
Composition of Services in Pervasive Environments: A Divide and Conquer
Approach

Gilbert Cassar, Payam Barnaghi, Wei Wang, Suparna De, Klaus Moessner
Centre for Communication Systems Research

University of Surrey,
Guildford, UK, GU2 7XH

{g.cassar, p.barnaghi, wei.wang, s.de, k.moessner} @surrey.ac.uk

Abstract—In pervasive environments, availability and relia-
bility of a service cannot always be guaranteed. In such en-
vironments, automatic and dynamic mechanisms are required
to compose services or compensate for a service that becomes
unavailable during the runtime. Most of the existing works
on services composition do not provide sufficient support for
automatic service provisioning in pervasive environments. We
propose a Divide and Conquer algorithm that can be used at the
service runtime to repeatedly divide a service composition re-
quest into several simpler sub-requests. The algorithm repeats
until for each sub-request we find at least one atomic service
that meets the requirements of that sub-request. The identified
atomic services can then be used to create a composite service.
We discuss the technical details of our approach and show
evaluation results based on a set of composite service requests.
The results show that our proposed method performs effectively
in decomposing a composite service requests to a number of
sub-requests and finding and matching service components that
can fulfill the service composition request.

Keywords-Service Composition; Sensors; Semantics;

I. INTRODUCTION

Service composition is an essential task in service oriented
computing to build complex business systems and applica-
tions from large number of potentially simple, distributed
and heterogeneous services. Most of the existing methods
for service oriented computing were primarily developed
for the carefully designed and maintained Web services to
build sophisticated enterprise systems and applications. In
pervasive environments such as the Internet of Things (IoT)
where services are often dynamic, mobile, less reliable and
device-dependent (e.g., a sensor service is dependent on the
status of the sensor which is often resource-constrained),
those existing methods face significant challenges and need
to be adapted. The first step in addressing this challenging
problem is to design a compatible while simpler descrip-
tion model for real world services operating in pervasive
environments. Methods for service composition as well as
discovery in IoT need to be more efficient than those for
general Web services (due to the number of real world ser-
vices); effective compensation mechanisms are also needed
to ensure the continuity of composed service at runtime
when service components inside the composite one become

unavailable (due to the dynamic and unreliable nature of the
pervasive environments such as device mobility or network
disrruption).

In this paper we present our recent research on semantic
service composition in pervasive environments such as the
IoT. The main contribution is the design of the Divide and
Conquer method for service composition and compensation
based on iterative decomposition of service requests and
matching against service descriptions. We demonstrate a
novel concept called Transient Link Dependency Matrix
which facilitates the construction of the service composition
solution. Based on the concept, we explain how a (rela-
tively complex) service request can be broken into one or
more simpler sub-requests which represent relaxation of the
original search criteria and make the process of searching
and matching more flexible. Furthermore, we show that the
proposed Divide and Conquer approach can also be used
to compensate services during service execution time. The
rest of the paper is organised as follows. Section II and III
describe the semantic service description model and service
search and matchmaking methods, respectively, which are
the foundations for the service composition method. Section
IV introduces the concept of Transient Link Dependency
Matrix and elaborates how it can be constructed with the
splitting of service requests to facilitate matching with
service descriptions. Section V explains in detail our Divide
and Conquer algorithm for service composition as well
as compensation based on the Transient Link Dependency
Matrix. Section VI briefly describes how service execution
plans can be automatically constructed using the proposed
algorithm. Section VII demonstrates the experimental results
and performs a comparison study with the state-of-the-art.
Finally Section VIII concludes the paper and outlines future
research work.

II. SERVICE REPRESENTATION

The service description model that forms the basis of the
service composition algorithm proposed in this paper is part
of our earlier work detailed in [1]. Here, we briefly present
some of the important concepts and properties of the model
that are pertinent to service composition.



Figure 1. Service Model.

Due to the different types of connected devices possible
in pervasive environments, and the hardware and software
heterogeneity, the service descriptions have been modelled
to provide a uniform abstraction for exposing the function-
alities provided by those devices (see Figure 1).

