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Abstract

Knowledge of how a population of cancerous cells progress through the cell cycle is vital
if the population is to be treated effectively, as treatment outcome is dependent on the phase
distributions of the population. Estimates on the phase distribution may be obtained ex-
perimentally however the errors present in these estimates may effect treatment efficacy and
planning. If mathematical models are to be used to make accurate, quantitative predictions
concerning treatments, whose efficacy is phase dependent, knowledge of the phase distribution
is crucial. In this paper it is shown that two different transition rates at the G1-S checkpoint
provide a good fit to a growth curve obtained experimentally. However, the different transition
functions predict a different phase distribution for the population, but both lying within the
bounds of experimental error. Since treatment outcome is effected by the phase distribution of
the population this difference may be critical in treatment planning. Using an age-structured
population balance approach the cell cycle is modelled with particular emphasis on the G1-S
checkpoint. By considering the probability of cells transitioning at the G1-S checkpoint, dif-
ferent transition functions are obtained. A suitable finite difference scheme for the numerical
simulation of the model is derived and shown to be stable. The model is then fitted using the
different probability transition functions to experimental data and the effects of the different
probability transition functions on the model’s results are discussed.

Keywords: cell cycle, phase distribution, age-structured mathematical model, transition func-
tions.

1 Introduction

The cell cycle is an ordered set of events that a cell undergoes from its birth until it divides into
two daughter cells [1]. In eukaryotic cells the cell cycle may be broken down into four distinct
phases, namely G1, S, G2 and M . After birth, a cell enters the longest of the phases, the G1

(Gap 1) phase, during which the cell takes on nutrients needed to complete the rest of the cycle.
Once the cell has absorbed enough nutrients it may proceed round the cell cycle leaving the G1

phase and entering the S (Synthesis) phase. Not all cells leave the G1 phase to enter the S phase,
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a number of cells enter a quiescent period where they remain viable but leave the cell cycle for a
short time, these cells enter the G0 (Gap 0) phase. During the S phase a cell replicates its DNA,
at the end of which they have effectively doubled their DNA content. Once DNA synthesis is
completed the cell enters the G2 (Gap 2) phase. During the G2 a cell grows in size and prepares
for mitosis. Upon leaving G2 the final phase M (Mitosis) is entered. It is during the mitotic phase
that the cell divides, producing two daughter cells. Due to the processes involved in cell division,
cells in the M phase are especially vulnerable to radiotherapy. It should be noted that the M

phase may be broken down further into several sub phases, however this is of no consequence for
the model discussed herein. The actual length of the cell cycle is variable, this variability mainly
occurs in the length of time cells spend in the G1 phase which is governed by the way in which cells
‘transition’ from the G1 phase to the S phase [33]. Once a cell commits itself to DNA synthesis
(i.e. enters the S phase) it must continue the cell cycle until division is complete, the ‘transition’
from the G1 phase to the S phase is irreversible.

Chemotherapy drugs can be divided into several types, each of which target a specific process
within the cell cycle such as RNA synthesis or cell division. Hence the efficacy of many chemother-
apy drugs (e.g. [7], [24] and [29]) is dependent on the cell cycle phase. The radiosensitivity of
cells is also phase dependent (e.g. [9], [26] and [34]) with cells in the M (mitotic) phase having
their chromosomes arranged in a line prior to separation making them particularly sensitive to
ionising radiation. Due to the phase dependent nature of chemotherapy drugs and radiotherapy
knowledge of how the cells progress through the different phases is crucial.

There have been a number of mathematical models developed for populations of cells progressing
round the cell cycle. Systems of ordinary differential equations may be used to model the growth
kinetics of populations of cells however these are too simplistic to capture the intrinsic properties
of the cell cycle, but are often an invaluable first step in understanding the kinetics of a population
of cells. To adequately model crucial properties of a population of cells such as age, mass or DNA
distribution a system of partial differential equations is needed.

Many partial differential equation models share the same fundamental population balance struc-
ture as detailed in [14], [18] and [17]. These models may broadly be grouped in terms of which
property of the cell is used to structure the model, the main properties used being DNA ([23], [2],
[4], [20] and [3]), age ([22], [5], [11] and [15]) and mass ([22], [25], [11]).

