GABA<sub>B</sub> Receptor Subtypes Differentially Modulate Synaptic Inhibition in the Dentate Gyrus to Enhance Granule Cell Output

Joshua D. Foster<sup>1</sup>, Ian Kitchen<sup>1</sup>, Bernhard Bettler<sup>2</sup>, Ying Chen<sup>1*</sup>

<sup>1</sup>Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK GU2 7XH

<sup>2</sup>Pharmazentrum, Department of Biomedicine, Institute of Physiology, University of Basel, CH-4056 Basel, Switzerland

Running title: GABA<sub>B</sub> receptor subtypes for disinhibition

*Corresponding author:
Dr. Ying Chen
Department of Biochemistry and Physiology
Faculty of Health and Medical Sciences
University of Surrey
Guildford
UK GU2 7XH

Email: ying.chen@surrey.ac.uk

Number of pages: 32
Number of figures: 4
Number of words for Abstract: 250
Number of words for Introduction: 748
Number of words for Discussion: 1458

Conflict of Interest: The authors declare no conflict of interest.

Acknowledgements: The work was supported by a BBSRC grant to YC (BB/E010296/1).
Abstract

Background and purpose. Activation of GABA\textsubscript{B} receptors in the dentate gyrus (DG) enhances granule cell (GC) activity by reducing synaptic inhibition imposed by hilar interneurons. This disinhibitory action facilitates signal transfer from the perforant path to the hippocampus. However, as the two main molecular subtypes, GABA\textsubscript{B}(1a,2) and GABA\textsubscript{B}(1b,2) receptors, prefer axonal terminal and dendritic compartments, respectively, they may modulate the hilar pathways at different synaptic localisations. We examined their relative expression and functions in the DG.

Experimental approach. The localisation of GABA\textsubscript{B} subtypes was revealed immunohistochemically using subunit-selective antibodies in GABA\textsubscript{B}1a\textsuperscript{-/-} and GABA\textsubscript{B}1b\textsuperscript{-/-} mice. Effects of subtype activation by the GABA\textsubscript{B} receptor agonist, baclofen, were examined on the perforant path-stimulated GC population activities in brain slices.

Key results. GABA\textsubscript{B}(1a,2) receptors were concentrated in the inner molecular layer, the neuropil of the hilus and hilar neurons at the border zone; while GABA\textsubscript{B}(1b,2) receptors dominated the outer molecular layer and hilar neurons in the deep layer, showing their differential localisation in the GC dendritic area and the hilus. Baclofen enhanced the GC population spike to a larger extent in the GABA\textsubscript{B}1b\textsuperscript{-/-} mice, demonstrating exclusively disinhibitory roles of the GABA\textsubscript{B}(1a,2) receptors. Conversely, in the GABA\textsubscript{B}1a\textsuperscript{-/-} mice baclofen not only enhanced but also inhibited the population spike during GABA\textsubscript{A} blockade, revealing both disinhibitory and inhibitory effects by GABA\textsubscript{B}(1b,2) receptors.

Conclusions and implications: The GABA\textsubscript{B}(1a,2) and GABA\textsubscript{B}(1b,2) receptor subtypes differentially modulate GC outputs via selective axonal terminal and dendritic locations in the hilar pathways. The GABA\textsubscript{B}(1a,2) receptors exclusively mediate
disinhibition, thereby playing a greater role in gating signal transfer for hippocampal spatial and pattern learning.

Key words: disinhibition, GABAB receptors, baclofen, GABAB1a, GABAB1b, multi-electrode, dentate gyrus

Abbreviations:

1a-/-: GABA\(_B\)\(_1\)a knockout
1b-/-: GABA\(_B\)\(_1\)b knockout

CCK: cholecystokinin

CGP55845: (2S)-3-[[1(S)-1-(3,4-Dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid hydrochloride

CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione

DG: dentate gyrus

fEPSP: field excitatory postsynaptic potential

GABA: gamma-amino butyric acid

GC: granule cell

HICAP: Hilar Commissural-Associational Pathway related cells

HIPP: Hilar Perforant Path related cells

IM: inner molecular layer

OM: outer molecular layer

PP: perforant path

PS: population spike

WT: wild-type
Introduction

GABA_B receptors are G-protein-coupled receptors for the main inhibitory neurotransmitter, GABA (gamma-aminobutyric acid). They participate in many brain functions including cognition, reward and anxiety via modulation of synaptic transmission (Bowery et al., 2002; Bettler et al., 2004). Activation of pre-synaptic GABA_B receptors decreases neurotransmitter release by inhibiting voltage-gated Ca^{2+} channels and vesicular release; activation of somatodendritic GABA_B receptors modulates Ca^{2+} channels and G-protein coupled inward-rectifying K^{+} channels, resulting in postsynaptic inhibition. However, presynaptic GABA_B receptors at excitatory and inhibitory synapses in neuronal networks induce inhibitory and disinhibitory effects, respectively. GABA_B receptor activation in the hippocampal CA1 and CA3 synaptic circuits is predominantly inhibitory because of the inhibition of glutamate release via presynaptic heteroreceptors (Nicoll, 2004; Chen et al., 2006). Conversely, in the dentate gyrus (DG), GABA_B receptors primarily exert disinhibition on granule cells (GCs) as GABA release from hilar interneurons is reduced (Burgard & Sarvey, 1991; Mott & Lewis, 1991; Mott et al., 1993).

The disinhibitory role of GABA_B receptors is important for the gate control of inputs from the entorhinal cortex to the hippocampus for spatial and pattern learning (Gilbert et al., 2001; Leutgeb et al., 2007; Moser et al., 2008). The perforant path (PP) forms excitatory synapses on dendrites of GCs, and spikes generated in GCs propagate into the hippocampus. However, the GCs are strongly inhibited by a divergent population of local interneurons in the hilus and the molecular layer (Freund & Buzsaki, 1996; Scharfman & Witter, 2007), which release GABA to activate ionotropic GABA_A and metabotropic GABA_B receptors on GCs and induce fast and slow inhibitory currents.
(Otis & Mody, 1992; Otis et al., 1993). Hilar interneurons in the border zone are particularly important for this role because they project to perisomatic and proximal dendritic regions (Freund & Buzsaki, 1996; Amaral et al., 2007), exerting synaptic inhibition that shunts action potential generation (Ben-Ari et al., 2005). GABA$_B$ receptors are densely expressed in hilar interneurons (Bischoff et al., 1999; Kulik et al., 2003), and activation of these somatodendritic receptors decreases firing of hilar border neurons (Mott et al., 1999), reduces GABA release on GCs and enhances spike discharge (Burgard & Sarvey, 1991; Mott & Lewis, 1991; Mott et al., 1993).

