concept of hyperbolicity of Q. We recall that a map Q(u) is
hyperbolic if DQ(u) has real eigenvalues and is diagonalizable for all u ∈ R

2.

Lemma 7.1. (Schaeffer and Shearer [26]) Suppose that Q(u) is a homogeneous
quadratic and is hyperbolic. Then there exists a constant invertible linear transfor-
mation M such that

M−1Q(Mv) = ∇Ψ (v), (7.2)

for some scalar potential Ψ .

This result is Lemma 3.2 in [26] and a direct proof can be given by noting that
DQ(u) is linear in u and then using linear algebra.

This transformation is useful since substitution of u = Mv in the Q-Burgers
equation (1.10) and use of (7.2) gives

∂v
∂T

+ ∂

∂ X
(∇Ψ (v)) = E

∂2v
∂ X2 , (7.3)

where

E = M−1D̂M. (7.4)
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With a gradient nonlinearity, we may apply Theorem 4.1 to the transformed equation
(7.3) and to prove global existence of weak solutions if the new diffusion matrix
(7.4) has a positive symmetric part. In particular, it will be always true if the initial
diffusion matrix D is a scalar multiple of the identity, D = νI.

For the case k > 1 in Q-Burgers (1.10) we may still look for traveling wave
solutions u(X, T ) = û(X − cT ). They satisfy

D̂ûX = Q(̂u) − ĉu + constant. (7.5)

In the case k = 2 it is possible to analyze solutions using phase plane techniques,
and when the nonlinearity is gradient, it will be a planar gradient ODE. In the latter
case, the canonical solution will then be a traveling front, but there is the potential
for multiple fronts. For k > 2 the phase space will be of dimension 3 or greater and
so existence of solutions of (7.5) will be more difficult, and may even be chaotic.

Note also that, to the best of our knowledge, the Schaeffer–Shearer transforma-
tion does not generalize to the case k > 2: there does not exist in general a constant
matrix M with the property (7.2). This is to be expected since the solutions of (7.5)
for k > 2 can be much more complicated and are not gradient-like in general.

8. Geometry of the Flux Vector

To clarify the geometry of the flux vector, consider it as a mapping, F : V → W ,
between two vector spaces V and W of dimension n. Once the geometry is clear,
we will revert to a mapping on R

n .
Degeneracy of the form det(DF(p)) = 0 of a smooth mapping F between man-

ifolds is a well-studied problem in singularity theory (cf. Chapter 2 of Arnold,
Gusein-Zade and Varchenko [1], Chapter VI of Golubitsky and Guillemin
[17]). The subsets of V where the Jacobian is singular are called the Thom–
Boardman singularities of the mapping and are denoted in singularity theory by

Σk(F) = {p ∈ V : DF(p) has rank n − k} .

In this paper, attention will be restricted to the cases k = 1 and k = 2. There can
however be higher order singularities on subsets of Σ1(F). The simplest such set
is denoted by

Σ11(F) = Σ1

(

F

∣∣∣∣
Σ1(F)

)

.

When Σ1(F) is a manifold, then F

∣
∣∣∣
Σ1(F)

is a mapping between two manifolds, and

Σ11(F) is the subset of Σ1(F) where the differential has a one-dimension kernel
(an example is given in Section 9). Geometrically Σ11(F) is the set where the kernel
of DF(p) lies in the tangent space of Σ1(F). This classification, Σ i jk···(F) can be
continued until the dimension is exhausted [1,17]. In this paper, attention will be
predominantly restricted to a study of the implications for F(p) of the hypersurfaces
Σ1(F), Σ2(F) and the subset Σ11(F).



