List of figures

Fig. 1. Waste water treatment plant configuration and reconciled operational data.

Fig. 2. Distributed and micro CHP systems’ life cycle phases and processing steps for comparative LCA.

Fig. 3. Primary impact characterisations: comparison between individual processes in the biogas to grid system on the basis of 11340 MJ biogas production. CFC: Chlorofluorocarbon; DCB: 1,4 Dichlorobenzene. Both embedded and operational impacts are included.

Fig. 4. GWP, AP and POCP: comparison between individual processes in the PEMFC cradle to grave micro-generation system on the basis of 11340 MJ biogas processing. The x-axis shows the processing steps, thus the hotspot in each category.

Fig. 5. Summary of environmental performance comparison results of sewage sludge products.

Fig. 6. Monte Carlo simulation framework integrated with LCA.

Fig. 7. Probability distributions of the two most and two least sensitive impact potentials with respect to their standard deviations from their mean values.

Fig. 8. Relative placements of the various biogas based cradle to grave CHP systems, in terms of cost per unit energy output vs. avoided emissions compared to equivalent natural gas based systems.
Fig. 1. Waste water treatment plant configuration and reconciled operational data.
Fig. 2. Distributed and micro CHP systems’ life cycle phases and processing steps for comparative LCA.
GWP -836.17 kg CO₂ equivalent

- AD plant construction: 0.23%
- Digested matter application in agriculture: -31.57%
- Biogas production: -68.67%

AP 0.076 kg SO₂ equivalent

- Digested matter application in agriculture: 93.42%
- AD plant construction: 6.58%
- Biogas production: 0%
EP 2.479 kg Phosphate equivalent

- AD plant construction: 0.081%
- Biogas production: 0%
- Digested matter application in agriculture: 99.919%

ODP 1.047 × 10^{-7} kg CFC equivalent

- AD plant construction: 100%
- Biogas production: 0%
- Digested matter application in agriculture: 0%
FAETP 23.609 kg DCB equivalent

- AD plant construction: 2.8%
- Biogas production: 0%
- Digested matter application in agriculture: 97.2%

HTP 136.367 kg DCB equivalent

- AD plant construction: 1.53%
- Biogas production: 0%
- Digested matter application in agriculture: 98.47%
MAETP 20870 kg DCB equivalent

- AD plant construction: 4.95%
- Digested matter application in agriculture: 95.05%
- Biogas production: 0%

POCP 7.214 \times 10^{-3} \text{ kg ethylene equivalent}

- AD plant construction: 11.812%
- Digested matter application in agriculture: 0%
- Biogas production: 88.188%
Fig. 3. Primary impact characterisations: comparison between individual processes in the biogas to grid system on the basis of 11340 MJ biogas production. CFC: Chlorofluorocarbon; DCB: 1,4 Dichlorobenzene. Both embedded and operational impacts are included.
AD plant infrastructure | Digested matter application to agriculture | Biogas production | Biogas combustion in PEMFC | Total
--- | --- | --- | --- | ---
1.96 | -263.95 | -574.18 | 634.18 | -836.17

GWP in kg CO\(_2\) equivalent

AP in kg SO\(_2\) equivalent

POCP in kg ethylene equivalent

PEMFC cradle to grave system

Fig. 4. GWP, AP and POCP: comparison between individual processes in the PEMFC cradle to grave micro-generation system on the basis of 11340 MJ biogas production and processing. The x-axis shows the processing steps, thus the hotspot in each category.
Fig. 5. Summary of environmental performance comparison results of sewage sludge products.

<table>
<thead>
<tr>
<th>Cradle to grave system</th>
<th>Avoided emissions by</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GWP, kg CO₂ Eq.</td>
<td>AP, kg SO₂ Eq.</td>
<td>POCP, kg Ethylene-Eq.</td>
</tr>
<tr>
<td>Biogas grid, per MJ</td>
<td>0.0793</td>
<td>4.47×10⁻⁴</td>
<td>6.59×10⁻⁶</td>
</tr>
<tr>
<td>Biogas – PEMFC, per MJ</td>
<td>0.1200</td>
<td>7.57×10⁻⁴</td>
<td>1.11×10⁻⁵</td>
</tr>
<tr>
<td>Biogas – SOFC, per MJ</td>
<td>0.0951</td>
<td>5.18×10⁻⁴</td>
<td>7.65×10⁻⁶</td>
</tr>
<tr>
<td>Biogas – SOFC-GT, per MJ</td>
<td>0.0916</td>
<td>4.59×10⁻⁴</td>
<td>7.20×10⁻⁶</td>
</tr>
<tr>
<td>Biogas – Micro GT, per MJ</td>
<td>0.0982</td>
<td>4.26×10⁻⁴</td>
<td>7.64×10⁻⁶</td>
</tr>
<tr>
<td>DM, per kg</td>
<td>0.44-0.77</td>
<td>0.01186</td>
<td>0.00093</td>
</tr>
</tbody>
</table>

1. Gas grid
2. Proton exchange membrane fuel cell (PEMFC) – Micro CHP generation
3. Solid oxide fuel cell (SOFC) – Distributed CHP generation
4. SOFC-Gas Turbine (GT) – Distributed CHP generation
5. Micro-GT – Distributed CHP generation
Fig. 6. Monte Carlo simulation framework integrated with LCA.
Fig. 7. Probability distributions of the two most and two least sensitive impact potentials with respect to their standard deviations from their mean values.
Fig. 8. Relative placements of the various biogas based cradle to grave CHP systems, in terms of cost per unit energy output vs. avoided emissions compared to equivalent natural gas based systems.