However, presynaptic GABA$_B$ receptors may also reduce hilar inhibition by decreasing excitatory inputs to the hilus and inhibiting GABA release from hilar axonal terminals on to GCs.

Pre- and postsynaptic GABA$_B$ receptors show molecular diversity (Ulrich & Bettler, 2007; Pinard et al., 2010). GABA$_B$$_{1a,2}$ and GABA$_B$$_{1b,2}$ receptors are the two main molecular subtypes, assembled by the obligatory hetero-dimerisation between the GABA$_B$$_{1}$ isoforms, 1a and 1b, and the GABA$_B$$_{2}$ subunit. They show no significant pharmacological or signalling differences, but their expression is independently regulated in neuronal populations and differs between synaptic compartments (Bischoff et al., 1999; Fritschy et al., 1999; Margeta-Mitrovic et al., 1999; Vigot et al., 2006). At glutamatergic synapses, the GABA$_B$$_{1a,2}$ receptors are preferentially expressed in presynaptic compartments, directed exclusively by the N-terminal “sushi” domains on the 1a subunit; while the GABA$_B$$_{1b,2}$ receptors, lacking the “sushi” domains, are primarily confined at the default dendritic location (Vigot et al., 2006; Tiao et al., 2008; Biermann et al., 2010). The GABA$_B$$_{1a,2}$ receptors are also the exclusive presynaptic autoreceptors inhibiting GABA release between layer 1 and 5.
cortical neurons, with the GABA\textsubscript{B(1b,2)} receptors at the dendrite (Perez-Garci \textit{et al.}, 2006). However, the GABA\textsubscript{B(1b,2)} receptors can also inhibit GABA release in the CA1 (Vigot \textit{et al.}, 2006) and the thalamus (Ulrich \textit{et al.}, 2007), probably via somatodendritic inhibition of interneurons.

Both 1a and 1b transcripts are expressed in hilar neurons and GCs in the DG, but high density receptor expression is shown in the molecular layer and the hilus with the relative expression of two receptor subtypes unclear (Bischoff \textit{et al.}, 1999). Although somatodendritic GABA\textsubscript{B} receptors on the hilar border neurons, presumably of the GABA\textsubscript{B(1b,2)} subtype, mediate disinhibition (Mott \textit{et al.}, 1999), genetic deletion of the 1a, but not 1b isoform, impairs synaptic plasticity in the hippocampus and novel object recognition performance of the GABA\textsubscript{B1a\textsuperscript{-}} mice (Vigot \textit{et al.}, 2006; Jacobson \textit{et al.}, 2007), implicating a critical role for the GABA\textsubscript{B(1a,2)} receptors in pattern learning. We tested the hypothesis that GABA\textsubscript{B(1a,2)} receptors exert greater disinhibition on GCs by presynaptic heteroreceptor inhibition of excitatory inputs to the hilus and autoreceptor inhibition of GABA release on GC dendrites in the molecular layer. We, therefore, examined the anatomical localisation of the GABA\textsubscript{B} subtypes in the DG of the GABA\textsubscript{B1a\textsuperscript{-}} and GABA\textsubscript{B1b\textsuperscript{-}} mice, and investigated their individual roles in modulating GC output.
Materials and Methods

The use of animals was in accordance with the Animals in Scientific Procedures Act (1986) UK. GABA$_{B1a}$ knockout mice (1a/-), GABA$_{B1b}$ knockout mice (1b/-) and their wild-type (WT) littermates were bred from heterozygous pairs and maintained on a Balb/c background (Vigot et al., 2006). The transgenic mice were back-crossed with WT Balb/c mice (B & K Universal, Hull, Yorkshire, UK) every three generations. Animals were group-housed with food and water available ad libitum in a room with temperature control (23 ± 0.5°C) and a 12/12 hour light/dark cycle. The genotypes of the mice were determined at approximately 5 weeks of age by PCR on DNA extracts from tail biopsies. Sequences of the primers used in genotyping were as described previously (Vigot et al., 2006). Male mice (aged 5 - 12 weeks) exhibited no spontaneous seizures or other basal behavioural abnormalities (Jacobson et al., 2006), in contrast to the GABA$_{B1}$/- knockout mice that displayed several forms of complex seizures (Schuler et al., 2001). The use of drug and molecular target nomenclature is conformed to Guide to Receptors and Channels (Alexander et al., 2011).

Electrophysiological recordings of synaptic potentials in dentate GCs using a multi-electrode array

Sagittal sections of both brain hemispheres were cut at a thickness of 300 µm using a vibratome (Series 1000, Vibratome, St. Louis, Missouri, USA, or a Leica VT1200, Leica Microsystems GmbH, Wetzlar, Germany). Transverse sections of the DG and the hippocampus were harvested and transferred to oxygenated (5% CO$_2$ / 95% O$_2$) artificial cerebrospinal fluid, which contained (in mM) NaCl (123), Na$_2$CO$_3$ (25), glucose (10), KCl (3.7), CaCl$_2$ (2.5), NaH$_2$PO$_4$ (1.4) and MgSO$_4$ (1.2), and maintained at 31°C. One slice was transferred to a multi-electrode probe (MED-P210A; MED64,
Alpha MED Sciences, Osaka, Japan), which consists of 64 indium tin oxide and platinum black electrodes arranged in an 8 by 8 grid with an inter-electrode distance of 100 µm. Slices were orientated with a row of electrodes in line with the GC layer of the inner, enclosed blade of the DG (Fig. 3A) and held in place using a nylon mesh and a platinum ring. Bath perfusion was at a rate of 1-2 ml/min and the artificial cerebrospinal fluid was continuously oxygenated (5% CO₂ / 95% O₂), and heated to 31±0.5°C using an in-line heater (Warner Instruments, Hamden, Connecticut, USA).

Electrical pulses (0.2 ms in duration) were delivered every 60s to stimulate the PP via one of the electrodes in the array positioned in the outer two thirds of the molecular layer. Stimulation, recording and the analysis of extracellular potentials was performed using the Mobius software (version 0.3.7; Alpha MED Sciences, Osaka, Japan). The negatively deflected field excitatory postsynaptic potentials (fEPSPs) were recorded in the dendrite field of GCs in the outer molecular layer. Signals with amplitude greater than 200 µV were captured and used for off-line analysis. Due to submerged perfusion method and the low impedance of the surface electrodes (Chen et al., 2006), the amplitude of the field potentials recorded by multi-electrodes are small, but the cut-off amplitude was more than 3 times the peak-to-peak noise level. The fEPSP slope was measured using the 10–90% slope function and the absolute value (mV/ms) was used to assess the excitatory synaptic strength.

