University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells

Jayawardena, KDGI, Rhodes, R, Gandhi, KK, Prabhath, MRR, Dabera, GDMR, Beliatis, MJ, Rozanski, LJ, Henley, SJ and Silva, SRP (2013) Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells Journal of Materials Chemistry A, 1 (34). pp. 9922-9927.

[img]
Preview
Text (licence)
SRI_deposit_agreement.pdf

Download (33kB)
[img]
Preview
Text
Solution processed reduced graphene oxide-metal oxide hybrid electron transport layers for highly efficient polymer solar cells.pdf
Available under License : See the attached licence file.

Download (615kB) | Preview

Abstract

We report new solution processable electron transport layers for organic photovoltaic devices based on composites of metal oxides and reduced graphene oxides. Low bandgap polymer cells fabricated using these nanohybrid transport layers display power conversion efficiencies in the range of 7.4-7.5% which is observed to be an improvement over conventional metal oxide or thermally evaporated electron transport layers. This efficiency enhancement is driven mainly by improvements in the short circuit current (from ∼14.8 to ∼15.0 mA cm) as well as the fill factor (∼65% to ∼68%) upon the inclusion of reduced graphene oxide with the metal oxides. This is attributed to the reduced graphene oxide providing charge transfer pathways between the metal oxide nanoparticles. In addition, the metal oxide/reduced graphene oxide nanohybrids also lead to more balanced electron and hole mobilities which assist in the improvement of the fill factor of the device. The versatile nature of these nanohybrids is increased due to the wrapping of the graphene layers around the metal oxide nanoparticles, which leads to very smooth films with surface roughness of ∼3 nm. The improvement observed in this study upon the incorporation of RGO as well as the solution processable nature of the interfacial layers brings the organic photovoltaic technology a step closer towards realising an all solution processed solar cell. © 2013 The Royal Society of Chemistry.

Item Type: Article
Divisions : Faculty of Engineering and Physical Sciences > Electronic Engineering > Advanced Technology Institute
Faculty of Engineering and Physical Sciences > Electronic Engineering > Advanced Technology Institute > Nano-Electronics Centre
Authors :
AuthorsEmailORCID
Jayawardena, KDGIUNSPECIFIEDUNSPECIFIED
Rhodes, RUNSPECIFIEDUNSPECIFIED
Gandhi, KKUNSPECIFIEDUNSPECIFIED
Prabhath, MRRUNSPECIFIEDUNSPECIFIED
Dabera, GDMRUNSPECIFIEDUNSPECIFIED
Beliatis, MJUNSPECIFIEDUNSPECIFIED
Rozanski, LJUNSPECIFIEDUNSPECIFIED
Henley, SJUNSPECIFIEDUNSPECIFIED
Silva, SRPUNSPECIFIEDUNSPECIFIED
Date : 14 September 2013
Identification Number : 10.1039/c3ta11822c
Depositing User : Symplectic Elements
Date Deposited : 23 Oct 2013 15:31
Last Modified : 08 Nov 2013 12:33
URI: http://epubs.surrey.ac.uk/id/eprint/799464

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800