Half-life of the yrast 2^+ state in 188W: Evolution of deformation and collectivity in neutron-rich tungsten isotopes

P. J. R. Mason,1,* Zs. Podolyák,1 N. Márgean,2 P. H. Regan,1,3 P. D. Stevenson,1 V. Werner,4 T. Alexander,1 A. Algora,5,6 T. Alharsi,1,7 M. Bowry,1 R. Britton,1 A. M. Bruce,7 D. Bucurescu,2 M. Bunce,1 G. Cáta-Danil,7 I. Cáta-Danil,2 N. Cooper,4 D. Deleanu,2 D. Delion,2 D. Filipescu,2 W. Gelletly,1 D. Ghiţă,2 I. Gheorghe,2 T. Glosariu,2 G. Ilie,4 D. Ivanova,9 S. Kissyov,9 S. Lalkovski,9 R. Lica,2 S. N. Liddick,10 R. Mărginean,2 C. Mihai,2 K. Mulholland,11,12 C. M. Nita,2 A. Negret,2 S. Pascau,2 S. Rice,1 O. J. Roberts,8 T. Sava,2 J. F. Smith,11,12 P.-A. Söderström,13 L. Stroe,2 G. Suliman,2 R. Suvaila,2 S. Toma,2 C. Townsley,1 E. Wilson,1 R. T. Wood,1 M. Zhekova,9 and C. Zhou4

1Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
2Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), RO-077125 Bucharest, Romania
3National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
4Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA
5IFIC, CSIC-Universitat de Valencia, Apartado Oficial 22085, 46071 Valencia, Spain
6Department of Physics, University of Sofia, 1164 Sofia, Bulgaria
7Department of Physics, College of Science in Zulfi, Almajmaah University, P.O. Box 1712, 11932, Saudi Arabia
8School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom
9Department of Physics, University of Sofia, 1164 Sofia, Bulgaria
10National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824, USA
11University of the West of Scotland, Paisley PA1 2BE, United Kingdom
12Scottish Universities Physics Alliance (SUPA), University of Glasgow, Glasgow, United Kingdom
13RIKEN Nishina Center for Accelerator Based Science, Hirosawa, Wako, Saitama 351-0198, Japan

Received 27 February 2013; revised manuscript received 18 July 2013; published 2 October 2013

The half-life of the yrast $I^\pi = 2^+$ state in the neutron-rich nucleus 188W has been measured using fast-timing experiments with the HPGe and LaBr$_3$:Ce array at the National Institute of Physics and Nuclear Engineering, Bucharest. The resulting value of $t_{1/2} = 0.87(12)$ ns is equivalent to a reduced transition probability of $B(E2; 2^+_1 \rightarrow 0^+_0) = 85(12)$ Wu. for this transition. The $B(E2; 2^+_1 \rightarrow 0^+_0)$ is compared to neighboring tungsten isotopes and nuclei in the Hf, Os, and Pt isotopic chains. Woods-Saxon potential energy surface (PES) calculations have been performed for nuclei in the tungsten isotopic chain and predict prolate deformed minima with rapidly increasing γ softness for $^{184-192}$W and an oblate minimum for 194W.

DOI: 10.1103/PhysRevC.88.044301 PACS number(s): 21.10.Tg, 23.20.Lv, 27.70.+q

1. INTRODUCTION

The ground states of nuclei in the $A \sim 190$ region of the nuclear chart around $70 \leq Z \leq 78$ are predicted to undergo shape transitions from prolate to oblate quadrupole deformation with increasing neutron number in a variety of theoretical works [1–4]. Recent theoretical calculations of deformation in this region [5–7] suggest a sharper transition from axially deformed prolate to axially deformed oblate in the lower Z (Yb, Hf) nuclei than in the higher-Z isotopic chains which are predicted to become increasingly γ soft or have triaxial ground states. The $N = 118$ isotop Pt displays one of the best empirical examples of the $O(6)$ dynamical symmetry, corresponding to a flat nuclear potential in the γ degree of freedom [8]. In the W and Os isotopic chains, γ softness is predicted to reach a maximum at $N = 116$ [7] and a minimum in the experimental γ-vibrational band-head energy, $E(2^+_2)$, is observed at 192Os, suggesting that it is the most γ-unstable Os isotope [7].