The population spike (PS) was recorded from the soma of the GCs where the field potential waveform displayed positively deflected fEPSP superimposed by a large negatively-deflected spike. The relative amplitudes of the fEPSP and the spike differ between recording sites. Recordings towards the hilar region displayed a relatively
larger fEPSP as the site gets closer to the current source. Therefore, all PSs with amplitudes larger than 500 µV were analysed. The amplitude of the PS (mV) was measured from the negative peak to the line connecting the positive peaks for the summation of synchronised action potentials from the GCs. The initial slope of the positively-deflected fEPSP was also measured by the 10–90% slope function (mV/ms), which mirrors the negative fEPSP slope of the same neuronal population as an evaluation of excitatory synaptic strength. The area-under-the-curve (mV*ms, PS area) was calculated including any additional spikes at longer latencies induced by drug treatment to evaluate the ensemble effect of all events. The input-output relationship was examined in all slices using escalating stimulation intensities (10 to 110 µA in steps of 10 µA), and approximately 80% of the maximum responses was used for further pharmacological studies.

Effects of GABA_B receptor agonist and antagonist were examined by bath application following a 30 minute baseline recording (control). Recordings from 3 to 10 electrodes were analysed independently and the mean drug effect was obtained for each slice. This exercise averages out variability between different recording sites and hence enhances the reproducibility of pharmacological effects between experiments (Chen et al., 2006). In addition, the effects of GABA_B receptor agonist and antagonist were similar on fEPSPs and PSs elicited by different stimulating electrodes in the molecular layer to recruit the lateral or medial perforant path, respectively, so that the data sets were pooled. There was also no apparent age (5-12 weeks)-dependent effect.
**Immunohistochemical staining and analysis**

The specificity of the anti-GABA\(_{B2}\) antibody (AB5394; Millipore Ltd.) has been confirmed using the GABA\(_{B2/-}\) mice (Gassmann *et al.*, 2004). The anti-GABA\(_{B1}\) antibody (sc-14006; Santa Cruz Biotechnology Inc.) was raised against the immunogen sequence specific for GABA\(_{B1}\) subunit (NCBI mouse protein library) and the immunostaining produced the same pattern of subunit distribution in the hippocampus and the DG as shown in previous studies (Kulik *et al.*, 2003; Vigot *et al.*, 2006). Notably, GABA\(_{B1}\) staining in the stratum lucidum of the CA3 area was significantly reduced in the 1a/- mice (Vigot *et al.*, 2006).

The brain block containing the DG was fixed in ice-cold paraformaldehyde (4%) for 4 hours immediately following decapitation. Antigen retrieval was carried out by heating the tissue in sodium citrate buffer for 130s in a 750W microwave oven, as described by Fritschy *et al.* (1999). Coronal sections of 30 \(\mu\)m thick were cut in a cryostat (Microtome, UK) at -21°C, and incubated overnight (approximately 15 hours) at 4 °C with primary antibodies raised against either the GABA\(_{B1}\) or the GABA\(_{B2}\) subunit. The bound primary antibodies were labelled with biotinylated secondary antibodies (Jackson Immuno Research Laboratories Inc, West Grove, Pennsylvania, USA). The tissue-bound biotin molecules were then labelled with a peroxidase-avidin complex (Vectastain ABC Kit, Vector Laboratories Ltd., Peterborough, Cambridgeshire, United Kingdom) in PBS with 0.5 % Triton X-100 (v/v) for 30 minutes. Sections were then stained using DAB (3, 3’-diaminobenzidine, ImmPACT DAB Substrate; Vector Laboratories Ltd.) under visual guidance. Negative control sections were incubated without the primary antibodies to evaluate any unspecific binding by the secondary antibody.
Brain tissues from each of the three genotypes (WT, 1a/- and 1b/-) were processed simultaneously to minimise variability in staining intensity. The Nissl stain was also performed to examine the architectonic structure of the tissue in the knockout mice. Images were captured using a Nikon light microscope with a fitted digital camera (DS-2Mvm, Nikon Instruments Europe, Kingston, UK). The number of stained hilar neurons was counted in each section. The hilar border neurons were those located in a single cell layer immediately adjacent to the GC layer. The deep layer neurons were those in between the upper and lower border layers, excluding the CA4 area. The relative staining intensities of the neuropil of the molecular layers were scored at high (3), medium (2), low (1) and very low (0) levels within the same batch of staining. The mean for each DG was obtained from 8 – 20 sections across the septotemporal axis and used for comparison between genotypes. Note that the relative staining levels do not necessarily conform to a linear scale. Nonparametric tests were, therefore, used for comparison between genotypes.

**Pharmacological agents**

GABAR receptor agonist (±)-baclofen (referred to hence forward as baclofen) was purchased from Sigma-Aldrich. GABA_A receptor antagonist (-)-bicuculline methochloride (referred to hence forward as bicuculline) and GABAR receptor antagonist CGP55845 was purchased from Tocris Bioscience (Bristol, UK). All other reagents used were of analytical grade and purchased from either Sigma-Aldrich Company Ltd. (Poole, Dorset, UK) or Fisher Scientific UK Ltd. (Loughborough, Leicestershire, UK).
Statistical analysis

Data are expressed as mean ± standard error of the mean (SEM) and the n represents the number of different animals (see Results). Treatment effects over the time course were compared using paired t-test or repeated measures one-way ANOVA followed by Tukey’s multiple comparisons, where appropriate. Treatment effects among the three genotypes were analysed using ANOVA followed by Bonferroni’s post-hoc test or nonparametric tests, where appropriate. Statistical significance was taken as $P < 0.05$. 
Results