The service is mapped to the underlying device through
the “exposes” property to a resource, which has different
types (rm:hasType property) depending upon the type of the
connected device. The resource abstraction provides both
hardware (e.g. sensor, actuator) and software specification
(e.g. platform of a storage component) of the connected
device. Since the service exposes the underlying resource
functionalities, the resource attribute that is exposed through
a service either as output data type (hasOutput) or as an input
parameter (hasInput) is captured in the service description.
The input and output parameters are specified in terms
of the generic instance quantities from the Ontology for
Quantity Kinds and Units (QU)1, such as temperature or
luminosity. For actuator services, the impact on the real-
world attribute after service execution is modelled through
the hasEffect parameter. Similarly, any pre-conditions that
need to be met before service execution can be specified
through the hasPrecondition parameter. The actual tech-
nology used to invoke the service is modelled through
the hasServiceType parameter, which could take a value
such as REST for a RESTful Web Service. The operation
area of a service, represented through the hasServiceArea
property, can be specified in terms of polygons indicating
map areas (e.g. a rectangular area with the diagonal lati-
tude, longitude coordinates defined) or in terms of concepts
from an indoor location model or location ontologies such
as GeoNames2. The hasServiceSchedule property allows
specifying time constraints on service availability. The ser-
vice also has ID (hasID) and name (hasName) properties.
An OWL-DL representation of the service description and

1http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-
rec20.html#Section dim

2http://www.geonames.org/ontology/documentation.html

SIn_S1 Out_S1

RIn_R1 Out_R1

TemperatureUnit

TemperatureUnit

VolumeFlowRate

CubicFlowRate

Link Link

Source

Destination

Destination

Source

Figure 2. Source and destination parameters in service links.

an example temperature sensor service are available at
http://ccsriottb3.ee.surrey.ac.uk:8080/IotaDataFiles/models
/Service.owl and http://ccsriottb3.ee.surrey.ac.uk:8080/
IotaDataFiles/models/ServiceInstance.owl, respectively.

We refer to a service description as a tuple S = {in,
out, proc}. The sets in(S), outS, and proc(S) denote
respectively the sets of inputs, outputs, and processes of
service S. Similarly, we consider a request R to be a
template written in the same format as the semantic model
defining S. The request R defines the desired inputs and
outputs using semantic definitions while also defining any
internal processes and operations required by the service.
However, the proposed solution is not limited to only one
service modelling technology and any model that can be
expressed as a tuple S = {in, out, proc} can be used. In the
following section, we outline the method for service search
and matchmaking (based on the semantic service represen-
tations) which is essential for dynamic service composition.

III. SERVICE SEARCH AND MATCHMAKING

Dynamic service composition approaches are highly de-
pendent on the efficiency of the underlying service search
and machmaking mechanism that they use. The search
and matchmaking mechanism is responsible for finding the
group of services from which the candidate services for
composition are chosen. The more relevant the services
found by the service search and matchmaking, the more
efficient the service composition approach will be. The work
in this paper builds upon our previous work on service
search, matchmaking, and ranking [2].

Apart from matching a service to a request/sub-request,
service composition also requires a method for measuring
the compatability of individual service IO parameters to
the IO parameters of a request. Logical signature matching
has been used in different works to verify whether the IO
parameters of a service are compatible with the IO param-
eters of another service [3], [4]. Lécué et. al. [4] propose a
composition algorithm which finds semantic compatabilities
among independently defined service descriptions using the
semantic matchmaking between the input and output service
parameters, which they refer to as Causal Links.

In [2] we define a link as a logical relationship between
two IO parameters. A link has a source parameter Source



and a destination parameter Destination (as shown in
Figure 2) and is denoted as Link(Source,Destination).
Links in automated service matchmaking can represent a
possible connection between two services, the relevancy of
an input of a service to one of the input parameters specified
in a service request, or the ability of a service to generate
one of the outputs specified in a service request.

Let τ be a domain ontology model. Let Source be
a source IO parameter concept and let Destination be
an IO parameter concept that Source can be linked to.
Then, the type of link between Source and Destination:
Link(Source,Destination) can be classed as one of the
four categories explained below:

1) Exact: Source is an exact match to Destination if
τ |= Source ≡ Destination.

2) PlugIn: Source plugs into Destination if
τ |= Source v Destination.

3) Subsumes: Source subsumes Destination if
τ |= Source w Destination.

4) Disjoint: Source is not related to Destination in any
of the above ways.