There are advantages of using a DNA or mass structured model in as much that these quantities
may be easily determined experimentally, however such a model contains no information about
the age of a particular cell and as such it is possible for cells to remain in the cycle for an infinite
amount of time. By use of an age-structured model it is possible to control the length of time a
cell may remain in the cell cycle, in particular the G1 phase. Another advantage of age structuring
is that, if growth rates and nutrient uptake rates for a given cell line are known, it is possible to
determine the mass and DNA content of a cell from its age, however given the cells DNA content
or mass it is not possible to determine a cell’s age as there is not a one-to-one mapping between
age and DNA or mass.

Analysis has been undertaken to determine the existence and stability of steady size/DNA distribu-
tions [6] which may occur under specific circumstances using an age structured model. Population
balance models have been used not only on healthy, unperturbed cell lines but also to model the
effects of various treatments to cancer cell populations [20], [5], [3] and [8].
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In this paper, an age structured cell cycle model is considered together with two different functions
governing the movement between the G1 and S phases. Whilst, different functions have been used
in the past [5], [15] and [31] little has been done to study the effects of different functions on the
phase distributions of cells. It is shown that it is possible to obtain very similar growth curves using
different transition functions with the fundamental difference being in the phase distributions for
the cells. Although the differences in the phase distributions lie within the range of experimental
error for many techniques such as conventional flow cytometry it may be significant in terms of
treatment optimisation. The purpose of this paper is to understand how different transition rules
may effect the phase distribution of the cells and that whilst the motivation for this analysis is
the phase dependent nature of certain treatments these have not been included within the model.

This paper is outlined as follows. In section 2 the age structured model is presented together
with a brief overview of the derivation of a generalised transition function. Two specific transition
functions are then considered. In section 3 the numerical scheme used for computations is derived.
Section 4 sees the age structured model with different transition functions compared with exper-
imental data. The experimental data concerns a batch experiment which was conducted using
a mouse-mouse hybridoma cell line (mm321) [19]. The findings of this paper are summarised in
section 5 together with ideas for future work.

2 Model Outline

2.1 Age structured model

The model considered in this paper is divided into three, age-structured sections, G1a, G1b and
MAIN as depicted in figure 1. The MAIN compartment contains cells in the S, G2 and M

phases of the cell cycle, it is at the end of this compartment cell division occurs.

^

�

�

G1a

G1bMAIN
h(v)fixed

length

fixed
length

×2 cells

Figure 1: Overview of a three compartment age structured model.
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The G1a section contains cells which have just undergone division. Cells that are in G1a are not
able to progress further round the cell cycle until a fixed time period has elapsed, this represents
the minimum age a cell can start replicating its DNA. This is biologically realistic as new cells are
normally unable to immediately start replicating their DNA. Once cells have progressed to G1b

they undergo transition to the MAIN compartment at a rate h(v), which is often a function of
how long the cell has spent in G1b. It may also be a function of other factors which effect a cell’s
progression round the cell cycle such as nutrient levels, the presence of certain drugs, temperature
etc. The MAIN compartment is of fixed duration and can be thought of as merely a time delay
from when a cell leaves G1b until cell division and entry of the new daughter cells into G1a. All
compartments within this model are of a limited duration, the MAIN and G1a compartments
are of a fixed duration and the duration of G1b varies from zero to some maximum value, TG1b

.
Biologically, any cells remaining in G1b at the end of TG1b

would either die or enter a quiescent
phase. Cells in a quiescent phase may be able to rejoin the cycle at a later time. Neither of these
scenarios is modelled here.

In this model the non dimensionalised equations governing the population density of cells n in
each phase are given by

BnG1a

Bt
+ BnG1a

Bτ
= 0, (1)

BnG1b

Bt
+ BnG1b

Bτ
+ h(v)nG1b

= 0, (2)

BnMAIN

Bt
+ BnMAIN

Bτ
= 0. (3)

With the corresponding boundary conditions

nG1a(t,0) = 2nMAIN(t, TMAIN),

nG1b
(t,0) = nG1a(t, TG1a),

nMAIN(t,0) = ∫
TG1b

0 nG1a(t, τ̂)h(v(τ̂))dτ̂ .

