Isomeric decay spectroscopy of the $^{217}$Bi isotope

A. Gottardo, J. J. Valiente-Dobón, G. Benzoni, S. Lunardi, A. Gadea, A. Algora, N. Al-Dahan, G. de Angelis, Y. Ayyad, D. Bazzacco, J. Benlliure, P. Boutachkov, M. Bowry, A. Bracco, A. M. Bruce, M. Bunce, F. Camera, E. Casarejos, M. L. Cortes, F. C. L. Crespi, A. Corsi, A. M. Denis Bacelar, A. Y. Deo, C. Domingo-Pardo, M. Doncel, T. Engert, K. Eppinger, G. F. Farrelly, F. Farinon, E. Farnea, H. Geissel, J. Gerl, N. Goel, M. Górska, J. Grebosz, T. Habermann, R. Hoiischen, R. Janik, P. R. John, S. Klupp, I. Kojouharov, N. Kurz, S. M. Lenz, S. Leoni, S. Mandal, R. Menegazzo, D. Mengoni, B. Million, D. R. Napoli, F. Naqvi, R. Nicolini, C. Nociforo, M. Pfützner, S. Pietri, Zs. Podolyák, A. Prochazka, W. Prokopowicz, K. Steiger, P. Strmen, T. P. D. Swan, I. Szarka, C. A. Ur, P. M. Walker, B. Sitar, D. Siwal, K. Steiger, P. Strmen, T. P. D. Swan, I. Szarka, C. A. Ur, P. M. Walker, H. Weick, O. Wieland, and H-J. Wollersheim

1Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy
2Dipartimento di Fisica e Astronomia dell’Università degli Studi di Padova, 35131 Padova, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
4Istituto Nazionale di Fisica Nucleare, Sezione di Padova, 35131 Padova, Italy
5Dipartimento di Fisica Corpuscular; CSIC–Universitat de València, E-46980 València, Spain
6Institute of Nuclear Research of the Hungarian Academy of Sciences, 4026 Debrecen, Hungary
7Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
8Universidade de Santiago de Compostela, E-175706 Santiago de Compostela, Spain
9GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
10Dipartimento di Fisica dell’Università degli Studi di Milano, 20133 Milano, Italy
11School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, United Kingdom
12EUI, Universidade de Vigo, E-36310 Vigo, Spain
13Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
14Grupo de Física Nuclear, Universidad de Salamanca, E-37008 Salamanca, Spain
15Physik Department, Technische Universität München, D-85748 Garching, Germany
16Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, PL-31-342 Kraków, Poland
17Department of Physics, Lund University, S-22100 Lund, Sweden
18Faculty of Mathematics and Physics, Comenius University, 84215 Bratislava, Slovakia
19Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
20Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
21Faculty of Physics, University of Warsaw, PL-00681 Warsaw, Poland

(Rceived 5 June 2014; revised manuscript received 14 August 2014; published 23 September 2014)

The structure of the neutron-rich bismuth isotope $^{217}$Bi has been studied for the first time. The fragmentation of a primary $^{238}$U beam at the FRS-RISING setup at GSI was exploited to perform $\gamma$-decay spectroscopy, since $\mu$s isomeric states were observed, allowing one to establish the low-lying structure of $^{217}$Bi. The level energies and the reduced electric quadrupole transition probability $B(E2)$ from the isomeric state are compared to large-scale shell-model calculations.

DOI: 10.1103/PhysRevC.90.034317 PACS number(s): 23.35.+g, 21.10.Tg, 23.20.–g, 27.80.+w

I. INTRODUCTION

The study of nuclei far from stability is a major research field in modern nuclear physics, a field that has grown substantially with the advent of radioactive ion beams. Various regions of the nuclide chart have been explored with stable beams using mainly fusion-evaporation, deep-inelastic, or fission reactions. However, the neutron-rich isotopes around lead, $Z = 82$, have always been difficult to populate with the aforementioned reactions. In the last fifteen years their study has been made gradually possible by the use of fragmentation reactions combined with in-flight mass separators and advanced setups for decay spectroscopy. For example, the fragmentation of a uranium beam was used to produce $^{215}$Pb and $^{217}$Bi and measure their isomeric decay [1]. Similarly, the adjacent elements beyond $N = 126$ and below $Z = 82$, such as thallium and mercury, have been studied [2,3]. For the elements beyond $N = 126$ but well above $Z = 82$ the situation is very different, as they can be populated with comparatively large cross sections with spallation or fragmentation reactions on uranium. The $\alpha$ decay from these heavy isotopes can also populate lighter nuclei toward the lead region, enabling their spectroscopic study. However, the bismuth isotopes, one