Individual link analysis makes it possible to dissect the
degree of match between a service and request and enables
a fine grained matchmaking compared to IO matchmaking
filters. This approach stems from the concept that the most
important part in a service request is the outputs and as long
as all the required outputs can be provided by a service, it
does not matter if the service can produce extra outputs that
will not be used. Similarly, if a request specifies that the
client is capable of suplying certain parameters as inputs,
it does not matter if the targeted service only requires a
subset of these available inputs to work. Thus we propose
a matchmaking mechanism that works by assigning weights
to individual links. The degree of match between a service
and a request is then given by summing together the weights
of the individual links.

In this work, we use the hybrid matchmaking method
described in [2] to search for the list of services that match
to a request/sub-request during composition. They hybrid
matchmaking method combines the probabilistic matchmak-
ing method described in [5] to a link-based matchmaking [2]
described above thus increasing the accuracy of the results.
The list of search results returned by the matchmaking
method ranks the most relevant services at the top of the list.
The ranking makes it easier to pick the candidate services
that match to a request/sub-request.

IV. TRANSIENT LINK DEPENDENCY MATRIX

While automatically building a composite service, it is
important to keep a model of the structure being built and
considering how the input parameters of a service may
depend on the output parameters of another service. Omer
and Schill [6] use an Input/Output Dependency Matrix to
represent how the inputs of candidate services chosen for

composition depend on the outputs of other services. They
propose a method to automatically generate an execution
plan for the composite web services based on the constructed
Dependency Matrix. However, their approach allows for
cyclic dependencies [6]. A cyclic dependency occurs when
the output of a service is matched to the input of a service
that generates an output that feeds back into the first service,
thus creating a loop. We argue that a service can only
generate its outputs if it is given the required inputs first.
This implies that if a web service A depends on the web
service B and B depends on one of the outputs of A, the
outputs of A will not be generated until B generates its
outputs and B cannot generate its outputs unless it receives
all the required inputs. The latter will create an intractable
loop. Thus cyclic dependencies should not be allowed in a
service composition.

We propose a Transient Link Dependency Matrix
(TLDM), similar to the Dependency Matrix proposed by
Omer and Schill [6]. However, instead of having an nxn
matrix where n is the number of candidate service for
composition, we propose an sxd matrix where s is the total
number of destination parameters that need to be matched
and d is the total number of available source parameters.
Inputs specified in a service request are parameters that can
be supplied by the user and thus take the role of source
parameters. Outputs specified in the service request are
parameters that must be generated by the composite service
and take the role of destination paramters in the TLDM.
For candidate services chosen for composition, the input
parameters take the role of destination parameters that need
to be matched to source parameters, and the outputs take the
role of source parameters that can be fed into destination
parameters. Each column can contain no more than one
entry with an x that indicates which source parameter that
destination parameter is matched to. Source parameters can
be matched to more than one destination parameter. Empty
columns indicate destination parameters that have not been
matched to any source parameters yet. This set up makes it
easier to represent exactly how the interface of one service
links to the interface of other services. If one of the columns
representing inputs of a service is empty, it means that
all the necessary information cannot be supplied to that
service and the output of that service cannot yet be used in
the composition. In our approach, we make sure no cyclic
dependencies are created by making the outputs of a service
available for link matching only after the inputs for that
service are completely matched.

Another main difference between the TLDM and the
Dependency Matrix proposed by Omer and Schill [6] is that
the TLDM starts as two sub-matrices: the left hand side and
the right hand side matrices. Source parameters listed in the
left hand side matrix are also available in the right hand
side but the right hand side matrix also contains probational
source parameters that are not available on the left hand



Algorithm 1 Divide and Conquer Approach
Require: TheRequest

1: candidateList← StrictServiceDiscovery(TheRequest)
2: if candidateList is NOT EMPTY then
3: Solution Found
4: else
5: LoadTheRequestinTLDM
6: RHSplit← TheRequest.outputs
7: candidateList← ServiceDiscovery(RHSplit)
8: if candidateList IS EMPTY then
9: No Solution Exists