(4)

To complete the model the cell distribution at time t = 0 needs to be specified, as we are concerned
with the system once it has reached exponential growth and steady ‘phase’ distribution this con-
dition is not important, however for completeness it may be assumed there is a uniform feed of
cells into the start of the cell cycle for the first k hours,

nG1a(t,0) = c, t < k hours. (5)

This model is of a similar structure to most population balance age-structured models such as
those presented in [5] and [15] amongst others. In [15] the MAIN phase is split into three parts
S,G2 and M , but since our focus is on the total cell population and the fraction of cells in G1,
this difference has no impact. A further difference is in the way that [15] model the transition
from G1, and this will be discussed in greater detail below. In [5], in addition, the G1 phase is
modelled as a single compartment rather than divided into two, G1a and G1b.
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Figure 2: Probability distribution of transition, f(τ) showing the probability that a cell of age τ

has not yet transitioned (shaded region) and the probability a cell of age τ will transition in the
time interval τ to τ + δτ (dark region)

.

2.2 G1-S Transition functions

The probability of a cell leaving the G1b phase and entering the S phase via the transition rule is
given by some probability distribution function f(x) where x is the variable that determines how
likely cells are to undergo transition. Figure 2 gives a graphical representation of such a proba-
bility distribution function with phase age τG1b

acting as the variable controlling the transition
probability. Note that phase age is the length of time a cell spends in a particular phase, For the
rest of this paper the subscripts have been removed from the age variable for ease and only used
in the case of any ambiguity as to the phase referenced.

If τ varies by a small amount, δτ , then the probability of cells whose age is between τ and τ + δτ
transitioning can be approximated by f(τ)δτ . Assuming all cells are capable of transitioning
given enough nutrients, the total area under the probability distribution curve is one. Therefore
the probability that a cell of age τ has not yet transitioned is given by 1 − ∫

τ
0 f(τ ′)dτ ′. So the

fraction of cells, who have not gone through transition, who go through transition when their age
changes from τ to τ + δτ is given by

f(τ)δτ
1 − ∫

τ
0 f(τ ′)dτ ′

. (6)

Another way of considering the number of cells going through transition is via a transition rate
h(τ). If the fraction of cells who leave in the time period [t, t + δt) is given by h(τ)δt, then by
definition this must be equal to equation (6). Therefore, in the limit δt→ 0,

h(τ) = f(τ)
1 − ∫

τ
0 f(τ ′)dτ ′

dτ

dt
. (7)

since a cell ages at the same rate as time passes τ(t) = t − c where c is a constant therefore dτ
dt
= 1

hence equation (7) simplifies to

h(τ) = f(τ)
1 − ∫

τ
0 f(τ ′)dτ ′

. (8)
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If the cumulative probability of cells transitioning, F (τ), is considered then equation (8) may be
expressed as

h(τ) = F ′(τ)
1 − F (τ)

, (9)

where the dash notation denotes the derivative with respect to τ . It is this form of the transition
rate which will be used herein.

2.2.1 Specific transition rules

In this paper, we consider two different transition functions, the first assumes that the transition
rate is constant, h = c, and is therefore independent of the time spent in the G1b phase. Note the
transition rate h = c corresponds to a cumulative probability of transition given by 1− ecτ . This is
the same form of transition discussed in [5]. This transition rule is not biologically realistic as it
implies all cells in G1b have an equal probability of progressing to the S phase regardless of how
long they have spent acquiring nutrients and preparing for DNA synthesis.

The second form of transition function that we consider is a sigmoidal transition function. This
seems biologically reasonable since this implies that the probability of cells progressing to the S

phase immediately after entering G1b is low due to the limited amount of nutrients they have
absorbed. Once the mass of nutrients absorbed reaches some critical value then the probability
of transition is likely to increase considerably, however there will always be a few cells which do
not progress to the S phase regardless of nutrient uptake, thus the sigmoidal function attains
a maximum value just under one. It should be noted that a sigmoidal cumulative probability
function is in keeping with the phase transition seen in cell populations which have been modelled
using the kinetics and chemical processes within the cell [28] and [30]. Here we propose a new
sigmoidal transition rule governing the probability of transition is proposed, which unlike the
one considered in [31] may be non-dimensionalised so there is only one independent parameter,
reducing the number of parameters that need to be fitted.