Localisation of GABA\textsubscript{B} receptor subtypes in the molecular layer

Previous studies show that transcripts for both 1a and 1b subunits are expressed in GCs and hilar neurons (Bischoff \textit{et al.}, 1999), but radioligand binding and immunohistochemical labelling of heteromeric GABA\textsubscript{B} receptors are mainly found in the hilus and the molecular layer, indicating predominant receptor expression on neuronal processes (Bischoff \textit{et al.}, 1999; Kulik \textit{et al.}, 2003). The mossy fibre terminals in the CA3 are immunopositive for the 1a subunit (Vigot \textit{et al.}, 2006; Guetg \textit{et al.}, 2009), showing selective trafficking of this subtype to GC axonal terminals. Conversely, GABA\textsubscript{B(1b,2)} receptors are probably expressed on dendrites of GCs in the molecular layer (Kulik \textit{et al.}, 2003) at their default dendritic localisation (Biermann \textit{et al.}, 2010). Here, we examined the anatomical localisation of the GABA\textsubscript{B} receptor subtypes in the DG in the 1a-/- and 1b-/- mice. Both anti-GABA\textsubscript{B1} (B1) and anti-GABA\textsubscript{B2} (B2) antibodies were used because co-localisation of B1 and B2 subunits is essential for the assembly of heteromeric functional GABA\textsubscript{B} receptors (Kulik \textit{et al.}, 2003; Gassmann \textit{et al.}, 2004; Vigot \textit{et al.}, 2006). B1 expression in the soma alone without B2 is indicative of B1 retention in the endoplasmic reticulum, as the binding of the B2 subunit enables surface expression of the heteromeric assembly (Margeta-Mitrovic \textit{et al.}, 2000; Gassmann \textit{et al.}, 2004).

The cellular architecture of the DG in the knockout brains were examined using the Nissl stain (Fig. 1A-C), and no apparent alteration from the WT was observed. Intense B1 immunostaining was found in the soma and proximal dendrites of hilar neurons and the neuropil of the molecular layer and GC layer in WT mice (Fig. 1D-F); B2 staining was mainly found in the neuropil of the hilus and the molecular layer (Fig.
indicating that the B1 and B2 subunits are co-localised in the neuropil of the hilus and the molecular layer for heteromeric receptor assembly (Kulik et al., 2003; Bischoff et al., 1999). Few neuronal cell bodies were stained in the molecular layer, in comparison to the number labelled by the Nissl stain (Fig. 1A-C), consistent with a low level of GABA_B receptors in interneurons of the molecular layer (Bischoff et al., 1999; Kulik et al., 2003). We, therefore, further analysed the subtype expression patterns in the molecular layer and the hilus.

In the molecular layer of the WT mice, immunoreactivity for both B1 and B2 was more intense in a narrow band immediately adjacent to the GC layer in the inner molecular layer (IM) than the outer molecular layer (OM) (Fig. 1D, G and Fig. 2 A, B). In the 1a/- mice, B1 and B2 staining was both reduced in the IM, but not the OM (Fig. 1E and H, and Fig. 2A and B, \( P < 0.05 \), Kruskal-Wallis test and Dunns post tests, \( n = 4 \) brains of each genotype), showing restricted co-localisation of the 1a and B2 subunits in the IM, which form the GABA_B(1a,2) receptors. Correspondingly, in the 1b/- mice, B1 and B2 staining (Fig. 1F, I) was both significantly reduced in the OM (Fig. 2A and 2B, \( P < 0.05 \)), but not the IM, showing predominance of the GABA_B(1b,2) receptors in the OM. A schematic that depicts the localisation of the subunits in the molecular layer is shown in Fig. 2C, where the GABA_B(1a,2) receptors are concentrated in the IM, and the GABA_B(1b,2) subtype dominates the OM. Enlarged sections (see the frame in Fig. 1E) that include the hilus and the enclosed blade of the molecular layer are shown in Fig 1M-R to illustrate the differential expression of GABA_B(1a,2) and GABA_B(1b,2) receptors. The IM localisation of the axonal terminal-preferring GABA_B(1a,2) receptors may indicate the presence of presynaptic autoreceptors at hilar pathways innervating the proximal dendrite of GCs only. The
GABA\(_{B(1a,2)}\) receptors may then inhibit hilar output, exerting a disinhibitory effect. Whereas, the GABA\(_{B(1b,2)}\) receptors may be on GC dendrites in the OM (Kulik et al., 2003), thereby mediating an inhibitory effect on GC output.

**Localisation of the GABA\(_B\) receptor subtypes in the hilus**

Hilar neurons include a diverse population of GABAergic interneurons, which receive excitatory inputs from GC axons and project to the molecular layer to exert feedback inhibition on GC dendrites (Amaral et al., 2007). Previous studies show that GABA\(_B\) receptors are expressed on GABAergic interneurons (Bischoff et al., 1999; Mott et al., 1999; Kulik et al., 2003), but not the large-sized excitatory mossy cells found in the deep layer (Nahir et al., 2007). Hilar neurons were strongly labelled by the B1 antibody, but B2 staining was distributed in the neuropil, highlighting a non-somatic localisation of heteromeric assemblies.

The neuropil staining of B2 in the hilus (Fig. 1P-R) was significantly reduced in the 1a-/- (Fig. 2D, \(P < 0.05\), Kruskal-Wallis test and Dunns post-tests, \(n = 4\) brains of each genotype), showing significant presence of the GABA\(_{B(1a,2)}\) receptors on neuronal processes. Given their preferred localisation on axonal terminals, the GABA\(_{B(1a,2)}\) receptors may include presynaptic heteroreceptors on GC axonal terminals innervating the hilus, similar to those expressed on mossy fibre terminals in the CA3 (Guetg et al., 2009). Activation of the GABA\(_{B(1a,2)}\) heteroreceptors can inhibit excitatory inputs from GCs to reduce hilar neuron activity and induce disinhibition on GCs. Presumably, presynaptic GABA\(_{B(1a,2)}\) heteroreceptors can also reduce excitatory inputs on the excitatory mossy cells (Nahir et al., 2007), resulting in further decreased excitation in the hilus.
Hilar neurons were intensely stained by the B1 antibody, showing somatic expression of the subunit. Hilar neurons at the border zone and the deep layer also differentially innervate the somatodendritic regions of GCs via proximal and distal pathways in the IM and OM, respectively (Freund & Buzsaki, 1996; Amaral et al., 2007). Given the co-localisation of 1a and B2 subunits in the IM, the GABA_{B(1a,2)} receptors may be expressed on the axonal terminals of hilar border neurons. In correlation to the terminal expression, the 1a subunit may be abundantly expressed in the soma of these neurons due to retention in the endoplasmic reticulum, although its absence in the soma does not rule out the possibility of exclusive axonal terminal localisation as in the case of GCs. We found that the total number of B1-positive hilar neurons was reduced by 24.2 ± 6.6% in the 1a-/ mice (P < 0.001, n = 4 mice, Fig. 1E and 2E) and by 29.8 ± 3.1% (P < 0.001, n = 4 mice, Fig. 1F and 2E) in the 1b-/ mice, compared to the WT mice (a total of 49.3 ± 0.7 labelled neurons per section, n = 4 mice), showing that ~24% of the hilar neurons contain the 1a subunit only and ~30% the 1b only, while the rest (~46%) comprise both subunits. In addition, the number of neurons located in the border zone immediately adjacent to the GC layer was reduced by a greater extent in the 1a-/ mice (39.0 ± 9.8%, P < 0.001, n = 4, Fig. 2E), while the rest of hilar neurons in the deep layer was only significantly reduced in the 1b-/ mice (by 23.3 ± 7.5%, P < 0.01, n = 4, Fig. 2E), demonstrating prevalence of 1a-only neurons in the border zone and 1b-only ones in the deep layer. The relative distributions of the two isoforms are depicted in the Venn diagrams in Fig. 2F, where a relatively higher percentage of hilar border neurons express the 1a subunit only, and all deep-layer neurons express the 1b subunit.
Despite the relatively different somatic localisation of 1a and 1b subunit, most hilar neurons contain the 1a. The 1a-containing hilar border neurons included fusiform cells and pyramidal-shaped cells with prominent apical dendritic tuft extending to the GC layer, resembling the basket cells (Freund & Buzsaki, 1996; Amaral et al., 2007). These cells potentially innervate both perisomatic and proximal dendritic regions of GCs. However, as the 1a and B2 subunits were mainly co-localised in the IM, the GABA_{B(1a,2)} receptors were then potentially only expressed at axonal terminals innervating the proximal dendrite. In addition, the 1a subunit was expressed in ~77% deep-layer neurons, but its expression level was low in the OM, indicating a deficiency in axonal terminal expression. Therefore, despite the abundance of somatic expression, the hilar neurons show differentially axonal terminal expression of the 1a subunit in the IM.