10: else
11: matchIO()
12: LHSplit← TheRequest.inputs
13: candidateList← ServiceDiscovery(LHSplit)
14: if candidateList is NOT EMPTY then
15: matchIO()
16: end if
17: int depth← 2
18: while depth < treshold AND TLDM.solutionNotFound do
19: NewRequest.inputs← TLDM.useableOutputs
20: NewRequest.outputs← TLDM.unmatchedInputs
21: candidateList← ServiceDiscovery(TheRequest)
22: if candidateList is EMPTY then
23: RHSplit← NewRequest.outputs
24: candidateList← ServiceDiscovery(RHSplit)
25: if candidateList is NOT EMPTY then
26: matchIO()
27: end if
28: LHSplit← NewRequest.inputs
29: candidateList← ServiceDiscovery(LHSplit)
30: if candidateList is NOT EMPTY then
31: matchIO()
32: end if
33: else
34: matchIO()
35: end if
36: depth++
37: end while
38:
39: if TLDM.solutionFound then
40: Solution Found
41: end if
42: end if
43: end if

side. The two sub-matrices eventually converge to become a
single matrix, at this point the probational source parameters
stop being probational and the service composition solution
is complete The left hand side matrix starts building on top
of inputs specified in the service request and the sensors
(which do not require any inputs to produce their output).
The right hand side matrix starts from the required outputs
and builds its way back, therefore the inputs of these services
have not yet been properly matched and thus their outputs
are only available on a probation status. When all the inputs
of a service on the right hand side of the matrix get matched
to outputs from the left hand side, the outputs of that service
are transfered to the left hand side matrix and are not on
probation state anymore. When all the required outputs are
linked to outputs from the left hand side, it means the service
composition solution is complete. The process of populating
the TLDM is explained in more detail in the next section.

V. DIVIDE AND CONQUER APPROACH

The Divide and Conquer approach for service composition
is an iterative algorithm designed to split a request into

FireAlarmRequest
In1

Out1

http://purl.oclc.org/NET
/ssnx/qu/dim

#SmokeConcentration

http://127.0.0.1/ontology/
SUMO.owl#Communication

Out2

http://127.0.0.1/ontology/
SUMO.owl#BinaryRelation

R12
In1

Out1

http://purl.oclc.org/NET/
ssnx/qu/dim

#SmokeConcentration

http://127.0.0.1/ontology/
SUMO.owl#Communication

Out2

http://127.0.0.1/ontology/
SUMO.owl#BinaryRelation

R11

Right Hand SplitLeft Hand Split

Figure 3. Splitting request FireAlarmRequest into sub-requests R1,1 and
R1,2.

simpler sub-requests that relax the matchmaking criteria
and make it easier to find relevant candidate services. The
method also actively checks at every step of the process
how the retreived candidate services can be used together
for composition while inherently avoiding the creation of
cyclic dependencies among the candidate services.

Algorithm 1 shows the pseudo code for the Divide and
Conquer approach. The process starts with a request that
specifies a set of input and output parameters and also a set
of semantic descriptions that specify the required internal
processes and operations. Formally, a request R can be
expressed as R = {in, out, proc} where the sets in(R),
outR, and procR denote the sets of required inputs ,outputs,
and processes respectively. If searching directly for R yields
no candidate service that can individually provide all the
required capabilities, we split up the request R into two
sub-requests as shown in Figure 3. The left hand split R1,1

creates a search in terms of inputs and the right hand split
R1,2 creates a search request in terms of outputs.

The algorithm takes in(R) and proc(R) to create sub-
request R1,1 and out(R) and proc(R) to create R1,2 (as
shown in Figure 3). Note that when we split a request, we
use the convention Ra,b where a indicates how many internal
levels we have split the original request, and b takes values
{0, 1, 2}. b = 0 denotes a request which has not been split,
b = 1 denotes the left hand split, and b = 2 denotes the
right hand split.

The TLDM is populated by searching for services that
can satisfy R1,2. If no service is found that contains all
the output parameters specified in in(R1,2), the first set
of services S1,2 that collectively contain all the output
parameters specified in out(R1,2) are selected. i.e;

∀ S Outi ∈ out {S1,2} ∃ R1,2 Outj ∈ out (R1,2) :
Link(S Outi, R1,2 Outj) ∈ {Exact, Subsumed}

For every output S Out ∈ in(S1,2) the algorithm checks
if there exists a parameter in the destination parameters listed
in the right hand side of the TLDM that it can be linked to.



If a valid match is found, S Outi is added as a probational
source candidate in the TLDM and the link between S Outi
and the destination parameter is stored in the matrix. This
procedure is carried out by the matchIO() function and is
repeated until every output parameter specified in R1,2 has
been matched to a source parameter.

The search and matchmaking mechanism is called upon
again to search for services that match R1,1. The algorithm
selects the first set of service S1,2 that collectively contain
all the input parameters specified in in(R1,1). i.e.