Since a very small proportion of cells of G1 phase age zero it is reasonable to expect that the
cumulative distribution function should be non-zero at τG1b

= 0. Furthermore, as discussed earlier,
some cells will not transition and enter a quiescent state so the cumulative distribution for G1b

remains less than one for all τG1b
. Therefore, the the cumulative distribution function given by

F (t, τ) = 1 − 1

1 + eθ(
Cc(t,τ)
Cmax

− 1
2 )
, (10)

is considered. Here, θ is related to the maximum and minimum values of the cumulative dis-
tribution function and Cmax is related to the steepness of the sigmoidal function and Cc(t, τ)
represents the amount of glutamine a cell of age τG1b

has absorbed at time t. It then follows that,
for θ sufficiently large,

h(t, τ) = θ

Cmax

BCc(t, τ)
Bτ

eθ(
Cc(t,τ)
Cmax

− 1
2 )

1 + eθ(
Cc(t,τ)
Cmax

− 1
2 )
. (11)

It is reasonable to assume that the rate of change of glutamine is constant, provided there is a
high amount of glutamine available. By making this assumption then BCc(t,τ)

Bτ
= R and Cc = τR

(It is assumed that the cell has not taken absorbed any glutamine prior to entering the G1b phase,
i.e. Cc = 0 at τ = 0.). Hence,

h(τ) = Rθ

Cmax

eθ(
τR

Cmax
− 1

2 )

1 + eθ(
τR

Cmax
− 1

2 )
. (12)
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The corresponding non-dimensional form of this equation is given by

h(τ) = e(τ̃−
θ
2 )

1 + e(τ̃− θ
2 )
, (13)

which only has the single parameter θ which needs to be fitted. In [16] the following expression
for the fraction of cells of age τ remaining in the G1b phase, n(t, τ), for a given intra cellular
glutamine concentration CG1b(t, τG1b) is proposed

nG1b(t, τG1b)
nG1b(t − τG1b,0)

= (CG1b(t, τG1b) − SMax)2

S2
Max

, (14)

where SMax is the maximum glutamine content a cell can have before being forced to go through
transition. This leads to the transition function

h(t, τG1b) =
2

SMax −CG1b(t, τG1b)
BCG1b(t, τG1b)

BτG1b
. (15)

Note BCG1b(t,τG1b)
BτG1b

is assumed to always be ≥ 0 so that the cumulative glutamine never decreases.
It can be seen that when CG1b(t, τG1b) → SMax, the probability of transition becomes infinite.
Despite this singularity at CG1b(t, τG1b) = SMax this transition function still provides a very good
fit to experimental data [15]. The reasons why this is the case are discussed below.

3 Numerical Methods

The system of differential equations governing the simplified system described in Section 2.1 may
be solved analytically for specific initial conditions and short time intervals. However, in order
to be able to study and manipulate the model for different transition functions for longer time
intervals involving many cell cycles it is necessary to use numerical techniques.

3.1 Derivation of Numerical scheme

In this section a finite difference scheme analogous to the Lax-Wendroff scheme is derived. The
Lax-Wendroff scheme was chosen as it is a second order explicit method and as such yields high
accuracy for relatively large time steps where there is a rapid change or discontinuity such as the
initial flow of cells into the main cycle.

For the G1b phase equation (2) may be written as

nt + nτ = −hn, (16)

Note for ease the time and age dependence has been omitted together with the phase subscript.
Subscripts now denote the partial derivatives. Also h is a function of τ only, furthermore, if the
sigmoidal form of the transition rule given in equation (13) is used then

hτ = h − h2. (17)

Rearranging and differentiating equation (16) gives

nt = −nτ − hn, (18a)

ntt = −ntτ − hnt, (18b)

ntτ = −nττ − hnτ − hτn. (18c)
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Which, upon using the Taylor expansion together with (17) yields

n(t + δt, τ) = n(1 − δth + (δt)
2

2
h) + nτ (−δt + (δt)2h) + nττ

(δt)2

2
+O(δt3). (19)

Finally, standard formulae for the first and second derivatives of n with respect to τ are used,
namely

δn

δτ
∣
i,j
=
ni,j+1 − ni,j−1

2δτ
, (20)

δ2n

δτ2
∣
i,j

=
ni,j−1 − 2ni,j + ni,j+1

(δτ)2
, (21)

where ni,j is the cell density of cells aged [jτs, (j + 1)τs) in the time interval [its, (i + 1)ts) where
ts and τs are the length of the discretised elements. This leads to the finite difference scheme

ni+1,j = ni,j (1 −
(δt)2

(δτ)2
− δthi,j +

(δt)2

2
hi,j) + ni,j+1 (

(δt)2

2(δτ)2
− δt

2δτ
+ (δt)

2

2δτ
hi,j)

+ ni,j−1 (
(δt)2

2(δτ)2
+ δt

2δτ
− (δt)

2

2δτ
hi,j) .