---

1andrea.gottardo@lnl.infn.it; present address: Institut de Physique Nucléaire, CNRS/IN2P3, and Université Paris Sud, Orsay, 91406, France.
II. EXPERIMENTAL SETUP

The results of this work have been obtained by exploiting the advanced features of the state-of-the-art FRΣ-RISING setup [18–21] and the UNILAC-SIS-18 accelerator facilities at GSI by using a 1 GeV/A $^{238}$U beam with an intensity of around $1.5 \times 10^8$ ions/spill. The ~1-s spills were separated by a ~2-s period without a beam. The uranium ions were fragmented on a 2.5 g/cm$^2$ Be target, followed by a 223 mg/cm$^2$ Nb stripper. The reaction products were separated and identified in mass and atomic number with the double-stage magnetic spectrometer FRS [18]. This is a mass spectrometer suitable for discriminating the different magnetic rigidities of relativistic beams, from light to heavy ions. The information gathered from its detectors (see later) allows one to unambiguously identify masses in the heavy region of interest ($A \sim 210–220$).

The first particle detectors along the spectrometer were located at the second focal plane, where different charge states from the primary beam as well as other heavy ions can arrive, since their magnetic rigidity is similar to one of the isotopes of interest. These detectors cannot sustain the resulting high counting rate ($\sim 10^9$ Hz) coming from the aforementioned contaminations. Therefore, a homogenous 2 g/cm$^2$ Al degrader was placed after the first dipole in order to exclude the heavy fragments above polonium from the acceptance of the FRS. The wedge-shaped Al degrader at the intermediate focal plane, after the second dipole, had a thickness of 758 mg/cm$^2$, and its angle was set to produce a monochromatic beam.

The identification in magnetic rigidity ($Bp$) is achieved through focal-plane position measurements with respect to the position of a beam with a well-known $Bp$. The plastic scintillators at the intermediate and final focal planes allow extracting the time of flight (TOF). The mass-to-charge ratio ($A/q$) of the fragments is calculated from the TOF and the $Bp$, measured on an event-by-event basis. The atomic number of the fragments is obtained from two ionization chambers placed in the final focal plane. Finally, the comparison of the $Bp$ before and after the Al wedge-shaped degrader allows one to discriminate a possible change in the ion charge state. These measurements are sufficient to provide a complete identification of the isotopes event by event. Figure 1 shows a typical identification plot obtained. The different isotopes are clearly separated in both $Z$ and $A/q$ ratio (or better $A/Z$), since only the fully stripped ions were selected.

At the final focal plane, the ions were slowed down in a thick Al degrader in order to reduce the energy of the fragments of interest before they were implanted in a double-sided silicon-strip (DSSSD) detector system comprising three layers, each with three DSSSD pads [21,22]. The monochromatic beam ensured that the implantation depth in the active stopper was the same for all the fragments of a certain $A/q$ and $Z$. The DSSSD detector system was surrounded by the RISING $\gamma$ spectrometer, consisting of 105 germanium crystals arranged in 15 clusters with 7 crystals each [19,20]. The full-energy $\gamma$-ray peak detection efficiency of the array was measured to be 15% at 662 keV [19]. In the present experiment, due to the presence of the active stopper with its casing, the absolute efficiency of the array was $\sim 13\%$ at 662 keV. The time correlation between the $\gamma$ rays and the ions detected with the
corresponds to the some neighboring nuclei to provide a reference.

active stopper allowed one to perform at the same time isomer spectroscopy and β-delayed γ-ray spectroscopy [14,15].

