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Noneikonal calculations for few-body projectiles
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Calculations which improve upon the eikonal model description of the scattering of loosely balunster
composite nuclei at low and medium energies are studied. Each cluster-target eikonal phase shift is replaced by
the continuation of the corresponding exact partial wave phase shift to noninteger angular momenta. Compari-
sons with fully quantum mechanical calculations for two-body projectiles show that this yields an accurate
practical alternative to few-body adiabatic model calculations. Calculations are shown to be accurate for
projectile energies as low as 10 MeV/nucleon at which the eikonal approximation is no longer reliable.
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PACS numbgs): 21.45:+v, 24.50+¢g, 25.60-t, 25.70.Bc

[. INTRODUCTION scattering is not highly forward angle focused. The natural
expression for the required scattering amplitudes is therefore
Semiclassical approximations have been used extensively terms of the cluster-targétmpact parameter dependgnt
in nuclear physics for approximate solutions of the smallphase shifts, and the accuracy with which this representation
wavelength scattering problem. Theoretical formulations inteproduces exact cluster-target scattering amplitudes, and so
volve the phase shifts introduced by the projectile’s interaccan be directly connected with experimental observables,
tion with a target, expressed as a function of the projectile’sreeds to be reexamined. We consider this quantitative ques-
impact parameteb. Such models were developed exten-tion in Sec. Il. Generally speaking, however, experimental
sively by Glauber and co-workers, e.g., Rdf,2], for the  data are insufficient to allow an unambiguous determination
scattering of both elementary and composite systems. In thaf the cluster-target scattering amplitude or phase shifts.
Glauber diffraction theory, the interaction of an incident Most recently, semiclassical few-body calculations of
nucleon with a composite nucleus is described by a multiplescattering and reactions in this lower-energy regime have
scattering series in which the incident nucleon scatters froormade extensive use of the eikonal approximation, e.g., Refs.
an ensemble of fixed target nucleons. In the absence of threg8—5]. The assumption is that, for the purpose of calculating
body forces, the total projectile-target phase shift is also theach cluster-target phase shift, the cluster’s trajectory can be
sum of the phase shifts due to each target nucleon. The irapproximated by a straight line path through an assumed
dividual nucleon-nucleonNN) scatterings are described by interaction potential with the target. This use of a potential
free NN scattering phase shifts. The use of phase shifts isjescription is extremely useful for making theoretical predic-
however, usually not discussed since, when applied at sevions for exotic and halo systems. Then global optical poten-
eral hundred MeV, this explicit reference to phase shifts idial parametrizations, incorporating data systematics, or
recast in favor of theNN scattering amplitude. This is then tested theoretical potential models, can be used for individual
parametrized directly from extensive small aniIN scatter-  cluster-target systems when data are very limited or unavail-
ing and, through the optical theorem, total cross section datable.
The nucleon-nucleus scattering amplitude is obtained as the These approximate calculations, including those Fdle
average of these elementary, impact parameter-dependesttattering[6], treated as a six-body problem, show that the
