Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes

K. J. Cheetham, A. Krier, I. P. Marko, A. Aldukhayel, and S. J. Sweeney

Citation: Appl. Phys. Lett. 99, 141110 (2011); doi: 10.1063/1.3646910
View online: http://dx.doi.org/10.1063/1.3646910
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v99/i14
Published by the American Institute of Physics.

Related Articles
Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes
Efficiency droop behaviors of the blue LEDs on patterned sapphire substrate
J. Appl. Phys. 110, 073102 (2011)
Effect of organic bulk heterojunction as charge generation layer on the performance of tandem organic light-emitting diodes
J. Appl. Phys. 110, 074504 (2011)
Self-heating and athermal effects on the electroluminescence spectral modulation of an AlGaInP light-emitting diode
J. Appl. Phys. 110, 073103 (2011)
Improved light output of GaN-based vertical light emitting diodes using SiO2 nanotube arrays and transparent metal oxide current conduction layer

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENTS

Explore AIP’s new open-access journal
- Article-level metrics now available
- Join the conversation! Rate & comment on articles

Submit Now
Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes

K. J. Cheetham,1 A. Krier,1,a) I. P. Marko,2 A. Aldukhayel,1 and S. J. Sweeney2

1Physics Department, Lancaster University, Lancaster, LA1 4YB, United Kingdom
2Advanced Technology Institute and Department of Physics, University of Surrey, Guilford, GU2 7XH, United Kingdom

(Received 21 June 2011; accepted 13 September 2011; published online 5 October 2011)

Mid-infrared light emitting diodes based on the pentanary alloy GaInAsSbP have been engineered to provide a favourable band structure for the suppression of non-radiative Auger recombination which is dominant in narrow band gap III-V materials. Hydrostatic pressure measurements at room temperature and at 100 K were used to tune the band gap towards resonance with the spin-orbit band gap. Analysis of the resulting electroluminescence confirms that the non-radiative Auger recombination process involving the spin-orbit-split-off-band is suppressed under ambient conditions. © 2011 American Institute of Physics. [doi:10.1063/1.3646910]

Mid-infrared (2–5 μm) light-emitting diodes (LEDs) are of increasing interest for a variety of technologically important applications including environmental gas monitoring, industrial process control, non-invasive medical diagnosis, and infrared spectroscopy.1 However, the narrow band gap and density of states imbalance in InAs and related alloys give rise to strong non-radiative Auger recombination and inter-valence band absorption, which makes uncooled room temperature operation difficult to achieve.2 LEDs emitting within this spectral range have previously been produced based on bulk InAsSb (Ref. 3) or AlInSb.4 LEDs with active regions containing InAsSb/InAs quantum wells,5 InSb quantum dots,6 and InAs/GaSb superlattices7 have also been investigated.

An attractive alternative approach is to use the pentanary alloy GaInAsSbP, because the presence of the fifth element allows an additional degree of freedom for tailoring the band structure, while keeping the lattice parameter constant.8 Two allows an additional degree of freedom for tailoring the band structure, while keeping the lattice parameter constant.8 Two approachs are known to be strongly temperature dependent with a cubic dependence on the carrier concentration. Increasing the temperature operation difficult to achieve.2 LEDs emitting within this spectral range have previously been produced based on bulk InAsSb (Ref. 3) or AlInSb.4 LEDs with active regions containing InAsSb/InAs quantum wells,5 InSb quantum dots,6 and InAs/GaSb superlattices7 have also been investigated.

An attractive alternative approach is to use the pentanary alloy GaInAsSbP, because the presence of the fifth element allows an additional degree of freedom for tailoring the band structure, while keeping the lattice parameter constant.8 Two of the primary Auger recombination mechanisms in narrow band gap semiconductors are recombination of a conduction band electron with a heavy-hole which produces a hole in the spin-orbit-split-off-band (known as conduction band to heavy hole band and spin-orbit split-off band to heavy hole band (CHSH) recombination) and conduction electron to heavy-hole where another conduction electron is excited to higher energy (known as conduction band to heavy hole band and conduction band to conduction band (CHCC) recombination). These are known to be strongly temperature dependent with a cubic dependence on the carrier concentration. Increasing the spin-orbit split-off energy (Δe) to be larger than the bandgap (Eg) should help suppress CHSH non-radiative Auger recombination which becomes increasingly important near resonance when Eg ~ Δe. Previously, we demonstrated room temperature GaInAsSbP pentanary LEDs operating in the 3-4 μm spectral range.8 In this work, we report on the behaviour of the electroluminescence (EL) under the application of high hydrostatic pressure to investigate directly the effect on CHSH Auger suppression.

Undoped epitaxial layers of pentanary Ga0.03In0.97As0.83Sb0.14P0.03 (~2 μm in thickness, Eg(300 K) ~ 0.32 eV) were grown nominally lattice-matched onto n-type (2 × 1018 cm−3) InAs substrates (100) by liquid phase epitaxy using a horizontal sliding boat in the ultrapure H2 atmosphere. A wider band gap (Eg(300 K) ~ 0.44 eV) p4 InAs0.62Sb0.14P0.24 quaternary layer (~1 μm in thickness) was then grown to form the p-n heterojunction. The compositions were confirmed by energy-dispersive x-ray spectroscopy (EDX), and the mismatch was found to be <0.3% from x-ray diffraction measurements. Details of the growth procedure have been previously reported.9,10 Circular mesa diodes were subsequently fabricated with diameters of 300 μm and 750 μm using conventional photolithography to form the LEDs.