(22)

Because of the ‘dispersive’ nature of any numerical difference scheme if δτ ≠ δt additional errors
are introduced at each time step. For example if at t = 0 all cells are age zero and the age step is
set to ε and the time step set to ε

2
, then after evolving the system for one time step there would be

cells whose age is ε, this clearly makes no sense. Similarly if the time step is set to 2ε after one step
there are no cells present whose age is 2ε since τ ≤ ε for all cells. Hence, additional interpolation
is required if the age and time steps are not equal. By setting δt = δτ = α equation(22) becomes

ni+1,j = ni,j {(
α2

2
− α)hi,j} + ni,j+1 (

α

2
hi,j) + ni,j−1 (1 −

α

2
hi,j) . (23)

3.1.1 Stability of the numerical system

For a numerical scheme to produce accurate solutions to a partial differential equation, not only
must the error at each time step be small enough, any errors must not grow exponentially, i.e. the
numerical scheme must also be stable. If the nutrient supply is unlimited and uptake is uniform
then the cell cycle may be simplified into two ‘phases’, G1b on it’s own and the remaining phases all
put together. A two compartment model is not suitable for analysing the dynamics of a population
of cells as too much information is lost by combining the MAINphase and G1a phases of the model
discussed in Section 2.1, in particular the timing of the cell division. However, a two compartment
model is sufficient for conducting a stability analysis. Once the system has reached steady growth
(i.e. no further input from G1′) then it may be represented as shown in figure 3 where X and Y

represent the two ‘phases’. To perform the stability analysis the time step matrix is constructed,
the norm of which is shown to be bounded. It is helpful to start by defining some notation.
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Figure 3: Two Compartment Model

Notation

If the numerical scheme is discretised into elements of time of length ts and age elements of length
τs then let cells in phase X of age ∈ [iτs, (i+ 1)τs) in the time interval ∈ [jts, (j + 1)ts) be denoted
by Xi

j . Also let all cells in phase X in the time interval ∈ [mts, (m + 1)ts] be denoted by Xm,
where Xm is now a column vector. Also assume the time line is moved such that at t = t0, t′ = 0,
where t′ is the time used for the purposes of the subscript; for convenience the ′ notation is now
dropped.

Construction of time step matrix

Let the maximum durations of the X and Y phases be Nτs and Kτs respectively then at time
t = t0,

X0
0 cells entering X,

XN−1
0 cells in x dying due to old age at the next time step,

Y 0
0 cells entering Y,

Y K−1
0 cells leaving Y and doubling at the next time step.

(24)

Clearly,
X0

a = 2Y K−1
a−1 . (25)

Also the cells entering Y are a function of the cells who were in X at the previous time step,
therefore

Y 0
a = h(Xa−1), (26)

where h(v) is the probability of transition from X to Y . since nothing happens to the cells during
their time in Y , it can be thought of as merely a time delay phase, therefore

Y j
a = Y

j−1
a−1 for 1 ≤ j <K. (27)
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Note, the inequality is strictly less than K as cells of age Kτs have undergone division and the
offspring are now in X0

a .

Assuming a finite central difference scheme is used for calculating the cell densities in the X phase
then

Xi
a = f(Xi−1

a−1,X
i
a−1,X

i+1
a−1) for 1 ≤ j < N, (28)

and
XN

a = f(XN−1
a−1 ,XN

a−1). (29)

From equations (25) and (27) it is clear that

X0
a = 2Y K−1

a−1 = 2Y K−2
a−2 = . . . = 2Y 0

a−K . (30)

Now using equation (26) yields
X0

a = 2h(X0
a−K−1). (31)

Equations (25-29) may be expressed in matrix notation as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0
m+1

X1..N−2
m+1
XN−1

m+1
Y 0
m+1

Y 1..K−1
m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0
m

X1..N−2
m

XN−1
m

Y 0
m

Y 1..K−1
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

where M is an (N +K)× (N +K) matrix. To prove the numerical scheme is stable it is sufficient
to show [32] that the norm of M in equation (32) satisfies

∥M∥ ≤ 1 + κα, (33)

where δt = δτ = α and κ is a constant independent of α. It can be shown that if the trapezium
rule is used for approximating equation (26) then the norm of M is given by