Reduction and Validity of Burgers Dynamics

8.1. The Geometry of Σ1(F)

When p ∈ Σ1(F) the kernel and cokernel of DF(p) are one dimensional. Define
h = Ker(DF(p)) and h∗ = Ker(DF(p)T ). Then with the assumption p �∈ Σ11(F),
decompose the vector spaces V and W as follows

V ∼= Tp V = h ⊕ TpΣ
1(F) and W ∼= TF(p)W = TF(p)F(Σ1(F)) ⊕ h∗,

where F(Σ1(F)) is the image of Σ1(F) in W , which is locally a hypersurface in
W . Introduce the mapping on h∗ × h,

s 
→ K (p, s) := 〈η, F(p + sξ)〉W , p ∈ Σ1(F), ξ ∈ h, η ∈ h∗, (8.1)

where 〈·, ·〉W is a pairing on W . With the definition (8.1),

Ks(p, s) = 〈η, DF(p + sξ)ξ〉W ,

using the identification W ∼= TF(p)W , and so Ks(p, 0) = 0 when p ∈ Σ1(F).
The graph of K (p, s) in h∗ × h is a planar curve. It is the curvature of the

graph (s,K (p, s)) that appears as the coefficient of the nonlinearity in the reduced
Burgers equation. The curvature of a planar curve at any s takes the standard form

Kss
(
1 + K 2

s

)3/2 .

However at points with Ks = 0, the denominator reduces to unity, making the
second derivative itself invariant under coordinate change. This observation is a
special case of the intrinsic second derivative of the mapping F. The intrinsic second
derivative is the second derivative evaluated on the kernel of the first derivative (cf.
Porteous [25], Arnold et al. [1], page 149 of Golubitsky and Guillemin
[17]). It arises naturally in our construction of the reduced equation. The function
K (p, s) is quadratic in s for s small when p ∈ Σ1(F),

K (p, s) = K (p, 0) + 1
2 s2〈η, D2D(p)(ξ , ξ)〉W + · · · (8.2)

The quadratic term is precisely the intrinsic second derivative of F. An additional
interesting fact is that p ∈ Σ1(F) \ Σ11(F) if and only if the second intrinsic
derivative is non-vanishing (cf. §3 of [7]),

p /∈ Σ11(F) ⇔ d2

ds2

∣
∣∣∣
t=0

K (p, s) �= 0, p ∈ Σ1(F). (8.3)
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8.2. An Example of Σ1(F) in the Case n = 2

Let V, W be two-dimensional vector spaces. Consider the following example
of a flux vector F : V → W ,

F1(U) = U1 + 1
2U 2

2 and F2(U) = U1U2, (8.4)

with Jacobian

DF(U) =
(

1 U2
U2 U1

)
.

This example is in fact a simplified version of the flux vector for the shallow water
equations (see Section 9).

The Jacobian is degenerate when U 2
2 = U1 and so

Σ1(F) = {p ∈ V : p2
2 − p1 = 0}.

The Jacobian has rank 1 as long as 1 + p1 �= 0. But p ∈ Σ1(F) implies p1 � 0
and so the rank can not drop to zero. Hence Σ2(F) is empty.

On the other hand, the set Σ11(F) is not empty. The tangent space of Σ1(F) is

TpΣ
1(F) =

{
span

(
2p2

1

)}
⊂ Tp V,

whereas,

h = span{ξ}, ξ =
(−p2

1

)
and h∗ = span{η}, η = 1

1 + p1

(−p2
1

)
.

The geometry of Σ1(F) and its mapping is illustrated in Fig. 1. The left figure shows
Σ1(F) as a subset of V , and the right figure shows the image of Σ1(F) under the
mapping F in the W−plane. The image is

F(Σ1(F)) =
(

p1 + 1
2 p2

2
p1 p2

)∣∣∣∣
p∈Σ1(F)

=
( 3

2 p2
2

p3
2

)
, p2 ∈ R,

which is a cusp in the W−plane.
When p2 �= 0 then h and TpΣ

1(F) together span V , and it fails when p2 = 0.
Hence

Σ11(F) = {(p1, 0)} ∩ Σ1(F),

which consists of just the origin in V .
The intrinsic second derivative is obtained as follows

K (p, s) = 〈η, F(p + sξ)〉
= η1((p1 + sξ1) + 1

2 (p2 + sξ2)
2) + η2(p1 + sξ1)(p2 + sξ2)

= κ0 + κ1s + 1
2κ2s2, (8.5)
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F(p)

F2

Σ (F)

Σ (F)

p1

p2

F1

11

1

Fig. 1. The set Σ1(F) in V and its image under F in W

with

κ0 = − p3
2

2(1 + p1)
, κ1 = 0, κ2 = − 3p2

1 + p1
when p ∈ Σ1(F).

