About existing password checkers is that the visual information is basically redundant since the 1-D bar carries the same amount of information as a numeric score, implying that the power of information visualization is not fully explored.

This poster presents a novel scheme for designing password checkers which provides users with immediate feedback about multiple threats detected on the current password choice through 2-D visual guidance in order to influence users to define stronger passwords based on the visual feedback. It provides the following new features that cannot be found in existing password checkers: 1) it visualizes multiple threats detected on the current password choice simultaneously, 2) it makes use of a 2-D visual space to show detected threats in a structural approach, 3) it uses a public and standard password strength estimator defined by NIST [5], 4) it provides an open interface to add more static dictionaries; 5) it supports a “smart” dictionary to cover password composition rules, 6) it supports personalized dictionaries through information gathered from the user’s social network accounts, 7) it provides detailed information about each detected threat to better educate users, 8) it is a pure client side solution so can be easily integrated into any web site with minimum change to the server, 9) being much more complicated than any existing password checker, it is still fairly fast and can run in real time even from resource-constrained devices like smart phones. We name the proposed scheme Visual Password Checker (VPC) to highlight its making effective use of a 2-D visual space.

In the following, we describe the general design of the VPC framework and then our prototype implementation. Some ongoing and future work will be given which concludes the poster abstract.

2. SYSTEM DESIGN

The basic idea behind VPC is to extend the simple 1-D bar used by all existing password checkers to a 2-D space in which different threats detected for the current password choice are visualized. Three types of threats are considered in the current design of VPC: brute force attacks, static dictionary attacks, rule-based dictionary attacks, and personalized dictionary attacks. To show different threats in a more structural and user-friendly way, we render the whole 2-D space as a radar screen where the center of the screen shows the current password under evaluation and detected threats are shown around the center according to the level of risks: the higher the risk is, the closer the threat is placed to the center. Specifically, for weak passwords identified through dictionary attacks, we place each weak password on a circle whose radius is equal to the editing distance between the current password and the detected weak password. The threat related to brute force attacks is indicated by the password guessing entropy defined in Appendix A.2.1 of NIST SP 800-63-1 [5], which corresponds to the password strength shown by other existing password checkers. The password guessing entropy is shown on the x-axis of the 2-D radar screen and its distance to the center is
well supported by most modern web browsers. While HTML5 is relatively new, the elements we used have been implemented a prototype system using pure client-side web To demonstrate the feasibility of the above design of VPC, we 3.

![Figure 2. The visual user interface design of VPC.](image)

The whole radar screen is also colored differently to visualize the overall password strength estimated from all threats detected: red denotes high risk, blue denotes medium risk, and green denotes low risk where no any threat is shown on the radar screen. Furthermore, to better educate users about all threats detected and provide tailored recommendations, each visualized threat is associated with a hidden tooltip control which will be made visible when the user moves her mouse on the threat.

3. PROTOTYPE IMPLEMENTATION

To demonstrate the feasibility of the above design of VPC, we implemented a prototype system using pure client-side web programming techniques including HTML5, CSS and JavaScript. While HTML5 is relatively new, the elements we used have been well supported by most modern web browsers.

![Figure 3. A snapshot of the VPC prototype in use.](image)

One major implementation issue is how to make VPC very responsive meaning that the calculation needed should be very computationally light even with very large dictionaries. This was achieved by representing each dictionary as a tree where each valid word is labeled with a “final” flag if it is not a leaf node. A web-based tool was also developed to convert a textual static dictionary to the required tree format. When comparing the current password with entries in a dictionary, Levenshtein distance is used to calculate the edit distance. To limit the size of the 2-D radar screen, the prototype shows weak passwords with an edit distance up to 3. The function of personalized dictionaries is demonstrated by incorporating Facebook’s API of single-sign on and personal information extraction. Figure 3 shows a snapshot of the VPC prototype in use on a registration page. The prototype system has been tested on five widely used web browsers and also on several mobile devices. To adapt to smaller screens of mobile devices, the 2-D radar screen can rescale automatically. The prototype is available for testing at http://vpc.cs.surrey.ac.uk.

4. ONGOING AND FUTURE WORK

We are currently working on or plan to work on the following tasks to further improve the VPC design and implementation:

- Adding support on more password composition rules such as 1) rules based on regular expressions, 2) more rules used by password crackers, 3) new rules extracted from real world.
- Identifying and visualizing multiple weak password segments (part of the password found in dictionaries).
- Adding strength estimated by invoking password crackers used by real-world password crackers.
- Replacing the NIST password guessing entropy estimator by a more accurate one such as that in [6].
- Adding password strength based on peer pressure [7].
- Showing weak passwords that would appear if the user deletes a few characters at the end (which are actually weak passwords appearing on previous screens).
- Improving the coloring scheme to allow smoother transition between different risk levels.
- A user study on the actual performance of VPC on real users.

5. REFERENCES