 Activation of GABA_{B(1a,2)} receptors enhances GC population spikes to a greater extent

The differential localisation of the GABA_{B} receptor subtypes in the DG indicates their potentials to differentially modulate GC output at axonal terminal and dendritic sites of hilar pathways. We, therefore, studied the PP-GC synaptic transmission in the DG of the WT, 1a/- and 1b/- mice. Electrical stimulation in the outer two-thirds of the molecular layer activates the PP and evokes synaptic potentials in the GC dendrite and action potential in the cell body (Ault & Nadler, 1982; Burgard & Sarvey, 1991; Mott & Lewis, 1991; Mott et al., 1993). We recorded fEPSPs and PSs from the outer molecular layer and the GC layer, respectively, using a multi-electrode array (Fig. 3A). The evoked potentials were blocked by the ionotropic glutamate receptor antagonist, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) (20 µM, data not shown),
confirming the glutamatergic nature of the PP-GC synapses. Both the fEPSP slope and the PS amplitude increased with the stimulation intensity (10 - 110 µA with 10 µA step) in all WT (n = 7), 1a-/ (n = 8) and 1b-/ (n = 7) mice. The input-output relationships did not differ between the genotypes ($F[2,350] = 0.60, P > 0.05$ for fEPSP slopes; $F[2,240] = 0.89, P > 0.05$ for PS amplitudes), nor did the relationship between the PS amplitude and the fEPSP slope ($F[2,224] = 0.917, P > 0.05$, Fig. 3B), demonstrating similar coupling between the excitatory inputs and GC firing in WT and GABA$_B_1$ isoform knockout mice in the single-pulse stimulation paradigm.

Baclofen concentration-dependently (1 and 10 µM) augmented the PS in all mice (Fig. 3C-E upper traces). An additional spike was induced following the initial spike in the PS (Fig. 3C-E, upper panels), indicating increased excitability of GCs due to reduced late-onset synaptic inhibition. The amplitude of the first spike was also enhanced at 10 µM baclofen (Fig. 3G) by $129 \pm 12\%$ ($P < 0.05$, n = 7) for WT; $128 \pm 10\%$ ($P < 0.05$, n = 8) for 1a-/ and $131 \pm 10\%$ ($P < 0.05$, n = 7) for 1b-/ mice. To include both spikes in the analysis, the area-under-the-curve (PS area) was measured and baclofen significantly increased the PS area in all genotypes (Fig. 3C-E lower panels, #### $P < 0.001$ compared to its own baseline). Furthermore, the increase of the PS area was significantly greater in the 1b-/ mice than in the WT ($P < 0.05$) and 1a-/ mice ($P < 0.001$, Fig. 3F), showing a larger effect mediated by the GABA$_B_(1a,2)$ receptors. As the two receptor subtypes do not differ pharmacologically (Vigot et al., 2006), the greater effect by the GABA$_B_(1a,2)$ receptors may reflect their relative localisation in the hilar inhibitory pathways (Fig. 1 and 2).
Despite the enhancement in PS amplitude and PS area, the initial slope of the fEPSPs recorded in the OM was not enhanced by baclofen (Fig. 3I, $F[1,19] = 2.3, P > 0.05, 7$ WT, 10 1a/- and 7 1b/- mice), nor was the initial slope of the positive fEPSP in the PS (Fig. 3H, $F[3,71] = 2.1, P > 0.05$), demonstrating a lack of $\text{GABA}_B$ heteroreceptors on the excitatory axonal terminals of the PP in the mouse DG. This is in agreement with the lack of presynaptic $\text{GABA}_B$ receptors on PP terminals in the stratum lacunosum moleculare of the mouse CA1 (Price et al., 2008). The $\text{GABA}_B$ receptor-selective antagonist, CGP55845 (1 µM), also failed to affect the fEPSP slope (Fig. 3I, $F[1,16] = 2.6, P > 0.05$, WT, n = 7; 1a/-, n = 10 and 1b/-, n = 7 mice), showing a lack of endogenous $\text{GABA}_B$ receptor activation upon single-pulse PP stimulation. The enhanced PS, therefore, demonstrates disinhibitory effects of the $\text{GABA}_B$ receptors. The additional spike in the PS further indicates reduced feedback inhibition, consistent with the intense expression of $\text{GABA}_B$ receptors in the hilus.