Hence

κ = d2

ds2

∣∣∣
∣
s=0

K (p, s) = κ2 = − 3p2

1 + p1
.

κ is clearly the intrinsic curvature of the plane curve in K (p, s) in h∗ × h. As
expected, the intrinsic second derivative κ vanishes if and only if p ∈ Σ11(F).

8.3. Summary

Reverting back to V = W = R
n , with inner product 〈·, ·〉, the key geomet-

ric features of the flux vector that will be needed are (a) the kernel of DF(p),
denoted by h = span{ξ1, . . . , ξ k}, (b) the co-kernel of DF(p), denoted by
h∗ = span{η1, . . . , ηk}, and (c) the intrinsic second derivative which is a tensor
with entries

Γ l
i j = 〈ηl , D2F(p)(ξ i , ξ j )〉, i, j, l = 1, . . . , k. (8.6)

9. Example: The Shallow Water Equations near Criticality

An example is the shallow water equations with dissipative mollifier

ht + (hv)x = μhxx

vt + (
gh + 1

2v2
)

x = μvxx .
(9.1)

In these equations, h(x, t) is the depth and v(x, t) the horizontal velocity for a
shallow water flow as shown schematically in Fig. 2. The parameter g > 0 is the
gravitational constant, and μ > 0 is a positive dissipation parameter. In the shallow
water equations (9.1) the state vector is U = (h, v) and the flux vector is

F(U) =
(

hv

gh + 1
2v2

)
.
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x

h(x,t)

v(x,t)

Fig. 2. Schematic of shallow water hydrodynamics

Constant states (h0, v0) are called uniform flows. The derivative of the flux vector
evaluated on a uniform flow is

DF(U0) =
(

v0 h0
g v0

)
,

and criticality occurs when p = (h0, v0) satisfies

0 = det(DF(p)) = det = v2
0 − gh0 = −gh0(1 − F2),

where

F = v0√
gh0

,

is the Froude number. The singularity in this case is in Σ1(F). When v0 �= 0 this
is the highest order singularity since both Σ11(F) and Σ2(F) are empty. Hence
assume v0 �= 0. The singular set is a parabola in the (h, v) plane and the image of
the singular set in the F plane is a cusp, similar to Fig. 1 (in Fig. 1 the components
of the flux vector are permuted and g = 1).

According to the theory in this paper, the reduced equation for parameter values
near the criticality surface is a single Burgers equation

uT + κuu X = νu X X ,

with

ν = 〈η, Dξ 〉 = 〈η, μIξ 〉 = μ 〈η, ξ 〉 = μ.

To compute the curvature coefficient, explicit expressions for the eigenvectors are
needed. The eigenvectors satisfy

DF(p)ξ = 0 and DF(p)T η = 0 with 〈η, ξ 〉 = 1,

giving

ξ =
(−v0

g

)
and η = 1

2gv0

(−g
v0

)
.

Use (1.7) to compute κ ,

κ = d2

ds2

∣∣
∣∣
s=0

〈η, F(p + sξ)〉 = 3

2
g.

In this case the reduced equation captures the classical result of the generation of
a travelling hydraulic jump due to criticality.
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9.1. Singular Dissipation Matrix

The typical physical model for dissipation in the shallow water equations (for
example [15,21]) is of the form

ht + (hv)x = 0

vt + (
gh + 1

2v2
)

x = μvxx ,
(9.2)

that is, the dissipation acts only on the second equation. The dissipation matrix,

D =
(

0 0
0 μ

)
,

is singular. Formally, the derivation of Burgers equation goes through as before,
and the reduced equation is still Burgers equation since

ν = 〈η, Dξ 〉 = μ

〈
η,

(
0 0
0 1

)
ξ

〉
= 1

2μ.

Hence, the reduced Burgers equation is only slightly modified

uT + κuu X = 1
2μu X X , (9.3)

with the same κ .

9.2. Validity for Singular Dissipation Matrix

Validity of the reduction from (9.2) to (9.3) does not follow from the general
Theorem 6.1 of this paper, since a non-singular dissipation matrix is a hypothesis
in (5.5) of Section 5. A validity result would depend on the dimension of the kernel
of D, and extra assumptions would be required in general.