∥M∥ = sup{2, α
N−2
∑
j=1

h(j) + α

2
(h(0) + h(N − 2))}. (34)

For the transition functions considered h is monotonically increasing so

α
N−2
∑
j=1

h(j) + α

2
(h(0) + h(N − 2)) ≤ α∫

Xτmax

0
h(τ)dτ, (35)

it is therefore sufficient to show α ∫
Xτmax

0 h(τ)dτ remains bounded. For the sigmoidal transition
rule

∫
Xτmax

0

e(τ−
θ
2
)

1 + e(τ− θ
2
)
dτ = [ln (1 + eτ−

θ
2 )]

Xτmax

0
, (36)

which for typical θ values this is approximately equal to ln (1 + eXτmax− θ
2 ). For Xτmax ≤ θ

2
then

ln (1 + eXτmax− θ
2 ) ≈ 1 + eXτmax− θ

2 ≤ 2. (37)

For Xτmax > θ
2

then

ln(1 + eXτmax− θ
2 ) ≈Xτmax −

θ

2
. (38)

Thus, in all cases ∥M∥ remains bounded. In most cases (Xτmax − θ
2
)α < 1, this leads to a stronger

constraint on the bound i.e. ∥M∥ ≤ 2.
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4 Results

Here, in section 4.1 it is shown that regardless of whether a constant or a sigmoidal transition rule
is used, it is possible to fit the model to a growth curve from experimental data. It is then shown
in section 4.2 that whilst the different transition functions result in the same growth curve, the
fraction of cells in each phase differs.

4.1 Model validation

Experimental data from [19] was chosen and concerns a batch experiment which was conducted
using a mouse-mouse hybridoma cell line (mm321). In this experiment 28 % of the starting
cell population did not divide but remained viable, 36 % of the starting population were evenly
distributed in the S phase of the cell cycle and the remaining 36 % were initially at the beginning
of the G1b phase. For the purposes of modelling it was assumed the cells starting in the G1b phase
were of a phase age between zero and two hours. The numerical scheme described in Section 3,
was implemented using both sigmoidal and constant transition rules. Parameters for the length
of different phases were taken from [15], and are stated in Table 1. The θ and c parameters were
allowed to vary in the sigmoidal and constant transition rules respectively, until a best fit had
been obtained. Several starting values for θ and c were used in the optimizations of the fits to
ensure the global best fits had been found for each transition rule and that the results were not
a local minimum. Optimizations were carried out using Matlab’s [27] least squares curve fitting
algorithm lsqcurvefit. The Matlab code for these optimizations is available from [10].

Parameter Notation Value
Maximum age in G1a phase TG1a 2.5 hours
Maximum age in G1b phase TG1b 10 hours
Maximum age in S phase TS 5 hours
Maximum age in G2 +M phase TG2+M 4 hours

Table 1: Parameters from [15]

As can be seen in Figures 4a and 4b, both the constant transition rule and the sigmoidal rule
provide a good fit to the experimental data resulting in residual norm values of 0.1 and 0.2
respectively. The parameters in table 1 were varied by ±20%. Different values for the table 1
parameters resulted in different values for the fitted parameters (θ and c) values but did not
significantly change the goodness of the fit shown in Figures 4a and 4b with no residual norms
exceeding 0.2. Note that the model did not impose any restrictions on the available nutrients,
indicating nutrients were not a limiting factor for cell growth over the course of the experiment.
This suggests, that if population growth is the only concern, that a constant transition rule is
sufficient.
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(a) Constant transition rule fitting
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(b) Sigmoidal transition rule fitting

Figure 4: Growth curves produced by use of different transition rules fitted against experimental
batch data presented in [15].

4.2 The effect of the transition function

Although the effect of the different transition rules is not apparent in the fitting to the experimental
growth curve, here we show that the transition rule does impact on the phase distribution of cells.

In the experimental data used to fit the model the initial population of cells was partially synchro-
nised using a thymidine double block. This partial synchronisation meant the initial population
of cells was situated in the S phase and the latter part of the G1 phase, G1b. It therefore seems
reasonable to assume most cells will initially progress round the cycle in a group this would result
in the phase distribution being oscillatory. The oscillations would be expected to decay slowly as
the synchronicity of the cell population was lost. Such oscillations may be one cause for apparent
‘errors’ in phase distributions obtained from such experiments as the timing of observations would
need to occur at known positions on the oscillation, the period of which may not be known. To
fully appreciate the differences these transition functions have on the underlying model properties
the percentages of cells in each compartment may be compared once transient oscillations have
decayed and the system has reached a steady state of phase distributions. The time scale required
for the transient oscillations to have decayed sufficiently is of the order of 500 hours and as such
it is not feasible to obtain experimental data.