III. EXPERIMENTAL RESULTS

Figure 2 shows the γ-ray spectrum following the detected isomeric decay of 217Bi. Four transitions are clearly visible and their intensities are reported in Table I. The peak at 77 keV corresponds to the Kα x rays from bismuth. Figure 3 presents the results of γγ coincidence analysis. The γ rays at 744, 492, and 200 keV are in mutual coincidence, and a coincidence relationship is also evident between the 744- and the 685-keV lines. As already outlined above, one can expect that the structure of bismuth nuclei is determined by the coupling of the single proton outside the Z = 82 shell closure to the excited levels in 216Pb. Since the lowest single-proton orbital above Z = 82 is h9/2, one expects that the low-lying levels in 217Bi have the configuration πh9/2 ⊗ 95/2 (π...8+). The isomeric state should have a spin-parity 25/2−, with a πh9/2 ⊗ (v2g9/2)8+ configuration, corresponding to the 8+ isomer of lead nuclei. Therefore, following the systematics from lighter odd-even bismuth isotopes, the 200-, 492-, and 744-keV γ rays are assigned to the cascade 21/2− → 17/2− → 13/2− → 9/2−. The 25/2− → 21/2− transition is expected to have a low energy (in 211Bi it is only 30 keV), which makes it highly converted and unfeasible to measure with the present experimental setup. The 685-keV γ ray is in coincidence only with the 744-keV transition (see Fig. 3). It is hence assigned to a decay from a state located 685 keV above the 13/2− level and 7 keV lower than the 21/2− state. Figure 4 shows the exponential χ2 fit to the decay curves of the four transitions. Within errors, the four fits give the same decay constant, which suggests that the four transitions might be following the decay of the same isomer, namely, the expected 25/2− state. Moreover, since one cannot exclude completely that the 685-keV γ ray follows the decay of a second isomer (with a very similar half-life) we have preferred to extract the half-life of the 25/2− isomer from the error-weighted average of the decay constants of the 200- and 492-keV transitions. The isomer half-life deduced in this way is 3.0 ± 0.2 μs.

The characteristic Kα x rays from bismuth at 77 keV are observed with an intensity compatible with the internal conversion of the other four γ rays. Given that the binding energy of the K electrons in bismuth is 90.5 keV, this means that the transition directly depopulating the isomer must be below ~90 keV. From systematics in bismuth, lead, and mercury isotopes [2,13], we assume a lower limit

<table>
<thead>
<tr>
<th>Eγ (keV)</th>
<th>Area</th>
<th>Intensity (%)</th>
<th>t1/2 (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>401 (38)</td>
<td>92 (9)</td>
<td>3.1 (2)</td>
</tr>
<tr>
<td>492</td>
<td>331 (32)</td>
<td>87 (8)</td>
<td>2.9 (2)</td>
</tr>
<tr>
<td>685</td>
<td>45 (13)</td>
<td>14 (4)</td>
<td>3.3 (7)</td>
</tr>
<tr>
<td>744</td>
<td>307 (35)</td>
<td>100 (11)</td>
<td>2.8 (1)</td>
</tr>
</tbody>
</table>

FIG. 2. Gamma-ray spectrum from the decay of the isomeric state in 217Bi. The spectrum has been obtained by gating on the time window 0.12–15 μs.

FIG. 3. Gamma-ray prompt coincidence spectra for the decay from the isomeric state in 217Bi, with gates on the four transitions following the isomer.
of 20 keV for this transition. Although the energy of the 25/2− → 21/2− transition is not known, the fact that it has to be between 20 and 90 keV implies that it is highly converted, and consequently the energy dependence of the E2 transition rate is compensated by the opposite energy dependence of the total E2 conversion coefficient [23]. As a result, the B(E2) value from the isomeric state is only weakly dependent on the transition energy, making it possible to have an estimate of the B(E2) strength that ranges from 6.2 ± 0.3 e2 fm4 for 20 keV to 4.4 ± 0.2 e2 fm4 for 90 keV.

For the state decaying via the 685-keV γ ray to the 13/2− level in 217Bi, the most straightforward argument from the measured decay constant is that it belongs to a second decay branch of the same isomer feeding the other states. The γ rays connecting the isomer to this level may not be observed due to their low energy. Given that the x rays observed are compatible with the internal conversion of the four transitions, the energy of these connecting transitions has to be below 90 keV. The most probable scenario is that the 685-keV transition has an M1 or E2 multipolarity, leading to a 15/2− or 17/2− assignment for the new state at 1429 keV. Such an assignment would imply at least two (or three if the spin is 15/2−) transitions connecting the 25/2− isomer to the 1429-keV state. All such transitions will be well below 90 keV, of E2 or M1 character, and thus almost completely converted.