On the other hand, to give some idea of the impact of singular dissipation, a
validity proof for the reduction of (9.2) to (9.3) is given in this section. Surprisingly,
the only additional assumption in this case is that the initial data for (9.3) requires
one additional derivative. A key to the validity proof is that there is a natural energy
for (9.2).

Seek a solution of (9.2) in the form
(

h(T, X)

v(T, X)

)
=

(
h0
v0

)
+ε

(−v0
g

)
u(T, X)+ε2

(
v0
g

)
v̄(T, X)+ε

(
H(T, X, ε)

V (T, X, ε)

)
,

(9.4)

where v2
0 = gh0,

(
v0
g

)
is the second eigenvector of the matrix DF(p), u solves the

Burgers equation (9.3), the corrector v̄ is found according to (2.5), namely,

v̄(T, X) := g

8v0
u2(T, X) + μ

4v0
u X (T, X), (9.5)
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and R :=
(

H
V

)
is the remainder to be estimated. A straightforward calculation

shows that this remainder solves
(

H
V

)

T
+ 1

ε

(
v0 h0
g v0

)(
H
V

)

X
+ u

(
g −v0
0 g

)(
H
V

)

X
+ εv̄

(
g v0
0 g

)(
H
V

)

X

+
(

H V
1
2 V 2

)

X
= μ

(
0
V

)

X X
+ ε

( −v0v̄T − 2v0εgv̄v̄X

−gv̄T + μgv̄X X + g2(uv̄)X − εg2b̄v̄X

)
.

(9.6)

Assume now that the initial data u(0) and R(0) for the Burgers equation (9.3) and
the remainder equation (9.6) are chosen in such way that

‖u(0)‖W 3,2
b (R)

� K , ‖R(0)‖W 1,2
b (R)

� K ε (9.7)

for some K which is independent of ε. Then, due to the maximum principle for the
scalar Burgers equation, it follows that

‖u(T )‖W 3,2
b (R)

+ ‖v̄(T )‖W 2,2
b (R)

+ ‖v̄T X‖L2
b([T,T +1]×R)

+‖v̄X X X‖L2
b([T,T +1]×R) � K1 (9.8)

for some constant K1 which depends only on K (and is independent of T ).
The following result is the analogue of Theorem 6.1 for equations (9.6).

Theorem 9.1. Let the above assumptions hold. Then, for every K > 0 and T > 0
there exists ε0 = ε0(K , T ) such that, for every initial data satisfying (9.7) and all
ε � ε0, the corresponding solution of (9.6) exists on the time interval T ∈ [0, T ]
and satisfies the estimate

‖R(T )‖W 1,2
b (R)

� Cε1/2, T ∈ [0, T ], (9.9)

where the constant C depends only on K and T (and is independent of ε � ε0).

Sketch of the proof. Take the weight function θε(X) := e−ε|X−X0|, where X0 ∈
R is a parameter and multiply the first and the second equations of (9.6) by gθ2

ε H −
g(θ2

ε HX )X and h0θ
2
ε V − h0(θ

2
ε VX )X respectively. Then, using integration by parts

as well as the estimate (4.15), we see that all terms of order ε−1 cancel out. Thus,
using also (9.8) and arguing in a standard way, we end up with the following
estimate:

1

2

d

dT

(
g‖H‖2

W 1,2
θε

(R)
+ h0‖V ‖2

W 1,2
θε

(R)

)
+ μh0‖V ‖2

W 2,2
θε

(R)

� C(‖H‖2
W 1,2

θε
(R)

+ ‖V ‖2
W 1,2

θε
(R)

) +

+Cε2
(

‖v̄T ‖2
W 1,2

θε
(R)

+ ‖v̄X X‖2
W 1,2

θε
(R)

)
− g((H V )X , θ2

ε H − (θ2
ε HX )X )

+h0(V VX , θ2
ε V − (θ2

ε VX )X ),
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where the constant C depends on K , but is independent of ε. Thus, we only need to
estimate the last two non-linear terms in the right-hand side of this inequality. We
consider in more detail only the most complicated term containing HX X , the other
terms can be estimated in a similar way. Indeed, integrating by parts and using the
embedding W 1,2