In the tungsten isotopes, a systematic increase in $I^\pi = 2^+$ energy and decrease in $E(4^+)/E(2^+_1)$ is observed as one moves from stable to neutron-rich isotopes [9]. Tungsten isotopes with $N \leq 112$ have a value of $E(4^+_2)/E(2^+_1)$ close to 3.3, the limit for a perfect axial rotor. The decrease in $E(4^+_2)/E(2^+_1)$ for heavier isotopes indicates a deviation from rigid axial symmetry. This is compatible with increasing γ softness and possibly the beginning of the shape phase transition towards oblate-deformed ground states [7,10]. However, a sharp deviation in the ratio of $4^+_2/2^+_1$ energies from the systematic trend has been reported in 190W and it has been suggested that this may be evidence for the emergence of a subshell closure at $Z = 76$ in this region [10]. Measurement of the reduced transition probability, $B(E2; 2^+_1 \rightarrow 0^+_0)$, is a good indicator of the ground state collectivity of a nucleus and half-life measurements are expected to give insight into the structure of nuclei in this transitional region.

In the present work, we report on a measurement of the half-life of the yrast $I^\pi = 2^+$ state in the neutron-rich isotope, 188W. The experiment employed fast-timing techniques with the LaBr$_3$:Ce scintillator and high-purity germanium (HPGe) detector array [11] at the National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest. Excited states...
in 188W have previously been investigated using multinucleon transfer reactions \cite{12,13} and β-delayed spectroscopy \cite{9} which found the structure to be consistent with an increased γ softness and decreased quadrupole moment compared to the stable W isotopes.

\section{II. EXPERIMENT AND DATA ANALYSIS}

Excited states in 188W were populated using the 186W(7Li,αp)188W reaction, where the reaction mechanism is thought to be a combination of incomplete fusion and low-energy transfer. The 7Li beam was accelerated to 31 MeV by the Tandem van de Graaff accelerator at IFIN-HH, Bucharest and impinged on a 16 mg/cm2 enriched 186W target with a 43 mg/cm2 lead backing. The population of 188W for this reaction was estimated to be $\sim 0.5\%$ of the total γ-statistic for the reaction with the strongest channels being the 186W(7Li,$\alpha 2n$)187Re and 186W(7Li,4n)189Ir reactions. The experiment ran for ~ 218 h, during which the average beam intensity on target was ~ 4 particle-nA. Gamma rays produced in the reaction were detected with an array of eight HPGe detectors and 11 LaBr$_3$:Ce detectors. Data were recorded when the master trigger condition, that coincident γ rays were observed in ≥ 2 LaBr$_3$:Ce detectors and ≥ 1 HPGe detector or in ≥ 3 HPGe detectors, was met.

The HPGe and LaBr$_3$:Ce detectors were calibrated in energy using 152Eu and 60Co sources. The energy dependence of the time response (“time walk”) of the LaBr$_3$:Ce detectors was determined with a 60Co source using the method described in Ref. \cite{11} in which the time response of each detector is fitted with a polynomial function and corrected down to ~ 100 keV in offline analysis. The half-lives of excited states populated in the reaction were measured by extracting the time difference between γ rays observed in pairs of LaBr$_3$:Ce detectors. The timing information in each LaBr$_3$:Ce detector was recorded relative to the master trigger and the time difference between any two detectors was found by subtracting their times relative to the trigger as described in Ref. \cite{11}. Three-dimensional $E_{\gamma 1}$-$E_{\gamma 2}$-ΔT histograms (cubes) were constructed in such a way that the time difference between two transitions can be obtained by gating on their photopeaks on the energy axes of the cube \cite{11}.

The HPGe detectors were used to set γ-ray energy coincidence conditions that selected a particular γ-ray cascade within the LaBr$_3$:Ce spectra. The high resolution of the HPGe detectors makes it possible to resolve weaker γ-ray transitions and create clean LaBr$_3$:Ce $E_{\gamma 1}$-$E_{\gamma 2}$-ΔT cubes for the more weakly produced isotopes by requiring a particular transition to be observed in coincidence in the HPGe detectors. Figure 1 shows the spectrum resulting from gating on the 143-keV, 2$^+ \rightarrow 0^+$ transition of 188W. The energies of other previously reported transitions in this nucleus \cite{12} are marked on the figure. The inset in Fig. 1 shows the partial level scheme for 188W relevant to this work, adapted from Ref. \cite{12}.

\section{III. RESULTS}

In such fast timing experiments, the half-life of a state is ideally measured from the time difference between transitions directly feeding and depopulating it. However, due to the weak population of 188W relative to other reaction channels in the present work, it was not possible to obtain a time-difference
HALF-LIFE OF THE YRAST 2+ STATE IN ...

![Time spectrum for the decay of the yrast 2+ state in 188W](image)

FIG. 3. (Color online) Time spectrum for the decay of the yrast 2+ state in 188W measured from the time difference between the 143-keV transition and all observed feeding transitions (see text for details). The solid line represents a fit to the data giving a half-life of $t_{1/2} = 0.87(12)$ ns. The dashed and dotted lines represent 1σ and 3σ deviations in the half-life, respectively.

The half-life of the equivalent state in 188W can be expected to be of the same order-of-magnitude. The estimated range of these half-lives for the feeding states has been included in the final uncertainty for the half-life of the yrast 2+ state.