The new states observed in 217Bi should be formed by coupling a valence proton in the h9/2 orbital to the core-excited states in 216Pb. Since the excited states up to 8+ in 216Pb are understood within the seniority scheme (2g9/2)2, the same structure is expected in 217Bi with the yrast states forming the sequence 9/2+, 13/2+, 17/2+, 21/2+, and 25/2−. Figure 5 shows, for the 211–217Bi nuclei, the results of shell-model calculations with the Kuo-Herling (KH) interaction [24] compared with the experimentally known level schemes. The valence space to describe these nuclei is constituted by the neutron shells (g9/2, f7/2, i13/2, f5/2, h11/2, d3/2) in 216Pb, and by the proton shells (h9/2, f7/2, i13/2, f5/2, p3/2, h11/2) in 217Bi. A full calculation in this space is feasible, using state-of-the-art large-scale shell-model codes such as ANTOINE or NATHAN [25,26], only up to 213Bi. For 215,217Bi a reduction in the model space is needed. The calculations for these latter two nuclei were performed by restricting the proton valence space to h9/2, f7/2 and by allowing up to six neutrons in the i11/2, d5/2, d3/2, g7/2, and s1/2 shells. The fact that the energy of the first excited state, 13/2−, is well reproduced shows that, even with this truncation, the pair scattering from the vg9/2 orbital to the shells above is properly described.

The agreement between the calculated and experimental level energies is very good, being of the order of 100 keV (see Fig. 6). The analysis of the nuclear wave function confirms the above-mentioned simple scheme where the single proton in the h9/2 orbital couples to the excited, seniority-two, neutron states of the corresponding even-even Pb isotopes.
The quadrupole operator is provided by particle-hole excitations of all the neutron (and proton) shells as in Ref. [13]. On the other hand, a sensitive test of the nuclear wave function is given by the \( B(E2) \) values of the transitions depopulating the isomeric states. The half-lives of the 25/2\(^-\) levels in \( ^{215}\)Bi and \( ^{217}\)Bi are 1.4 ± 0.3 \( \mu s \) [1] and 3.0 ± 0.2 \( \mu s \) (this work), which yield a reduced transition probability \( B(E2) \) of 8(2) \( e^2 fm^4 \) for \( ^{211}\)Bi and from 6.2 ± 0.3 to 4.4 ± 0.2 \( e^2 fm^4 \) for \( ^{217}\)Bi, as discussed before. The 25/2\(^-\) seniority isomer is not known in \( ^{213}\)Bi, while in \( ^{215}\)Bi the presence of the 27/2\(^-\) spin trap does not allow a seniority isomer. It is worth noting that the spin inversion in \( ^{215}\)Bi between 25/2\(^-\) and 27/2\(^-\) is well reproduced by shell-model calculations, as shown in Fig. 6. We have calculated the \( B(E2) \) values using the same valence space and interaction already employed for the level energies and adopting the standard effective charges for this region: \( e_\pi = 1.5e \) and \( e_\nu = 0.8e \) [24]. The results are 92 and 1.0 \( e^2 fm^4 \) for \( ^{211}\)Bi and \( ^{217}\)Bi, respectively. The discrepancy with the experimental results is large. What is most disturbing is that, while the experimental \( B(E2) \) values are close to each other, as happens for the corresponding \( B(E2) \) values in the core nuclei \( ^{208}\)Pb and \( ^{206}\)Pb, the theoretical \( B(E2) \) values, which for the lead cores were comparable, differ here by a factor of 100. As mentioned above, for the \( ^{211}\)Bi calculations a restricted shell-model space had to be used and this could be a possible cause of the large difference in the calculated \( B(E2) \) values. With the intent to further understand this behavior, we have applied to the Bi isotopes the same approach successfully adopted in Ref. [13], where effective three-body forces have been included. In the bismuth case, however, since there is a proton in the valence space, it is difficult to perform a diagonalization in a space which includes all the neutron (and proton) shells as in Ref. [13]. On the other hand, it was shown that the relevant renormalization for the quadrupole operator is provided by particle-hole excitations across the \( \Delta J = 2 \) levels for \( \nu_{13/2} \nu_{8/2} \) and \( \pi h_{11/2} \pi f_{7/2} \) partners in the quasi-SU(3) scheme [13]. They are responsible for quadrupole coherence [27] and their inclusion allows one to evaluate the possible effect of effective three-body forces.