θε
⊂ L∞

θε
, we get

g|((H V ))X , (θ2
ε HX )X )| � 3

2
g|(H2

Xθ2
ε , VX )|

+g|(H HX , θ2
ε VX X )| + 1

2
g|(H2

X , (θ2
ε )X V )|

� C‖VX‖L∞
θε

(R)‖HX‖L2
b(R)‖HX‖L2

θε
(R)

+C‖H‖L∞(R)‖‖HX‖L2
θε

(R)‖VX X‖L2
θε

(R)

+C‖V ‖L∞
θε

(R)‖HX‖L2
b(R)‖HX‖L2

θε
(R)

� C‖H‖W 1,2
b (R)

‖H‖W 1,2
θε

(R)
‖V ‖W 2,2

θε
(R)

� C1‖H‖2
W 1,2

b (R)
‖H‖2

W 1,2
θε

(R)
+ μh0/4‖V ‖2

W 2,2
θε

(R)
. (9.10)

Inserting this estimate into the previous one, we end up with the following inequal-
ity:

1

2

d

dT

(
g‖H‖2

W 1,2
θε

(R)
+ h0‖V ‖2

W 1,2
θε

(R)

)

� C
(

1 + ‖H‖2
L2

b(R)
+ ‖V ‖2

L2
b(R)

)(
g‖H‖2

W 1,2
θε

(R)
+ h0‖V ‖2

W 1,2
θε

(R)

)

+Cε2
(

‖v̄T ‖2
W 1,2

ϕε (R)
+ ‖v̄X X‖2

W 1,2
θε

(R)

)
, (9.11)

where the constant C depends on K , but is independent of ε. Estimate (9.11) implies
the desired estimate (9.9) in a standard way. Indeed, if we assume for a while that

‖H(T )‖2
W 1,2

b (R)
+ ‖V (T )‖2

W 1,2
b (R)

� 1, T ∈ [0, T ], (9.12)

Then applying the Gronwall inequality to (9.11) and using (9.7) and (9.8) together
with (4.9), we conclude that

‖H(T )‖2
W 1,2

θε
(R)

+ ‖V (T )‖2
W 1,2

θε
(R)

� C2ε, T ∈ [0, T ],

where C2 depends on K and T , but not on ε and the parameter X0 ∈ R in the
definition of the weight. Taking the supremum with respect to X0 ∈ R and using
(4.8), we see that

‖H(T )‖2
W 1,2

b (R)
+ ‖V (T )‖2

W 1,2
b (R)

� C2ε, T ∈ [0, T ].

Thus, assumption (9.12) is indeed satisfied if ε is small enough and the theorem is
proved. ��
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As we see, Theorem 9.1 gives almost a complete analogue of our general result
of Theorem 6.1 for the case of partially dissipative system (9.2). The only difference
is that we need a bit more smoothness of the solution u of the Q-Burgers equation
(u ∈ W 3,2

b (R) instead of u ∈ W 2,2
b (R), see (6.3)) in order to compensate for the

lack of dissipation in the h-equation.

Another feature of the proof is that there is a well-defined energy. Let U =
(

h
v

)
.

Then (9.2) can be written in the form

Ut + (M∇E)x = 0, with M =
[

0 1
1 0

]
,

with energy

E(h, v) = 1
2 hv2 + 1

2 gh2,

and this energy plays a central role in the proof. General systems of this type, where
the flux vector is the product of a symmetric matrix and the gradient of an energy,
have been considered in general by Benjamin and Bowman [5]. For example, the
case of three layers considered in the next section falls into this class of systems.
When the energy is positive, systems of the type

Ut + (M∇E)x = DUxx ,

with D singular, are candidates for extending the theory to more general systems
with singular dissipation matrix. In addition the dimension of the kernel of D will
play a role.