**$\text{GABA}_A$ receptor blockade prevents baclofen-induced disinhibition and reveals an inhibition by $\text{GABA}_B(1b,2)$ receptors only**

To confirm that the potentiation of the PS is due to disinhibition, we examined effects of baclofen in the presence of $\text{GABA}_A$ receptor antagonist, bicuculline (10 µM), because the $\text{GABA}_A$ receptor blockade is expected to abolish feedback synaptic inhibition and hence baclofen-induced disinhibition via reduced $\text{GABA}$ release. Bicuculline induced multiple spiking in the PSs in all slices, showing facilitated action potential generation in GCs resulting in a spike train. As a result, the PS area was significantly increased (Fig. 4A – C, PS area, $P < 0.001$ compared to baseline). In the presence of bicuculline, baclofen (10 µM) failed to enhance the PS in any
genotype \((P > 0.05)\), confirming that the PS enhancement was due to \(\text{GABA}_A\) receptor-dependent disinhibition.

However, in the presence of \(\text{GABA}_A\) blockade, baclofen reduced the PS area in WT and 1a-/- mice (Fig. 4A - D, \(P < 0.001\) compared to baseline, \(n = 7\) for WT, \(n = 6\) for 1a-/-), but not 1b-/- mice \((P > 0.05, n = 6)\). The amplitude of the first spike in the PS was also reduced but not the initial slopes of the fEPSP, indicating a direct postsynaptic inhibition on GCs, but not a pre-terminal inhibition of the PP-GC transmission. The \(\text{GABA}_B(1b,2)\) receptors, therefore, also mediate a postsynaptic inhibition at GC dendrites (Vigot et al., 2006; Tiao et al., 2008; Biermann et al., 2010). This additional inhibitory effect is in contrast to the exclusive disinhibitory effects of \(\text{GABA}_B(1a,2)\) receptors, reflecting their differences in anatomical localisation.
Discussion

We show for the first time that GABA\textsubscript{B} receptor subtypes differentially modulate synaptic inhibition on GCs at different localisations of the hilar pathways in the DG. The axonal terminal-preferring GABA\textsubscript{B(1a,2)} receptors are predominantly located in the neuropil of the inner molecular layer and the hilus, and in hilar border neurons. Activation of this subtype exclusively decreases GABA\textsubscript{A} receptor-mediated synaptic inhibition, thereby indicating presynaptic reduction of excitatory inputs to the hilus and also inhibition of hilar outputs. The dendrite-preferring GABA\textsubscript{B(1b,2)} receptors dominate the outer molecular layer and deep-layer hilar neurons. This subtype may, therefore, mediate the disinhibitory and inhibitory effects on GCs via dendritic inhibition of hilar neurons and GCs, respectively. The GABA\textsubscript{B(1a,2)} receptors are also more effective at augmenting GC output, highlighting a greater role of these presynaptic receptors in gating spike transmission from the DG to the hippocampus for spatial and pattern learning.

The use of 1a-/- and 1b-/- mice isolates GABA\textsubscript{B(1a,2)} and GABA\textsubscript{B(1b,2)} receptor expression without altering the cellular architecture of the DG (Fig. 1). Previous studies using these mice have revealed differential roles of the GABA\textsubscript{B} receptor subtypes in synaptic circuitry (Ulrich & Bettler, 2007; Pinard \textit{et al.}, 2010). Most notably, the GABA\textsubscript{B(1a,2)} receptors are the exclusive presynaptic receptors on glutamatergic and GABAergic synapses, trafficked by the “sushi” domains on the 1a subunit (Tiao \textit{et al.}, 2008; Biermann \textit{et al.}, 2010), while the GABA\textsubscript{B(1b,2)} predominant dendritic receptors (Vigot \textit{et al.}, 2006; Perez-Garci \textit{et al.}, 2006; Ulrich \textit{et al.}, 2007; Guetg \textit{et al.}, 2009). The differential localisation of the subtypes in synaptic compartments enables them to differently modulate synaptic functions and cognitive
behaviours. Here, we evaluated the subtypes in modulating synaptic inhibition in the DG.

**Disinhibitory and inhibitory roles of $GABA_{B(1b,2)}$ receptors in the DG**

Baclofen-induced enhancement of GC activity has been attributed to decreased inhibitory actions from hilar pathways (Burgard & Sarvey, 1991; Mott & Lewis, 1991; Mott et al., 1993). $GABA_B$ receptors are highly expressed on hilar interneurons (Bischoff et al., 1999; Mott et al., 1999; Kulik et al., 2003). Activation of these receptors hyperpolarises the membrane potential and decreases hilar neuronal excitability (Mott et al., 1999), which, in turn, reduces GABA release and synaptic inhibition on GCs. We demonstrate that selective activation of the $GABA_{B(1b,2)}$ receptor subtype in the 1a-/ mice enhances GC PSs via disinhibition (Fig. 3 and 4), consistent with activation of dendritic $GABA_{B(1b,2)}$ receptors on hilar neurons (Fig. 1 and 2). Furthermore, we show that $GABA_{B(1b,2)}$ receptors also mediate a direct inhibition on GCs during $GABA_A$ receptor blockade, agreeing with a hyperpolarising action at the extrasynaptic compartments of GC dendrites in the outer molecular layer (Kulik et al., 2003). Therefore, dendritic $GABA_{B(1b,2)}$ receptors on hilar neurons and GCs mediate disinhibition and inhibition of GC output, respectively.

**Exclusively disinhibitory roles of $GABA_{B(1a,2)}$ receptors in the DG**

More importantly, this study reveals that the axonal terminal-preferring $GABA_{B(1a,2)}$ receptors collectively mediate disinhibition of the GCs without inhibition of the PP-GC transmission. In the molecular layer where GC dendrites are located, the $GABA_{B(1a,2)}$ receptors are densely expressed in a narrow band of the inner molecular layer immediately adjacent to the GCs. Given their preferential presynaptic
localisation and the exclusive dishibitory effects, the GABA\(_{B(1a,2)}\) receptors are envisaged to be on GABA\(_{ergic}\) axonal terminals acting as autoreceptors. Activation of these autoreceptors can effectively decrease GABA\(_{ergic}\) inhibition on proximal dendrites that shunts dendritic potentials (Ben-Ari \textit{et al.}, 2005), consistent with the enhanced GC output (Fig. 3). In addition, disinhibition via presynaptic autoreceptors may be stronger than postsynaptic hyperpolarisation, which can be easily overcome by strong depolarisation on hilar neurons (Mott \textit{et al.}, 1999), further supporting a greater disinhibitory effect of GABA\(_{B(1a,2)}\) receptors.