As the time-difference in Fig. 3 is effectively between the 143-keV transition and any other 188W γ ray populated in the reaction, the observed time difference will also partially depend on the half-lives of any intermediate states in the feeding of the yrast 2+ state. Due to the limited spin and excitation energy imparted by the reaction, the states important in this feeding are the yrast 4+ state at an excitation energy of 439 keV and the second 2+ state at 628 keV [12]. The half-lives of these states are assumed to be much shorter and thus negligible compared to that of the yrast 2+ state and so the time-difference spectrum in Fig. 3 is assumed to be solely representative of the yrast 2+ half-life. This assumption can be shown to be reasonable by comparison with 186W, in which the measured half-lives of the yrast 4+ and the second 2+ state are 36.4(25) ps and 4.78(16) ps, respectively [14]. The half-lives of the equivalent states in 188W can be expected to be of the same order-of-magnitude. The estimated range of these half-lives for the feeding states has been included in the final uncertainty for the half-life of the yrast 2+ state.

The time spectrum was fitted with a convolution between an exponential decay and the Gaussian time resolution of the detector array, from which the half-life of the yrast 2+ state in 188W was measured to be $t_{1/2} = 0.87(12)$ ns. The full-width at half maximum (FWHM) and ΔT = 0 centroid of the Gaussian were fixed from fits to the decay of the yrast 2+ state in 190Os [15]. 190Os was populated with high statistics out of beam from the electron-capture decay of 190Ir in the target activity at the end of the experiment and the time difference measured between the 187- and 361-keV transitions. In fits to the 190Os time difference spectrum, all parameters of the convolution, including the FWHM and centroid, were allowed to vary freely. The 190Os yrast 2+ half-life was measured to be $t_{1/2} = 375(20)$ ps [15], in excellent agreement with the literature value of $t_{1/2} = 375(10)$ ps [16].

IV. DISCUSSION

The present half-life measurement of $t_{1/2} = 0.87(12)$ ns corresponds to a reduced transition probability for 188W of...
$B(E2; 2^+_1 \rightarrow 0^+_1) = 5.46(75) \times 10^3 e^2 fm^4$ which is equivalent to $B(E2; 2^+_1 \rightarrow 0^+_1) = 85(12)$ W.u. Figure 4 shows the systematics of $B(E2; 2^+_1 \rightarrow 0^+_1)$ values and $E(4^+_1)/E(2^+_1)$ in the even W isotopes. 188W appears to display a larger decrease in $B(E2; 2^+_1 \rightarrow 0^+_1)$ compared to the systematic trend of lighter W isotopes, similar to the decrease in $E(4^+_1)/E(2^+_1)$ observed for 188W. However, the uncertainty in the present measurement means that the data point could represent a continuation of the approximately linear trend for the isotopic chain. As such, this information alone does not indicate whether 188W marks the beginning of a prolate-oblate shape change in this region or simply represents a smooth continuation in the decreasing collectivity as the closed neutron shell at $N = 126$ is approached.

Figure 5 shows $E(2^+_2)/E(2^+_1)$ and $E(0^+_2)/E(2^+_1)$ energy ratios for even-A tungsten isotopes. The 2^+_2 and 0^+_2 levels are assumed to be the γ and β vibrational band heads, respectively, and the excitation energy of these states indicates the susceptibility of the nuclear shape to changes in γ or β deformation (i.e., γ or β softness). Both ratios reach a maximum at 182W ($N = 108$) indicating that this nucleus has the most rigid nuclear shape of any W isotope. $E(4^+_1)/E(2^+_1)$ also maximises at 182W, where it is very close to the rigid-rotor limit of 3.3. $E(2^+_2)/E(2^+_1)$ decreases rapidly for W isotopes with $N > 108$ which is consistent with increasing γ softness approaching $N = 116$.

$B(E2; 2^+_2 \rightarrow 0^+_1)$ for even W isotopes along with those for neighboring even-even nuclei in the Hf, Os, and Pt isotopic chains. Ignoring smaller variations, the trend in $B(E2; 2^+_2 \rightarrow 0^+_1)$ for all these nuclei is a linear decrease with increasing neutron number. The $B(E2; 2^+_1 \rightarrow 0^+_1)$ value does not maximize at the neutron midshell ($N = 104$) in any of these isotopic chains as might be expected in a simplistic interacting-boson description where collectivity is highest for the largest number of valence nucleons.

The $E(4^+_1)/E(2^+_1)$ ratio shows a more complex dependence on both N and Z. The Pt isotopes shown in Fig. 6 all have $E(4^+_1)/E(2^+_1)$ ratios close to the asymptotic limit for a γ soft nucleus of ~ 2.5 (though such a ratio can arise from a range of structures with the IBM triangle) [17]. The W and Os chains evolve away from the limit of a rigid axial rotor as neutron number is increased. The $E(4^+_1)/E(2^+_1)$ ratios seem to agree with the predictions of the potential energy surface (PES) calculations in Ref. [5], which predict a smoother evolution in shape for the higher-Z isotopic chains and that the γ degree of freedom to plays a more important role in the Os and Pt isotopes.