10. Example: Stratified Three-Layer Shallow Water Equations

The shallow water equations with multiple layers of differing density are a rich
source of singularities [2,8,19,28]. Here we will consider the case of three layers
since there are parameter values at which the Jacobian of the flux vector has a
double zero eigenvalue with linearly independent eigenvectors. Let ρ j , h j (x, t)
and v j (x, t) be the density, depth and horizontal velocity in each layer. For stable
stratification we require

ρ1 > ρ2 > ρ3 > 0. (10.1)

A schematic of the flow field is shown in Fig. 3. The governing equations can be
written in form of a dissipative conservation law (1.1)

Ut + F(U)x = DUxx , (10.2)

with D a constant matrix satisfying (1.2).
The state and flux vectors are
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x

h (x,t)

h (x,t)

h (x,t)

ρ
1

ρ
2

ρ
3

1

2

3

free surface; zero pressure

Fig. 3. A schematic of the flow configuration for three-layer shallow water theory

U =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

h1
h2
h3
v1
v2
v3

⎞

⎟
⎟⎟⎟⎟⎟
⎠

and F(U) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

h1v1
h2v2
h3v3

1
2v2

1 + gh1 + r2gh2 + r3gh3
1
2v2

2 + gh1 + gh2 + r3
r2

gh3
1
2v2

3 + gh1 + gh2 + gh3

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

where r2 = ρ2/ρ1 and r3 = ρ3/ρ1, and g is the gravitational constant. These equa-
tions are derived (for any number of layers) in §2 of Baines [2]. These equations
are for the case where the upper surface is free (zero pressure) and the pressure is
hydrostatic in the other layers.

10.1. Jacobian of the Flux Vector

Let U0 = (h1, h2, h3, v1, v2, v3) be a constant uniform state, and look at the
derivative of the flux vector evaluated on this state,

DF(U0) =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

v1 0 0 h1 0 0
0 v2 0 0 h2 0
0 0 v3 0 0 h3
g gr2 gr3 v1 0 0
g g gr3/r2 0 v2 0
g g g 0 0 v3

⎤

⎥⎥
⎥⎥⎥⎥
⎦

.

Criticality corresponds to the subset of uniform states, denoted by

p = (h0
1, h0

2, h0
3, v

0
1, v0

2, v0
3),

where

det(DF(p)) = 0.

Generically, the set of p ∈ R
6 satisfying this condition is a codimension one surface

in R
6. Writing out this determinant gives
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det(DF(p))= F2
2 (r3−r2(1 − F2

3 ))−(1 − r2−F2
1 )

(
r3

r2
−(1 − F2

2 )(1 − F2
3 )

)
,

(10.3)

where Fj corresponds to the local Froude number in each layer, for example,

F2
j = v2

j

gh j
.

Setting the expression (10.3) to zero gives the criticality surface. However, it is not
easy to illustrate this surface or to find the higher-order singularities as it is a hyper-
surface in R

6. Moreover we have to find the case where there are two independent
eigenvectors. Hence it is simpler to reduce the eigenvalue and eigenvector problem
together.

Suppose det(DF(p)) = 0 and let ξ ∈ R
6 be an eigenvector of DF(p)

DF(p)ξ = 0. (10.4)

For physical reasons, h0
1, h0

2 and h0
3 are never zero. Hence the first three equations

of (10.4) give

ξ j+3 = − v0
j

h0
j

ξ j , j = 1, 2, 3.

Substitution into the second three equations then gives a 3 × 3 system
⎡

⎢
⎢
⎣

1 − F2
1 r2 r3

1 1 − F2
2

r3
r2

1 1 1 − F2
3

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

ξ1

ξ2

ξ3

⎞

⎟
⎟
⎠ = 0.

Now, ξ2 can be eliminated from the third equation, giving the 2 × 2 system
[

F2
2

r3
r2

− (1 − F2
2 )(1 − F2

3 )

1 − r2 − F2
1 r3 − r2(1 − F2

3 )

] (
ξ1

ξ3

)

= 0, (10.5)

It is apparent that the matrix in (10.5) has a double zero eigenvalue if

F2 = 0 and F2
3 = 1 − r3

r2
. (10.6)

However, the 2×2 matrix in (10.5) has a non-trivial Jordan block and so the double
zero eigenvalue is nonsemisimple. For it to be semisimple we require the additional
condition

F2
1 = 1 − r2.