For the bismuth isotopes we have then performed the calculations including only these relevant shells, plus the \( \pi h_{9/2} \) orbital occupied by the unpaired proton, where the Kahana-Lee-Scott (KLS) interaction and the effective charges \( e_\pi \sim 1.5e \) and \( e_\nu \sim 0.5e \) have been used. The calculated level energies are in agreement with the ones obtained with the full space once the paring matrix elements of the \( \nu_{8/2} \) shell are renormalized to reproduce the energy of the 13/2\(^-\) state. The \( B(E2) \) strengths calculated are 38 and 28 \( e^2 fm^4 \) for \( ^{211}\)Bi and \( ^{217}\)Bi, respectively. The disagreement between the measured and the calculated \( B(E2) \) values remains large for both \( ^{211}\)Bi and \( ^{217}\)Bi. However, with the inclusion of effective three-body forces the calculated \( B(E2) \) values for \( ^{211}\)Bi and \( ^{217}\)Bi become similar, as they are experimentally. The fact that the ratio between the \( ^{211}\)Bi and \( ^{217}\)Bi \( B(E2) \) values is reproduced is significant since it shows that the inclusion of core excitations, equivalent to considering effective three-body forces, is restoring the symmetry in the \( B(E2) \) values relatively. What remains to be understood is the discrepancy of the absolute value, which in both nuclei is experimentally lower by a factor of 4–5. Explanations for this behavior are not straightforward and may be found when more refined shell-model calculations in such large spaces become possible or when more dedicated experiments are performed to look into this problem.

V. CONCLUSIONS

The present paper reports on the first results on the excited states in the neutron-rich nucleus \( ^{217}\)Bi. The study of this exotic isotope was made possible by the presence of isomeric states, 

FIG. 6. Experimental and calculated partial level schemes for the odd-mass bismuth isotopes. The calculations were performed using the KH interaction. The \( ^{217}\)Bi level scheme results are from the present work. The experimental data are taken from Refs. [4,8–10].
which allowed one to perform decay $\gamma$ spectroscopy using a radioactive beam produced from the uranium fragmentation. Four transitions were assigned to the decay from an isomeric state with a half-life of $3.0 \pm 0.2 \, \mu s$. The expected decay branch from the seniority isomer was observed, but there is evidence for another decay branch, probably from the same isomer. The derived level scheme was compared with systematics from lighter isotopes, as well as state-of-the-art shell-model calculations. Whereas the level energies of $^{217}\text{Bi}$ as well as of the other lighter odd-even Bi isotopes are well reproduced, the same calculations fail completely to predict the experimental $B(E2)$ values from the $25/2^-$ seniority isomers in $^{211}\text{Bi}$ and $^{217}\text{Bi}$. When effective three-body forces are included, the correct ratio between the experimental $B(E2)$ values is restored but not the absolute value. These experiments on heavy exotic nuclei are still at the limits in terms of statistics and sensitivity and may gain a lot from the expected improvements of experimental setups and beam intensities. Finally, from the theoretical point in view, in order to overcome the present difficulties, developments of codes able to perform a diagonalization in the full valence space are mandatory.

ACKNOWLEDGMENTS

The work of the GSI accelerator staff is acknowledged. AG, MD, and EF acknowledge the support of Istituto Nazionale di Fisica Nucleare (INFN), Italy, and MICINN, Spain, through the AIC10-D-000568 action. AG has been partially supported by MICINN, Spain, and the Generalitat Valenciana, Spain, under Grants No. FPA2008-06419 and No. PROMETEO/2010/101. The support of the UK STFC and of the DFG(EXC 153) is also acknowledged.