To estimate the ground-state deformations for even-A W isotopes from $^{184–194}$W, potential energy surface (PES) calculations were performed for this work and are shown in Fig. 7. The calculations employed a nonaxial deformed...
HALF-LIFE OF THE YRAST 2+ STATE IN …

PHYSICAL REVIEW C 88, 044301 (2013)

FIG. 7. (Color online) Potential energy surface calculations for the ground-state configurations of even-A tungsten isotopes. The white dots indicate the minima of the surfaces and the contours are separated by 400 keV.

Woods-Saxon potential and for each point in β_2 and γ, the potential energy is minimized as a function of hexadecapole deformation, β_4. In contrast to the calculations in Ref. [5], these calculations do not predict triaxial minima for the ground states of any W isotopes. In the present calculations, the minima are predicted to remain prolate for $^{184-192}$W, but become increasingly γ soft with increasing neutron number. The minimum for 194W is predicted to have an oblate, γ soft minimum. The surfaces of 192W and 194W have both prolate and oblate minima and are almost flat with respect to the triaxial degree of freedom, close to the type of surface expected for the $O(6)$ symmetry [8].

The PES calculations predict a ground state quadrupole deformation of $\beta_2 = 0.190$ with significant γ softness for 188W. The increased γ softness for the 188W PES compared to the stable W isotopes 184,186W is consistent with the decrease in $E(4^+_1)/E(2^+_1)$ and $B(E2; 2^+_1 \rightarrow 0^+_1)$ observed experimentally. The transition quadrupole moment for 188W can be extracted from the $B(E2; 2^+_1 \rightarrow 0^+_1)$ under the assumption that it is an axially deformed rotating nucleus [18]. The present measurement gives $|Q_0| = 5.2(4)$ eb. For a good rotor, the transition quadrupole moment can be considered to be equal to the intrinsic quadrupole moment, $|Q_0|$, and an estimate of the effective quadrupole deformation parameter, $|\beta_{2,\text{eff}}|$ can be obtained. Assuming a uniform charge distribution, a value of $|\beta_{2,\text{eff}}| = 0.18(1)$ is obtained for 188W, which is consistent with the minimum at $\beta_2 = 0.190$ found in the PES calculations.

V. SUMMARY

In conclusion, the present measurement of $t_{1/2} = 0.87(12)$ ns for the half-life of the yrast 2+ state in 188W corresponds to $B(E2; 2^+_1 \rightarrow 0^+_1) = 85(12)$ W.u. This appears to show a sharper decrease in collectivity compared to the trend of lighter tungsten isotopes, albeit with a relatively large error. This implies a possibly increased γ softness for 188W compared to stable tungsten isotopes in agreement with the expectations for this mass region [1,2,5]. The decrease is similar to that observed in the ratio of energies, $E(4^+_1)/E(2^+_1)$ for the W isotopic chain. Potential energy surface calculations in this work predict prolate minima with increasing γ softness for heavier W isotopes and an oblate minimum for 194W.

The measured half-life and other bulk observables discussed in this work do not give an unambiguous picture of the structure of neutron-rich W nuclei. However, they demonstrate a deviation from rigid axial symmetry and are compatible with the beginning of the widely predicted [1–7] prolate-to-oblate shape transition in neutron-rich W isotopes. Measurements in heavier isotopes are required to determine the exact nature of the structural evolution in this region.

ACKNOWLEDGMENTS

We would like to thank the staff of IFIN-HH, Romania for their support during this experiment and Professor R. Wadsworth for the loan of the 186W target. This work was supported by the Science and Technology Facilities Council, STFC(UK), Engineering and Physical Sciences Research Council, EPSRC(UK), The Romanian Ministry for Education and Research [contracts no. PN-II-ID-PCE-2011-3-0367(UEFISCDI) and PN 09 37 01 05 (NuSTAR)], ANCS(Romania), The Spanish Ministerio de Educaci´on y Ciencia under Grant No. FPA2011-24553, Bulgarian Science
Fund contract no. DMU02/1, Bulgarian-Romanian Partnership contract nos. BRS-07/23 and 460/PNII Module III, and the US DoE under Grant No. DE-FG02-91ER-40609. T.A. acknowledges the support of Almajmaah University, Saudi Arabia. P.A.S. acknowledges the support of the Japan Society for the Promotion of Science (JSPS) Kakenhi Grant No. 23·01752. P.H.R. also acknowledges partial support from the Yale University Flint Fund.