In order to investigate this, the mathematical model was numerically integrated using the same
parameters and initial conditions used in section 4.1 for long enough that a steady phase distri-
bution had been obtained. The results are shown in Figures 5a and 5b. These two sets of results
differ in two key ways. Firstly, both simulations initially show an oscillation in the phase distri-
bution, however the rate of decay of the oscillations depends on the transition function chosen,
with the oscillations decaying much more slowly for a sigmoidal transition function. The difference
in the decay rates may be appreciated by considering the area under the cumulative probability
function for the different transition functions (Figures 6 and 7). For a steep sigmoidal probability
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distribution function the area under the curve initially increases slowly then has a rapid increase
for a short time interval then returns to a slow increase as shown in Figure 7b. This rapid increase
would result in the majority of the population remaining in a group as it progressed round the
cycle, with each complete cycle dispersing slightly due to the ages corresponding to a low prob-
ability of transition. With the value of the constant transition function used in this simulation
the area under the corresponding cumulative probability distribution function does not change as
rapidly as with the sigmoidal function as shown in Figure 6b. This results in the population of
cells transitioning more evenly, leading to a more rapid de-synchronisation. Secondly, once the
transient oscillations have decayed the percentages of cells in each of the model’s ‘phases’ differ: in
the sigmoidal transition rule there are 20.2%, 33.3% and 46.5% in the G1a, G1b and MAIN phases
respectively, whereas in the constant transition rule these change to 22.6%, 24.4% and 53.0%.
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Figure 5: Proportions of cells in each phase

5 Discussion

In this paper an age-structured cell cycle model has been considered with particular emphasis on
the G1-S checkpoint. By considering the probability of cells transitioning at the G1-S checkpoint,
different transition functions have been obtained. A suitable numerical scheme for the resulting
PDEs has been derived and shown to be numerically stable. This numerical scheme has then been
used to look at the effects of the different transition functions on the phase distribution of the cell
population.

The model shows there is a noticeable change in the proportion of cells in each phase for the two
different transition functions considered. The sigmoidal transition function predicts 53.5% of the
cell population being in the G1 phase, whilst the constant transition function places 47.0 % of
cells in the G1 phase.

As mentioned in section 1 the efficacy of chemotherapy treatments and the radiosensitivity of
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(a) Constant transition function.
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(b) Cumulative probability of transition.

Figure 6: Constant transition function with the corresponding cumulative probability of transition
as a function of G1b age.
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(a) Sigmoidal transition function.
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(b) Cumulative probability of transition.

Figure 7: Sigmoidal transition function with the corresponding cumulative probability of transition
as a function of G1b age.

cells varies according to a cell’s position in the cell cycle. Since the relationship between cell
phase and efficacy may be non-linear a small difference in phase distribution may produce a large
change in the efficacy of treatments resulting in the model producing results outside the bounds of
experimental error. Therefore, the difference in the phase distributions produced by this model,
using the different transition functions, will effect the model’s ability to accurately represent the
effects of a given treatment on a population of cells. Consequently, it is important to ascertain
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the correct transition function if such models are to be used to give a quantitative prediction of
the cell population’s response to treatments.

Improvements in techniques may reduce the level of potential error in phase distributions obtained
experimentally, this may allow some transition functions to be discounted.

It may also be possible to rigorously derive the form of the transition function for a population of
cells by considering the chemical kinetics of a single cell [28].

Whilst there is no consensus on the error on cell phase distributions obtained using flow cytometry
[12] the difference in phase distributions produced by the model with the different transition rules
lie within the typical bounds of current experimental error ([13], [21] and [12]). As noted in
section 4 the difficulty of measuring the phase distribution may be compounded by underlying
oscillations induced by the blocking. Thus, the form of the probability distribution function
controlling the G1 −S checkpoint in an age structured population balance model has little impact
on the models ability to fit to experimental data. The lack of effect of the form of the probability
transition function explains why the quadratic transition function used in [15] fitted experimental
data despite having a singularity. As such a simplified transition function may be used to gain a
qualitative understanding of the dynamics of a population of cells.
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