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Overview

Context
* What does ‘shape’ mean

for degree distribution
® Why measure it?
® Compare
® Characterise
* Relationship with other
properties

® No agreed measure
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Candidates to compare

® Variance / standard
deviation / coefficient of

variation
® Power law exponent
® Centralisation

® (Gini coefficient
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Variance (and its variants)

e Standard measure in

statistics 1 N

* Width of ‘peak’ - W |:1 k ,le
® Distance from mean

® Coefticient of variation (V) — i 3 k 2
is scale invariant N 3 i

® Snijders (1981) applied to oy
degree Vk 1,
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Power law exponent

® Parameter of fitted

distribution
* Fitted to tail only
* How quickly degree
probability declines
® Long tail with small &

® Only for very large,
skewed (eg WWW)

® Poor fitting (Clauset et al
2009)
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Centralisation

e Network specific measure

¢ Extent to which most
central node is more
central than others C=
* Centrality = degree min |: N-1-
® Only k_ and g

considered

® Freeman (1978); Butts
(2006)
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Gini coefficient

¢ Standard in equality

measure for income

° Interpretations:

° Expected difference in
degree for random pair of

nodes
® Total distance from

equality (Lorenz)

® [imited attention from
SNA (except Hu & Wang
2008)
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Example networks (diverse)

Empirical Artificial
® Friends: school ® BA1000: preferential
® Yeast: protein interactions attachment
¢ Collaborators: condensed * ER1000: fixed probability
matter archive of edge
o WWW: hyperlinks e Star1000: star with 1000
nodes
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Example networks: distribution
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Example networks: distribution
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Comparison: example networks

Metwork Size 12 C ¥ J ot r

WWW (in) N=325.729 u;=4.6 0.132 0.03 g5 (.047 2.1 0.71
Collaborators ~ N=40.421 u=8.7 0055 0,01 1.5 (LO31 - 0,55
Yeast (in) N=2,114 ji=2.1 0O72 003 14 0066 24 05
BA DK MN=1000 e =60 0.357 a1l 1.2 (209 3.0 0.37
Friends (in) N=H5% l1;=6.8 0034 003 0.7 0090 - 037
ER 10 N=1000 prg=6.0 0.013 0.01 0.4 (L0446 - 0.23
Star 000 N=1L000 =200 L LE L) 1.0 (1.5 | .0 . .50

A missing value for @ indicates that it is not available in the literature, which may occur because
the power law functional form is inappropriate or because it may be appropriate but was not reported.
Unlike other measures in the table, a higher value indicates lower hetcrogeneity,
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Example networks: Lorenz curves

1.0 ~
—u—Friends .

8 —%*—Yeast a
= - @~ Collaborators N
% 0.8 WWw
© - v- ER1000
© - 0- BA1000
I o6
O
—-—
Y
)
— 0.4
Q
e
[ -
S o021
@)
| -
ol

0.0 4% T - T - T - | - |

0.0 0.2 0.4 0.6 0.8 1.0

RC33 July 2012, University of Sydney

-




Shape measure principles

* Objective is comparability: Must be sensible for all potential
degree distribution shapes

® Relevant principles drawn from systematic evaluation for

income inequality (Cowell 2000)

® Transfer: Moving edges from high degree node to lower degree

node reduces inequality (no reversal)

e Addition: Increase all nodes by same number of edges should

reduce (relative) or maintain (absolute) inequality

® Replication: Multiple copies of all nodes has no effect
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Comparison: principles

Measure Transfer Addition Replication
Desirable Decrease Not Increase  No change
Mean () No change Increase No change
Coeflicient of variation (V3 ) Decrease Decrease No change
Pareto proportion (Fy ) Varies Decrease No change
Herfindahl-Hirschman Index (7 2} Diecrease Diecrease Diecrease

Kolmogorov-Smirnov (K 5) Varies No change No change
Normalised Hierachization (fiz) Decrease Decrease Decrease

Normalised Centralization (C7) No change Increase Decrease

Gini coefficient () Decrease Decrease No change
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Conclusion
® Only Gini (G) and Coetticient of Variation (V,) meet

principles
® Centralisation unresponsive to transfers
® Power law cannot always be fitted

® V, not meaningful for skewed distributions, researchers use &

for networks, G for income

® G intuitive mathematically (ditference) and graphically

(comparison to equality)

* Also relevant to other distributions (eg shortest path,

betweenness, clustering coefficient)
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