∀ S Ini ∈ in {S1,1} ∃ R1,1 Inj ∈ in (R1,1) :
Link(S Ini, R1,1 Inj) ∈ {Exact, P lug − In}

For every input S Ini ∈ in(S1,1) the algorithm checks
if there exists a source parameter listed in the left hand side
of the TLDM that it can be linked to. If not all the inputs of
a service can be linked to source parameters in the left hand
side of the TLDM, the service is discarded because without
supplying all its the necessary inputs, the service cannot be
composed. If a valid match is found, every S Ini is added as
a destination parameter in the TLDM and the link between
S Ini and its source parameter is stored in the matrix. The
output parameters of that service are then made available as
source parameters in the left hand side of the TLDM. This
procedure is carried out by the matchIO() function.

At this stage, the entries in the TLDM are checked to
see if any source parameters from the left hand side can
be linked to destination parameters from the right hand
side. If any services from the right hand side get all their
inputs matched to the left hand side, the service stops
being on probation status and all its source parameters
are transfered to left hand side. If all the services in the
right hand side have had their inputs matched to the left
hand side, then the algorithm has found all the candidate
services necessary to create a composite service. Otherwise,
a new sub-request R2,0 = {in, out, proc} is created. Where
in(R2,0) are all the available source parameters listed in
the left hand side of the TLDM, out(R2,0) are all the
unmatched destination parameters listed in the TLDM, and
proc(R2,0) = proc(R1,0).

If a service that satisfies sub-request R2,0 is not found,
the sub-request would be split again into two parts: the left
hand split R2,1 and the right hand split R2,2 and the process
will be repeated all over again. The method is designed
to loop until the inputs to all the services in the TLDM
are linked. However, not all outputs need to be used in a
composite service and thus outputs that have not been linked
can be disregarded in the end. To ensure a fully operational
composite service, it is important that the services from the
right hand matrix have all their inputs matched (so that they
can function and produce the required outputs). It is not
necessary for all the outputs to be matched because there
might be cases where a service produces some other outputs

besides the outputs that we need. In our work we assume
that the user does not have any problem if extra outputs
are produced as long as the required outputs are ultimately
generated.

The algorithm may reach to a point where no solution that
eventually bridges the left hand split and the right hand split
together is found and the request keeps being broken down
without converging to a viable composition. This short-
coming can be overcome by defining a treshold for the
maximum depth (number of splits) that can be reached by
the algorithm.

The maximum depth for the divide and conquer method
can be determined by a combination of criteria defined
explicitly by the user or determined implicitly from the user
preferences. Such criteria includes the maximum required
response time (in case of real-time services), maximum
amount of complexity that can be handled by the host of the
composite service, and the maximum treshold of complexity
desired by the user.

Another possible solution is to stop splitting, and to restart
the steps but be more relaxed on the input criteria i.e. assume
that the user might be able to supply additional inputs if it
is needed.

VI. AUTOMATIC CREATION OF EXECTUION PLAN

Works on automatic execution plan creation for service
composition such as [6] use the dependencies of services to
automatically build an execution plan from a list of candidate
services. As with most works in this field, the research
interest is in the conceptual logic of execution path rather
than generating a practical implementation [7], e.g. a WS-
BPEL workflow3.

In our method, the service execution plan creation is
performed automatically through the TLDM while we also
look for the candidate services. This is more efficient than
breaking the automatic service composition into separate
service discovery and automatic execution plan creation
stages. Building the execution plan through the TLDM also
makes sure that the final execution plan contains no cyclic
dependencies (as explained in Section IV).

VII. EVALUATION

The dataset used for our evaluations consists of 1220
service descriptions that include sensors, actuators, and
processing services. The service descriptions are represented
in the semantic service description model described in
Section II. The services in the dataset contain concepts
and parameters from different domains including: business,
medical, city, commerce, geography, military, office, tech-
nology, travel, and weather (the dataset can be accessed at
http://tinyurl.com/9a2mmlf).

We evaluate the divide and conquer algorithm against
a Backward Chaining algorithm [8], an algorithm used

3http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html



Table I
REQUESTS AND THE SERVICES THAT MAKE UP THE SOLUTION FOR EACH REQUEST.

