University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Seamless Video Access for Mobile Devices by Content-Aware Utility-Based Adaptation

Nur, G, Kodikara Arachchi, H, Dogan, S and Kondoz, AM (2012) Seamless Video Access for Mobile Devices by Content-Aware Utility-Based Adaptation Multimedia Tools and Applications (MTAP). pp. 1-31.

Available under License : See the attached licence file.

Download (2MB)
PDF (licence)

Download (33kB)


Today’s Internet multimedia services are characterized by heterogeneous networks, a wide range of terminals, diverse user preferences, and varying natural environment conditions. Heterogeneity of terminals, networks, and user preferences impose nontrivial challenges to the Internet multimedia services for providing seamless multimedia access particularly for mobile devices (e.g., laptops, tablet PCs, PDAs, mobile phones, etc.). Thus, it is essential that advanced multimedia technologies are developed to deal with these challenges. One of these technologies is video adaptation, which has gained significant importance with its main objective of enabling seamless access to video contents available over the Internet. Adaptation decision taking, which can be considered as the “brain” of video adaptation, assists video adaptation to achieve this objective. Scalable Video Coding (SVC) offers flexibility for video adaptation through providing a comprehensive set of scalability parameters (i.e., temporal, spatial, and quality) for producing scalable video streams. Deciding the best combination of scalability parameters to adapt a scalable video stream while satisfying a set of constraints (e.g., device specifics, network bandwidth, etc.) poses challenges for the existing adaptation services to enable seamless video access. To ease such challenges, an adaptation decision taking technique employing a utility-based approach to decide on the most adequate scalability parameters for adaptation operations is developed. A Utility Function (UF), which models the relationships among the scalability parameters and weights specifying the relative importance of these parameters considering video content characteristics (i.e., motion activity and structural feature), is proposed to assist the developed technique. In order to perform the developed adaptation decision taking technique, a video adaptation framework is also proposed in this paper. The adaptation experiments performed using the proposed framework prove the effectiveness of the framework to provide an important step towards enabling seamless video access for mobile devices to enhance viewing experience of users.

Item Type: Article
Divisions : Faculty of Engineering and Physical Sciences > Electronic Engineering
Authors :
Date : May 2012
Identification Number : 10.1007/s11042-012-1120-2
Additional Information : The original publication is available at
Depositing User : Symplectic Elements
Date Deposited : 10 May 2013 14:49
Last Modified : 23 Sep 2013 20:07

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800