List of Figures

Figure 1 Multiscale modelling framework.

Figure 2. A generic reactant concentration vs. time profile.

Figure 3. Model mole fraction vs. time profiles and experimental data points of tributylin, dibutylin, monobutylin and methyl butyrate.

Figure 4. Intrinsic diffusion modelling framework.

Figure 5. Effect of diffusion with increasing catalytic pore size.
Figure 1 Multiscale modelling framework.

Initialise bulk and lattice surface concentrations at time $t = 0$

Intrinsic kinetic modelling: surface concentration change over Δt

Effective diffusivity modelling: diffusive flux over Δt

Concentration gradient inside pore

Concentration gradient between bulk and pore

DRE solution (equation 1) over Δt

$t = t + \Delta t$

If $t \geq$ total time?

Yes

Stop

No

Update bulk and lattice surface concentrations at time t

Figure 2. A generic reactant concentration vs. time profile.

Concentration of feedstock (C)

$Slope = \left(\frac{dc}{dt} \right)_{t=t_0}$

t_0, C_0

$Slope = \left(\frac{dc}{dt} \right)_{t=t_1}$

t_1, C_1

$Slope = \left(\frac{dc}{dt} \right)_{t=t_2}$

t_2, C_2

$Slope = \left(\frac{dc}{dt} \right)_{t=t_3}$

t_3, C_3

Time (t)
Figure 3. Model mole fraction vs. time profiles and experimental data points of tributyrin, dibutyrin, monobutyrin and methyl butyrate.
Figure 4. Intrinsic diffusion modelling framework.
Figure 5. Effect of diffusion with increasing catalytic pore size.