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Measuring the shape of degree 

distributions 



Overview 

Context Candidates to compare 

RC33 July 2012, University of Sydney 

 What does ‘shape’ mean 

for degree distribution 

 Why measure it? 

 Compare 

 Characterise 

 Relationship with other 

properties 

 No agreed measure 

 Variance / standard 

deviation / coefficient of 

variation 

 Power law exponent 

 Centralisation 

 Gini coefficient 

 



Variance (and its variants) 
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 Standard measure in 

statistics 

 Width of ‘peak’ 

 Distance from mean 

 Coefficient of variation (Vk) 

is scale invariant 

 Snijders (1981) applied to 

degree 

 
22

1

2

2

1

1

1

N

k i k

i

N

k

i i

k
k

k

k
N

k
N

V

 











 

 









Power law exponent 
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 Parameter of fitted 

distribution 

 Fitted to tail only 

 How quickly degree 

probability declines 

 Long tail with small  

 Only for very large, 

skewed (eg WWW) 

 Poor fitting (Clauset et al 

2009) 

0kp Ck k 



Centralisation 
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 Network specific measure 

 Extent to which most 

central node is more 

central than others 

 Centrality = degree 

 Only kmax and k 

considered 

 Freeman (1978); Butts 

(2006) 
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Gini coefficient 
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 Standard in equality 

measure for income 

 Interpretations: 

 Expected difference in 

degree for random pair of 

nodes 

 Total distance from 

equality (Lorenz) 

 Limited attention from 

SNA (except Hu & Wang 

2008) 
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Example networks (diverse) 

Empirical Artificial 
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 Friends: school 

 Yeast: protein interactions 

 Collaborators: condensed 

matter archive 

 WWW: hyperlinks 

 BA1000: preferential 

attachment 

 ER1000: fixed probability 

of edge 

 Star1000: star with 1000 

nodes 



Example networks: distribution 
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Example networks: distribution 
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Comparison: example networks 
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Example networks: Lorenz curves 
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Shape measure principles 
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 Objective is comparability: Must be sensible for all potential 

degree distribution shapes 

 Relevant principles drawn from systematic evaluation for 

income inequality (Cowell 2000) 

 Transfer: Moving edges from high degree node to lower degree 

node reduces inequality (no reversal) 

 Addition: Increase all nodes by same number of edges should 

reduce (relative) or maintain (absolute) inequality 

 Replication: Multiple copies of all nodes has no effect 



Comparison: principles 
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Conclusion 
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 Only Gini (G) and Coefficient of Variation (Vk) meet 

principles 

 Centralisation unresponsive to transfers 

 Power law cannot always be fitted 

 Vk not meaningful for skewed distributions, researchers use  

for networks, G for income 

 G intuitive mathematically (difference) and graphically 

(comparison to equality) 

 Also relevant to other distributions (eg shortest path, 

betweenness, clustering coefficient) 
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