Hence when the following three conditions are satisfied the Jacobian has a
double zero eigenvalue with two linearly independent eigenvectors

v2 = 0,
v2

1

gh1
= 1 − ρ2

ρ1
,

v2
3

gh3
= 1 − ρ3

ρ2
. (10.7)
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Physically at these parameter values the middle layer is passive, and the upper and
lower layers decouple and each is independently critical.

It is now straightforward to calculate the eigenvectors

ξ1 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1
−1
0

−v0
1/h0

1
0
0

⎞

⎟⎟
⎟⎟⎟⎟
⎠

, ξ2 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0
−ρ3/ρ2

1
0
0

−v0
3/h0

3

⎞

⎟⎟
⎟⎟⎟⎟
⎠

,

and the adjoint eigenvectors, which satisfy

DF(p)T η = 0,

are

η1 = h0
1

2v0
1

⎛

⎜⎜⎜⎜
⎜⎜
⎝

v0
1/h0

1
0
0

−1
ρ2/ρ1

0

⎞

⎟⎟⎟⎟
⎟⎟
⎠

, η2 = h0
3

2v0
3

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0
0

v0
3/h0

3
0
1

−1

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

They have been normalised so that

(〈η1, ξ1〉 〈η1, ξ2〉
〈η2, ξ1〉 〈η2, ξ2〉

)
=

(
1 0
0 1

)
. (10.8)

Note that the assumptions v0
1 �= 0 and v0

2 �= 0 are not necessary since they follow
from the criticality conditions (10.7) and the stratification condition (10.1).

10.2. Derivatives of the Flux Vector

The nonlinearity in the reduced system is

∂

∂x

(
1
2Γ 1

11u2
1 + Γ 1

12u1u2 + 1
2Γ 1

22u2
2

)

∂

∂x

(
1
2Γ 2

11u2
1 + Γ 2

12u1u2 + 1
2Γ 2

22u2
2

) (10.9)

where

Γ k
i j =

〈

ηk,
∂2

∂si∂s j
F(p + s1ξ1 + s2ξ2)

∣
∣∣∣
s1=s2=0

〉

.
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Now, p is the uniform state satisfying (10.7), and the eigenvectors are calculated
above. Hence this is a straightforward computation. Only 2 out of 6 coefficients are
nonzero in this example. Computing we find

Γ 1
11 = −3

2

v0
1

h0
1

, Γ 1
12 = 0, Γ 1

22 = 0

Γ 2
11 = 0, Γ 2

12 = 0, Γ 2
22 = −3

2

v0
3

h0
3

,

where v0
1, v0

3 and h0
1, h0

3 have to satisfy (10.7).
Hence the reduced system is

∂u1

∂T
− 3

2

v0
1

h0
1

u1
∂u1

∂ X
= ν11

∂2u1

∂ X2 + ν12
∂2u2

∂ X2

∂u2

∂T
− 3

2

v0
3

h0
3

u2
∂u2

∂ X
= ν21

∂2u1

∂ X2 + ν22
∂2u2

∂ X2 .

(10.10)

Steady solutions of the reduced system, relative to a frame moving at speed c,
u j (X, T ) = û j (X − cT ), satisfy

ν11û′
1 + ν12û′

2 = −3
v0

1

h0
1

û2
1 − cû1 + A1

ν21û′
1 + ν22û′

2 = −3
v0

3

h0
3

û2
2 − cû2 + A2,

where A1 and A2 are arbitrary constants of integration. There are between 0 and 4
equilibrium points, and connecting orbits between the equilibria represent travelling
fronts (or travelling hydraulic jumps) in the original system. In the context of three-
layer fluids, these solutions model the birth of hydraulic jumps (see §4 of Baines
[2] for a discussion of hydraulic jumps in three-layer fluids).

11. Concluding Remarks

The results in this paper are based on the uniformly local spaces L2
b(R). These

results could be improved, at the expense of greater technicality, by going to the
spaces L p

b (R) with p arbitrary.