Hilar interneurons are activated by GC axons, inducing feedback inhibition onto GC dendrites in the molecular layer (Freund & Buzsaki, 1996; Amaral \textit{et al.}, 2007). Given their exclusive dishibitory roles, the GABA\(_{B(1a,2)}\) receptors expressed in the neuropil of the hilus (Fig. 1 and 2) are potentially presynaptic heteroreceptors on GC axonal terminals innervating hilar neurons, similar to those expressed at mossy fibre terminals in the CA3 (Vigot \textit{et al.}, 2006; Guetg \textit{et al.}, 2009). Activation of these receptors reduces excitatory inputs to hilar neurons, decreases hilar neuron activity and, subsequently, feedback inhibition on GC dendrite, manifesting a dishibitory action that can synergise with the autoreceptors in the inner molecular layer. If the GABA\(_{B(1a,2)}\) receptors were autoreceptors at inhibitory terminals in the hilus, their activation would increase hilar neuron activity and enhance feedback inhibition on GCs, opposite to what was observed experimentally. Therefore, GABA\(_{B(1a,2)}\) receptors in the neuropil of the hilus are potentially heteroreceptors on GC axonal terminals, mediating dishibition in synergy with the autoreceptors.
Given that the majority of hilar neurons express the 1a subunit, it is potentially possible that the GABA$_{B(1a,2)}$ autoreceptors in the inner molecular layer are on axonal terminals of hilar neurons. The 1a-containing hilar neurons in the border zone include basket cells and fusiform cells, and they preferentially project to perisomatic and proximal dendritic regions of the GCs (Freund & Buzsaki, 1996; Amaral et al., 2007), thereby having the potential to traffic GABA$_{B(1a,2)}$ receptors to axonal terminals in the GC and the inner molecular layer. However, the restricted localisation of GABA$_{B(1a,2)}$ receptors in the inner molecular layer suggests that only a subpopulation of the axons that project to the proximal dendrite of GCs may express the autoreceptors.

Heterogeneity of 1a expression between the soma and the terminal is more pronounced in deep-layer neurons, which, including HIPP (Hilar Perforant Path related cells) (Han et al., 1993), preferentially terminate on distal dendrites of GCs in the outer molecular layer. Despite that the majority of deep-layer hilar neurons contain both 1a and 1b subunits, a low level of GABA$_{B(1a,2)}$ expression is found in the outer molecular layer. This indicates that these cells do not efficiently traffic the subunit to terminals. Potentially, axonal trafficking can be limited by the availability of intracellular binding proteins for “sushi” domains (Biermann et al., 2010). Therefore, hilar neurons may regulate the spatial expression of autoreceptors on axon terminals across the molecular layer to selectively modulate inhibition on proximal dendrite of GCs.

*Endogenous activation of GABA$_B$ receptor subtypes*
While the blockade of GABA\(_A\) receptors by the antagonist, bicuculline, markedly enhanced the PS (Fig. 4), showing significant endogenous GABA release, GABA\(_B\) receptors were not activated by the single-pulse PP stimulation. The selective antagonist, CGP55845, did not affect the PS or the fEPSP, probably because GABA\(_B\) receptors are predominantly located extrasynaptically in the DG (Kulik et al., 2003), only activated by “spillover” of GABA under synchronised and/or high frequency activation (Scanziani, 2000). The GABA\(_{B(1a,2)}\) autoreceptors concentrated in the inner molecular layer can potentially be activated by local release of GABA, producing activity-regulated gating of GC output.

Dendritic GABA\(_B\) receptors in the outer molecular layer are, however, activated by GABA released from \textit{en passant} axonal varicosities of neurogliaform cells (Armstrong et al., 2011), a subtype of GABAergic interneurons displaying extensive axonal arborisations which form non-synaptic contacts with other cells (Tamas et al., 2003; Olah et al., 2009). Neurogliaform cells are present in the outer two-thirds of the molecular layer and PP stimulation activates these cells and induces GABA\(_A\) and GABA\(_B\) inhibitory postsynaptic currents on GCs (Armstrong et al., 2011). Although the GABA\(_B\) antagonist had no effect on the PS, local receptor activation may modulate dendritic NMDA receptor activity and calcium signals (Chalifoux & Carter, 2010) and regulate synaptic plasticity. The two GABA\(_B\) subtypes in the molecular layer are, therefore, potentially activated by different forms of endogenous GABA release.

\textit{Disinhibitory and inhibitory roles of GABA\(_B(1a,2)\) receptors in the hippocampal tri-synaptic circuit}
We also reveal a lack of presynaptic GABA$_B$ heteroreceptors on PP terminals in the mouse DG. GABA$_B$(1a,2) receptors in the DG are, therefore, particularly important for disinhibition, which enhances GC output and spike transmission to the hippocampus. Conversely, GABA$_B$(1a,2) receptors in CA3 and CA1 areas are mainly presynaptic heteroreceptors inhibiting glutamate release and CA3 and CA1 outputs (Vigot et al., 2006; Guetg et al., 2009). The lack of GABA$_B$(1a,2) receptors, therefore, alters the dynamic range of signal transfer in the tri-synaptic circuits between the PP and the CA1, resulting in decreased proportion of silent synapses, impaired long-term potentiation in the CA1 (Vigot et al., 2006; Guetg et al., 2009) and deficits in novel object recognition (Vigot et al., 2006; Jacobson et al., 2007). Furthermore, rapid changes in the expression of presynaptic GABA$_B$ receptors in hippocampal mossy fibre and CA1 inhibitory terminals have been demonstrated following kindling, indicating that the axonal trafficking of 1a subunit may be an important regulatory mechanism in epileptogenesis.

In conclusion, due to the difference in their default synaptic localisation, the axon terminal-preferring GABA$_B$(1a,2) and dendrite-preferring GABA$_B$(1b,2) receptor subtypes are distinctly expressed in hilar inhibitory pathways and GCs and differentially modulate GC output. By regulating subunit composition and expression in neuronal circuits, GABA$_B$ receptor subtypes modulate a variety of behavioural states.
Figure legend

Figure 1. The distribution of GABA_B receptor subunits in the DG of 1a/- and 1b/- mice. A-C: The Nissl stain in the DG shows no significant anatomical differences for cell populations in the GC layer, molecular layer (Mol) and the hilus (H) between the wild-type (WT), 1a/- and 1b/- mice. D-F: GABA_B1 immunolabelling in the DG using an immunoperoxidase method reveals high intensity staining in the cell bodies and proximal dendrites of hilar neurons, and in the neuropil of the inner molecular layer (IM, see G). The number of immunopositive hilar neurons is lowered in the 1a/- (E) and 1b/- mice (F). The neuropil staining is reduced in the IM in the 1a/- mice and the outer molecular layer (OM, see G) in the 1b/- mice. G-I: GABA_B2 immunoperoxidase labelling in the DG show that the relative neuropil staining intensities in the IM and the OM were reduced in the 1a/- (H) and the 1b/- mice (I), respectively. J-L: Examples of negative control sections processed without the addition of GABA_B1 or GABA_B2 antibodies show low levels of background staining. The scale bar for all sections (200 µm) is shown in A. M-R, enlarged sections from D-I (see the frame in E) showing the immunostaining patterns in the molecular layer and hilar neurons.