Request Name Request Number Services No. of Services
BusRequest2 #1 BusLookUp WS, BusStopLocation WS 2
CameraPrintRequest #2 PictureCamera 01BA02, PhotoPrinter BA02 2
WeatherForecastRequest #3 Forecast WS1, Forecast WS2, CheckRain WS 3
BusRequest1 #4 GPS WS, BusLookUp WS, BusStopLocation WS 3
FireAlarmRequest #5 temperature sensor 01 BA 02, smoke sensor 01 BA 02, fire processing service, fire alarm service 4
CityRequest1 #6 CityTemperature WS, Rainfall WS, Windspeed WS, Inference WS, Actuator WS 5
CityRequest2 #7 Traffic WS, CityTemperature WS, Rainfall WS, Windspeed WS, Inference WS, Actuator WS 6

Table II
SERVICES THAT WENT MISSING AND THE SERVICES THAT MAKE UP THE

COMPENSATION SOLUTION.

Service Name Services in Compensation Solution
CameraPrintRequest VideoCamera 01BA02, MotionPictureToStill Service
Inference WS BUInference WS1, BUInference WS2, BUInference WS3

for top-down service composition. The Backward Chaining
algorithm works by finding services that match the outputs
of the request and then takes the inputs of these candidate
services and searches for other services whose outputs match
the inputs of these services. The algorithm keeps working
backwards like this until sensor services (that require no
inputs) are found, or the inputs of the services at the bottom
of the chain match the inputs specified in the service request.

The evaluation test cases consisted of submitting a service
request to both algorithms and letting the methods find a
composition that provides a solution for the request. We
made sure that for every request there exists at least one
possible composition solution in the dataset. All the requests
are provided in the form the semantic service description
model described in Section II. Table I shows the requests
and the services that make up the solution for each request
(the service requests used in our evaluations can also be
found at http://tinyurl.com/9a2mmlf).

We demonstrate how the divide and conquer approach
can be used to provide automated service compensation by
removing service PictureCamera 01BA02 from soloution #3
and Inference WS from solution #5. The service description
of PictureCamera 01BA02 and Inference WS are submitted
to both algorithms as requests and the algorithms look for
services or composition of services as replacements. The
services that when composed together can replace Picture-
Camera 01BA02 and Inference WS are shown in Table II.

All experiments were carried out on a computer with
Intel(R) Core(TM)2 Duo T7500 2.2GHz CPU, 4GB RAM,
and running Microsoft Windows 7 x86.

A. Results

Table III summarises the results from the service compo-
sition evaluations. For each request, we measured the time it
takes for the algorithm to find the solution and the depth (i.e.;
the number of times the request had to be split). If a table
entry contains the symbol ’/’, it means that the algorithm did
not manage to find a composition solution for that request.

Table III
SERVICE COMPOSITION RESULTS

Request No. Divide and Conquer Back Chaining
Time / s Depth Time / s Depth

#1 12.629 2 11.421 2
#2 13.196 2 11.660 2
#3 14.141 2 / /
#4 14.622 3 12.527 3
#5 14.793 2 13.279 2
#6 45.348 4 / /
#7 / / / /

Table IV
SERVICE COMPENSATION RESULTS

Compensation Request Divide and Conquer Back Chaining
Time / s Depth Time / s Depth

PictureCamera 01BA02 13.532 2 12.630 2
Inference WS 13.357 1 / /

Table IV summarises the results from the service compen-
sation evaluations. The service descriptions of the services
that were removed from the dataset were used as the com-
pensation request. The table shows how long each algorithm
took to find a composition of services that can replace the
missing service and the depth reached in each case. If a table
entry contains the symbol ’/’ it means that the algorithm did
not manage to find a solution for that compensation request.

B. Discussion

The results show that the Back Chaining algorithm con-
verges to a solution faster than the Divide and Conquer
algorithm for solutions consisting of a small number of
services. This is because the Back Chaining algorithm does
not need to split the request and call onto the service
matchmaking mechanism twice. However the Back Chaining
algorithm was not able to solve requests #3, #6, and #7
while the Divide and Conquer algorithm successfully solved
requests #3 and #6.

Request #7 was similar to request #6 but specified no
inputs. We included this request to show how the Divide
and Conquer algorithm responds in the same way as the
Back Chaining algorithm when no inputs are specified in
the request to create a left hand split from. If a request is
too vague, it is harder for an automated service composi-
tion approach to find the correct solution. It is important
that service requests provide enough information about the



required functionality. In the case of request #7, the solution
required an extra service (Traffic WS) to provide information
about the traffic density. The traffic density information was
specified as an input in request #6 and therefore Traffic WS
was not required as part of the solution because the request
specified that the output provided by Traffic WS was already
known.