High hydrostatic pressure measurements on semiconductor devices have the benefit of being non-destructive and reversible and can yield valuable information on recombination mechanisms.11 Such pressure measurements were performed over the range of 0–8 kbar using compressed helium gas from a U11 gas compressor and a GO/C102 optical cell with a sapphire window. Low temperature measurements were performed with the aid of a closed cycle cryostat. The device was pulsed using an Agilent 8114 A pulse generator (pulse width of 500 ns at a frequency of 10 kHz) to minimise Joule heating. EL was detected using a cooled (77 K) InSb detector and an EG&G 7265 lock-in amplifier. High pressure spectral measurements were performed using a Fourier transform infrared (FTIR) system.

Figure 1 shows the EL spectra of the 750 μm diameter device at room temperature and 100 K measured under quasi-cw operation (50% duty cycle) to maximise the signal intensity at a current density of 23 A/cm2. The 300 K emission was found to peak at 3.73 μm (0.332 eV), consistent with a band gap of 0.319 eV after subtracting kT/2 to account for the thermal carrier distribution. The emission spectra at atmospheric pressure over a wide range of temperatures have been previously reported.7 No evidence of radiative recombination was observed from the substrate.

For mid-infrared LEDs, the total current, I, may be written in terms of Eq. (1), where e is the electron charge, V is the active region volume, and A, B, and C are the Shockley-

aAuthor to whom correspondence should be addressed. Electronic mail: a.krier@lancaster.ac.uk.
Read-Hall (SRH), radiative, and Auger coefficients, respectively. I_{leak} is the leakage current and is thought to be pressure insensitive (inter-valley scattering is negligible due to the large Γ-L and Γ-X splitting values). Direct hetero-junction leakage is believed to be negligible due to pressure independent current voltage characteristics. As all materials used in the device are InAs-rich, the band offsets were assumed to be independent of pressure because the pressure coefficients (dE/dP) of the band gaps of the active region and barriers are approximately the same. SRH recombination is also almost independent of pressure due to the capture cross section for recombination through impurities being pressure insensitive.

$$I = eV(An + Bn^2 + Cn^3) + I_{\text{leak}}. \quad (1)$$

An expression for the Auger coefficient is given in Eq. (2), where C_0 is approximately independent of pressure and temperature, and E_a is the activation energy of the Auger process. Assuming parabolic and isotropic bands, the activation energies for CHSH and CHCC recombinations are given by Eqs. (3) and (4), where E_g is the direct band gap energy and $m_{so}, m_{h},$ and m_{e} are the spin-orbit, heavy-hole, and electron effective masses, respectively.

$$C \approx C_{0(CHSH)}\exp(-E_a/kT) + C_{0(CHCC)}\exp(-E_a/kT), \quad (2)$$

$$E_a(CHSH) = m_{so}(E_g - \Delta_{so})/(2m_h + m_e - m_{so}), \quad (3)$$

$$E_a(CHCC) = m_{e}E_g/(m_e + m_{h}). \quad (4)$$

Under the condition that $E_g = \Delta_{so},$ CHSH Auger recombination becomes resonant, as evident from Eq. (3) since $E_g - 0.$ In practical terms, if $\Delta_{so} > E_g,$ then the CHSH process will be suppressed. Systematic photoreflectance measurements on GaInAsSbP (Refs. 14 and 15) have revealed that $\Delta_{so} = 0.455 \pm 0.010 \text{eV}$ for the pentanary alloy used in the LEDs and that this value is approximately independent of temperature. Hence, since $E_g = 0.319 \text{eV},$ CHSH Auger recombination is expected to be negligible under ambient conditions in these LEDs.
integrated emission is observed with increasing pressure with a decrease in gradient at higher pressure tending towards a maximum at 7.4 kbar. At 100 K, a stronger increase in intensity is observed, which reaches a maximum at 3.6 kbar at low temperature. We calculated that only 25% of the initial increase is due to the increase in the radiative recombination coefficient with pressure. The majority of the increase in intensity is observed, which reaches a maximum at 100 K and 290 K using 500 ns pulses at 10 kHz with a drive current of 150 mA. The lines are fit as a guide to the eye.

In summary, we have shown the first direct experimental evidence of CHSH suppression in pentanary LEDs using high pressure and low temperature measurements. Our findings highlight the possible advantages of GaInAsSbP alloys for band-structure engineering of higher efficiency mid-infrared emitters.

The authors are grateful to EPSRC for providing a studentship for K.J.C. and for supporting the high pressure activities at Surrey under Grant No. EP/H005587/1. A.A. acknowledges the support of the Saudi government for providing a studentship.

FIG. 3. (Color online) Light-pressure curves of two GaInAsSbP LEDs at 100 K and 290 K using 500 ns pulses at 10 kHz with a drive current of 150 mA. The lines are fit as a guide to the eye.