11.1. Non-semisimple Zero Eigenvalues of DF

We have assumed that the algebraic and geometric multiplicity of zero as an
eigenvalue of DF are equal. What happens when they are not equal? The simplest
case of this type is when zero is an eigenvalue of DF with algebraic multiplicity
two but geometric multiplicity one. Indeed this case already arises in the example
in Section 10 (see discussion just below Equation (10.6)).
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In the non-semisimple case the reduced modulation equation may be no longer
be Burgers or coupled Burgers. A new scaling is required which may change the
nature of the reduced equation. Suppose DF(p) has a non-semisimple double zero
eigenvalue with eigenvectors

DF(p)ξ1 = 0 and DF(p)ξ2 = ξ1,

and left eigenvectors η1 and η2 and usual normalization. Introduce scaled variables

X = εx and T = ε3/2t,

and express U in (1.1) in the form

U = p + εuξ1 + ε3/2vξ2 + ε2V, with 〈η j , V〉 = 0, j = 1, 2. (11.1)

Substitution into (1.1) and projection then leads to the following pair of equations
at leading order

uT + vX = 0 and vT + Γ 2
11uu X = ν21u X X , (11.2)

where νi j = 〈ηi , Dξ j 〉 and Γ k
i j is defined as in (8.6). This reduced equation is

formally asymptotically correct, but it is ill posed even locally unless Γ 2
11 = ν21 =

0.
Try a different scaling

X = ε1/2x and T = εt,

but express U in the same form (11.1). Substitution into (1.1) and projection then
leads to the following pair of equations at leading order

uT + vX = ν11u X X and vT + Γ 2
11uu X = 1

ε1/2 ν21u X X + ν22vX X . (11.3)

This equation looks worse since there is a singular term in the limit ε → 0. How-
ever, a calculation shows that if ν21 �= 0 then the equilibrium U0 of (1.1) is expo-
nentially unstable and there is no reason to expect that a solution started from an
ε-neighborhood of U0 will be close to it for a long time (T ∼ 1

ε
). This explains, in

particular, why both reductions described above lead to ”bad” equations if ν21 �= 0.
Hence the assumption ν21 = 0 is necessary for the validity of the modulation

equations derived above. With this assumption the reduced modulation equation
is locally well posed when ν11 > 0 and ν22 > 0 and is in the form of Q-Burgers
equations (see (1.10)) with

Q
(

u
v

)
=

(
v

1
2Γ 2

11u2

)
and D̂ =

(
ν11 0
0 ν22

)
.

However, this nonlinearity is not gradient and we cannot guarantee the global well
posedness using Theorem 4.1. In fact, this global well posedness fails and there
are solutions which blow up in finite time. Indeed, system (11.3) (with ν21 = 0) is
equivalent to the so-called strongly damped Boussinesq equation

uT T − (ν11 + ν22)uT X X + (ν11ν22)u X X X X =
(

1
2Γ 2

11u2
)

X X
, (11.4)
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for which the finite-time blow up is known (see Theorem 4 in Levine [20]). In
summary, although we believe that the strongly damped Boussinesq equation (11.4)
is a correct modulation equation for the non-semisimple case, its validity does not
follow directly from the theory developed in this paper and therefore remains an
open question.

11.2. Criticality Relative to a Moving Frame

The results in the paper have been developed relative to a stationary frame of
reference (a laboratory frame). If we allow for moving frames of reference then
criticality and the appearance of Burgers equation becomes even more pervasive.
Introduce the shifted coordinate x 
→ x − ct for some constant c (which may be
positive or negative) into (1.1),

Ut + (
F(U) − cU

)
x = DUxx , x ∈ R, U ∈ R

n . (11.5)

The flux vector is just shifted. Constant states U0 ∈ R
n are still solutions but

the derivative of the flux vector is modified to DF(U0) − cI and so the criticality
condition is

det[DF(U0) − cI] = 0. (11.6)

The following result is an immediate consequence of the theory in this paper: given
any constant state U0 ∈ R

n there exists at least one frame of reference relative
to which it is critical. Indeed there may exist as many as n frames of reference at
which the basic state U0 is critical, since the critical speeds are just the eigenvalues
of DF(U0). Fixing c at one of the semisimple eigenvalues of DF(U0), the theory of
this paper goes through mutatis mutandis, showing that the dynamics is modeled
by a Burgers equation relative to the selected moving frame. Mathematically, this
result is clear, but the physical implications are not, and are an intriguing direction
for further study.
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