Figure 2. Comparison of GABA_B receptor subtype expression in the molecular layer (A-C) and hilar neurons (D-F). A. The relative intensity scores of B1 immunostaining were significantly reduced in the IM in the 1a/- mice (*), and in the OM only in the 1b/- mice (*) compared to the WT. B. The relative intensity scores of B2 immunostaining were significantly reduced in the IM in the 1a/- (*) and the OM in the 1b/- mice (*). The scores range from 0 (no staining) to 3 (the highest intensity) and were used for all sections the brain processed simultaneously. Each score was the
mean from 8 – 20 sections. Nonparametric Kruskal-Wallis test and Dunns post tests were performed. C. A schematic of the relative co-localisation of 1a, 1b and B2 subunits in the molecular layer. D. The relative intensity scores of B2 immunostaining were significantly reduced in the hilus in the 1a-/ mice (* P < 0.05, nonparametric Kruskal-Wallis test and Dunns post tests). E. The total number of immunopositive hilar neurons (Total) was significantly decreased in the 1a-/ (*** ) and 1b-/ mice (** ). The number of neurons at the hilus-GC border zone (Border) also significantly decreased in the 1a-/ (*** ) and 1b-/ mice (*). However, the number of hilar neurons in deep layers was only significantly lower in the 1b-/ mice (*). The data were mean counts from 8 – 20 sections per brain. Two-way ANOVA and Bonferroni’s multiple comparison tests were used (* P < 0.05, ** P < 0.01, *** P < 0.001). N = 4 brains of each genotype. F. Venn diagrams illustrate the relative percentages of hilar neurons containing 1a, 1b or both in the border zone and the deep layer, respectively.

Figure 3. The GABA_B receptor agonist, baclofen (Bac), enhances the PS in the DG. A. A schematic of the multi-electrode positions in the DG for simultaneous recordings of the fEPSPs and the PSs. Electrical stimulation was applied to an electrode in the outer two-thirds of the molecular layer (Mol) and evoked fEPSPs were recorded in the outer molecular layer and PSs adjacent to the GC layer. B. fEPSPs and PSs were simultaneously recorded at stimulation intensities ranging from 10 to 110 μA with a 10 μA incremental step. The PS amplitude and the fEPSP slope were normalised and plotted at all stimulation intensities. The relationships between the PS amplitude and the fEPSP slope are similar between the wild-type and the 1a-/ and 1b-/ mice (F[2,224] = 0.917, p > 0.05), indicating unaltered coupling between the excitatory synaptic transmission and the GC excitability. C-E. Bath application of 10 μM Bac
significantly increased the PS areas in all genotypes (### $P < 0.001$, compared to baseline). The effects were rapidly reduced by CGP55845, showing GABA$_B$ receptor activation. F. Bac concentration-dependently increased the PS area in all mice (***, $F[3,71] = 84.6$). At 10 µM, Bac induced a significantly larger effect in the 1b-/- mice compared to the wild-type (*) and 1a-/- mice (**). Bac also concentration-dependently increased the PS amplitude in all genotypes (G, ***, $F[3,71] = 17.6$). H and I. The fEPSP slopes were not altered by the application of Bac or CGP55845 in all genotypes (G, $F[1,15] = 0.3$, $P > 0.05$, I, $F[3,71] = 2.1$, $P > 0.05$). Repeated-measure two-way ANOVA followed by Bonferroni post-test was used for comparison (* $P < 0.05$, ** $P < 0.01$ and ***$P < 0.001$).

Figure 4. The baclofen-induced enhancement of the PS is GABA$_A$ receptor-dependent. A-C. The GABA$_A$ receptor antagonist, bicuculline (10 µM), induced multiple spikes in the PSs and significantly (***/$P < 0.001$, compared to the baseline) increased the PS area, showing increased GC excitability. In the presence of bicuculline, baclofen (Bac) failed to increase the PS area because of the blockade of GABA$_A$ receptors. However, Bac significantly decreased the PS area in wild-type and 1a-/- mice (### $P < 0.001$, compared to bicuculline treatment), but not in 1b-/- mice, showing an inhibitory effect mediated by GABA$_B$(1b,2) receptors. CGP55845 reduced the effect of Bac, confirming GABA$_B$ receptor activation. A comparison of Bac-induced inhibition between genotypes is shown in D (*** $P < 0.001$, one-way ANOVA followed by Tukey’s test).
References


Fig. 1

<table>
<thead>
<tr>
<th>Nissl Stain</th>
<th>GABA$_{B1}$</th>
<th>GABA$_{B2}$</th>
<th>Negative control</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>G</td>
<td>J</td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>H</td>
<td>K</td>
</tr>
<tr>
<td>1a/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>1b/-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GABA$_{B1}$  GABA$_{B2}$

<table>
<thead>
<tr>
<th>WT</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OM</td>
</tr>
<tr>
<td></td>
<td>IM</td>
</tr>
<tr>
<td></td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

1a/-

<table>
<thead>
<tr>
<th>O</th>
<th>R</th>
</tr>
</thead>
</table>
Fig. 2

A, B, D, E: Histograms showing the immunoreactivity scores for GABA<sub>A</sub> and GABA<sub>B</sub> receptors in different conditions. The bars represent the mean ± SEM.

C: Schematic diagram of the brain region, highlighting the co-localization of 1a, 1b, and 82 subunits.

F: Venn diagram illustrating the overlap of 1a-only, 1b-only, and 1a and 1b co-containing neurons in different layers.
Fig. 3

A

Mol → GC → [H]

B

Population Spine Amplitude (% Maximal)

![Graph showing population spine amplitude vs. tEPSP slope (% maximum)]

C. Wild-type

D. 1a-/-

E. 1b-/-

F

PS area (% control)

![Graph showing PS area vs. Bac concentration (µM)]

G

PS amp (% control)

![Graph showing PS amp vs. Bac concentration (µM)]

H

tEPSP slope (% control)

![Graph showing tEPSP slope vs. Bac concentration (µM)]

I

tEPSP slope in PS (% control)

![Graph showing tEPSP slope in PS vs. Bac concentration (µM)]