amplitudes, over the target ground state many-body densitgikonal model provides an efficient basis for reaction calcu-
Implicit is that the incident energy is sufficiently high that lations of few- and many-body projectiles. This efficiency
the target nucleons can be considered fixed during the pasfises from the additivity of phases property of the eikonal
sage of the projectile, the sudden or adiabatic approximatiortheory and means that attempts to extend its accuracy are of
In this paper our interest is the scattering of very looselyinterest. In a recent Rapid Communicatiff] noneikonal
bound composite projectiles from a stable target nucleus anodifications to the phase shift of each cluster were intro-
energies of less than 100 MeV/nucleon. The composite produced, but to third order im (k™ 2), wherek is the cluster-
jectile is assumed to be composedrotlusters(wherenis  target center of mass wave number. In application$'Re
less than the number of projectile nucleprior halo nuclei  + °C scattering above 25 MeV/nucleon, these changes im-
these clusters are the core and the valence particles. Here itpsoved the accuracy of the calculations to lower energies and
the study of the cluster relative motion degrees of freedom idarger scattering angles.
the projectile, and hence excitation and breakup effects, Here we assess a simpler procedure. Rather than develop
which are of interest. The projectile-target scattering is nowand sum the expansion for the phase shift in powerswé
described as an+1)-body problem[3,4], the projectile’s solve directly the radial Schdinger equation for each
n-body ground state density must be averaged over once thauster-target two-body system at the required impact param-
cluster-target phase shifts have been evaluated, and the ad&ters or noninteger orbital angular momertaVe therefore
batic approximation is made at the level of theH{1)-body  no longer make the eikonal approximation, but retain the
Schralinger equatior{4]. In this lower-energy regime the adiabatic and additivity of phases approximations. Correc-
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tions to the latter, manifest as phase shift contributions due toransformation, only the leading term in the small forward
simultaneous cluster-target potential overlaps, have been diangle expansion of the Legendre functiBg, has been re-
cussed by Feshba¢B]. We have studied such overlap terms tained (e.g., Appendix A of Ref[2] and Ref.[9]). This
quantitatively for halo nuclei using simple potential param-yields the Bessel functiody(qb). An additional factor
etrizations. The results will be presented elsewhere. Thes@/[ 5], which multipliesS(b) in a complete formal deriva-
estimates of overlap contributions are very small for spatiallytion [9], is unity in this limit. The approach followed by
extended systems and the results presented here are condMallace, with higher energies in mind, is to develop expan-
tent with these findings. sions of both thaA[ 6] term andS(b) in inverse powers of
This paper deals only with corrections to the eikonal apk? and to collect terms of equal order. At the low energies of
proximation. The adiabatic approximation is expected to bénterest here and particularly for light projectiles, i.e., for
reasonable when the relevant excitation energies of the pramallk, such an expansion scheme is not particularly useful.
jectile are small compared with its incident energy. As inThis will be seen below in the context of the phase shift
Ref.[7] we will use full three-body quantum-mechanical cal- expansior{7].
culations, which make the adiabatic approximation but not The eikonal approximatiofi, to the scattering amplitude
the eikonal or additivity of phases assumptions, to assess théhas the same forri],
importance and accuracy of the noneikonal modifications.