The service compensation results show that the Divide and
Conquer approach can find service compositions to replace
missing services even in cases where the Back Chaining
algorithm fails. The Divide and Conquer approach works
best when the request indicates what inputs are available in
conjunction with what outputs are required. If a request only
specifies the required outputs, the Divide and Conquer ap-
proach can only work from the top-down and thus responds
in a similar way as a Back Chaining algorithm.

The time complexity of the Back Chaining algorithm is
O
(
bd−1

)
while the time complexity of the Divide and Con-

quer algorithm is O
(
b

d−1
2

)
. Parameter b is the branching

factor which depends on the maximum number of input links
every service can have and parameter d is the depth of the
solution.

VIII. CONCLUSIONS AND FUTURE WORK

Automatic service composition offers a solution for pro-
viding the required functionality to users in the service-
oriented platforms when no single resource can provide
the full required functionality. The Divide and Conquer ap-
proach revolves around the concept of representing resources
as semantic services so that service-oriented computing
methods can be applied to provide higher-level solutions
such as service composition and service compensation. Our
proposed approach provides a mechanism for breaking down
a service request into simpler sub-requests. The sub-requests
relax the search criteria and make the process of searching
candidate services for composition more flexible. Evaluation
results show that the approach managed to find the correct
solution for almost all composition requests in our experi-
ments, even in some cases where a Back Chaining algorithm
failed. The Divide and Conquer approach can also be used
to find replacement services for the missing ones during
runtime (i.e.; service compensation). The evaluation results
also show that the divide and conquer approach was able to
find compensation solutions successfully and outperformed
the Back Chaining algorithm.

Our future work will focus on automated alteration and
adaptation of services based on service quality and context
information to predict service quality parameters at design-
time and runtime. We will also focus on mapping the
execution plan that is automatically created by the Divide
and Conquer approach (discussed in Section VI) from a
logical workflow to a practical implementation expressed in
WS-BPEL.

ACKNOWLEDGMENT

This paper describes work undertaken in the context of
the IoT-A project, IoT-A: Internet of Things - Architecture
(http://www.iot-a.eu/public) contract number: 257521. The
second and third authors are also funded by the ICT IoT.est
project (www.Ict-Iot.est.eu) contract number: 288385.

REFERENCES

[1] S. De, T. Elsaleh, P. M. Barnaghi, and S. Meissner, “An internet
of things platform for real-world and digital objects.” Scalable
Computing: Practice and Experience, vol. 13, no. 1, 2012.

[2] G. Cassar, P. Barnaghi, W. W., and K. Moessner, “A hybrid
semantic matchmaker for iot services,” in Internet of Things
(iThings), 2012 IEEE International Conference on, nov. 2012.

[3] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara, “Se-
mantic matching of web services capabilities,” in Proceedings
of the First International Semantic Web Conference on The
Semantic Web, ser. ISWC ’02. London, UK, UK: Springer-
Verlag, 2002, pp. 333–347.

[4] F. Lécué, E. M. Goncalves da Silva, and L. Ferreira Pires,
“A framework for dynamic web services composition,” in
2nd ECOWS Workshop on Emerging Web Services Technology
(WEWST07), Halle, Germany. Germany: CEUR Workshop
Proceedings, November 2007.

[5] G. Cassar, P. Barnaghi, and K. Moessner, “A probabilistic latent
factor approach to service ranking,” in Intelligent Computer
Communication and Processing (ICCP), 2011 IEEE Interna-
tional Conference on, aug. 2011, pp. 103 –109.

[6] A. M. Omer and A. Schill, “Web service composition using
input/output dependency matrix,” in Proceedings of the 3rd
workshop on Agent-oriented software engineering challenges
for ubiquitous and pervasive computing, ser. AUPC 09. New
York, NY, USA: ACM, 2009, pp. 21–26.

[7] Y. Syu, S.-P. Ma, J.-Y. Kuo, and Y.-Y. FanJiang, “A sur-
vey on automated service composition methods and related
techniques,” in Services Computing (SCC), 2012 IEEE Ninth
International Conference on, june 2012, pp. 290 –297.

[8] V. Chifu, I. Salomie, A. Riger, and V. Radoi, “A graph based
backward chaining method for web service composition,” in
Intelligent Computer Communication and Processing, 2009.
ICCP 2009. IEEE 5th International Conference on, aug. 2009,
pp. 237 –244.