We present calculations of applications to two-body projec- I _
tile scattering, namely, the deuteron ahtBe (}°Be fo(6)=—ik 0 b db b(qb)[ Se(b) =11, )
+neutron).

but Sy(b) is now determined by the eikonal approximation to

II. STRUCTURELESS PROJECTILE SCATTERING the phase shiffy(b) the integral of the assumed interaction

) ) : along a straight line path at impact parameier
A. Neutral point particle scattering

Glauber, Franco, and Walladé&,2,9 have discussed in _ . _ B '_J“ o 2
detail the mathematical and physical relationship of the dis- SO(b)_eXF{'XO(b)]_eX'{ hv _mV( b*+2%)dz

crete exactpartial wave sumrepresentation (5

1 < Herev=7%k/u is the asymptotic relative velocity and is
=K Z (21+1)Py(cosH)[S—1], (1) the reduced mass of the projectile and target.
In this work we perform calculations based directly on the

and the Fourier-Besséimpact parametgrintegral represen- amplitude of Eq.(2), in which we make the small angle
tation of the scattering amplitude for a point particle. Here W[ 6]=1 approximation only. This can also be viewed as
is the projectile incident wave number in the center of masgeplacing the eikonal profile functio§,(b) by an improved
frame. The exact partial wav® matrix S;=exp(d48) is ob-  description, a viewpoint helpful in its generalization to com-
tained by solution of the radial Schtimger equation for a Posite projectiles. This scheme was used in R&ffor com-
given orbital angular momenturh in the presence of the Posite systems. There, however, only an approximate de-
assumed projectile-target interactiviir). Upon continuing  scription ofS(b) andS(b) of the next subsection, was used.
these discretevalues to continuous angular momentaand  Specifically, the power series expansion of the phase shift
associating the physical angular momehtaith impact pa-  X(b) to third order ine=1/A kv about the eikonal phase was
rametersh according tobk=1+1/2, one can writ¢2,9] used which included the correction terms detailed by Rosen
and Yennie[9,10]. The accuracy of th&(b) arising from
this expansion is a related but different issue to the accuracy
of the approximate amplitudeof Eq. (2). Below we com-
pare theS(b) from this expansion with those of the exact
whereq= 2k sin(6/2) is the momentum transfe®(b) in Eq.  continuation(radial equation solutionand from the eikonal
(2) is the continuation of§ for real noninteger angular mo- model. We also require these two-bo8ymatrices for the
menta, and can be obtained by solution of the radial Schrathree-body scattering calculations considered in the next sec-
dinger equation for angular momentuns= bk—1/2. Explic-  tion where they appear as inputs.
itly, asymptotically inr To assess the accuracy with which the approximate am-
plitudesf of Eq. (2) reproduce observables calculated using
the exact partial wave amplitude Eq. (1), andf,, Eq. (4),
we first perform calculations for neutron afBe+ 12C scat-
tering at low and medium energies. For each system we con-
where theH(*) are the usual in- and out-going waves radial sider energies of 10, 25, and 50 MeV/nucleon assuming, for
asymptotic solutions, but for noninteg&r Thus S(b) =S, simplicity, the same interaction parameters at each energy.
=exfiX(b)] coincides with the exach for all integer\, For n+1%C we assume a complex volume Woods-Saxon
with X(b)=26, . We refer toS(b) as the exact continued neutron potential with parametei¢=37.4 MeV, r,=1.2
(EC) Smatrix. It is important that Eqg(2) has not made the fm, ay=0.75 fm, W=10.0 MeV,ry=1.3 fm, a,,=0.6 fm
eikonal approximation to the scattering phase shift. [7]. Figure 1 compares the moduli of the-*°C S matrices
The amplitudes andF are not formally equal. In writing as a function of impact parameter calculated using the eiko-
Eqg. (2), in addition to the discrete to continuous variable nal (dashed curvesand EC(solid curve$ phase shifts at the

f(9)=—ikf0wbdb b(ab)[S(b)—1], )
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FIG. 2. Exact(solid curve$, approximate impact parameter in-
tegral (dashed curvesand eikonal mode{dotted curvescalcula-

025 — SR — tions of the elastic differential cross section angular distributions for
b (fm) n+ %°C scattering at 10, 25, and 50 MeV.
FIG. 1. Moduli of the elastic& matrices fom+ *2C scattering at _ 1 7 o
10, 25, and 50 MeV calculated using the eikofddshed curves F(0)=f,(0)+ ﬁz (214+1)P,(cosh)e? [ S —1],
and EC(solid curve$ phase shifts. The dot-dashed curves at 25 and IKi=o
50 MeV result from the expansion of the phase shift used in [Réf. (6)

(see text wheref ,(6) is the amplitude for point charg&utherford

_ ) ~__ scattering and is the Coulomb phase shift. TH& here,
three energies. Even at the higher energy there are significaghtained by matching to Coulomb functions the solution of
noneikonal corrections. These make the target appear largée radial Schidinger equation in the presence of both
and also more transparent to the neutron at small impadgiuclear and Coulomb interactions, characterize only the de-
parameters. The dot-dashed curves at 25 and 50 MeV are theations from point Coulomb scattering.
ries expansion of the phase sHiffl. To the same ordpr th.IS both Coulomb and nuclear interactiond/(r)=Vy(r)
expansion is unstable at the lowest energy. The imaginary-v/.(r), in the eikonal phase of Eq5), yielding a sum

part of th_e approximate phase shift becomes positive for e)?o(b)=XON(b)+Xoc(b) of nuclear and Coulomb terms.
range of impact parameters and so does not yield useful rerhe Coulomb interaction is taken to be that of a uniformly
sults. Direct use of the EG matrix avoids such instabilities, charged sphere. The logarithmic divergence of the Coulomb
is much simpler, and also avoids the slow convergence of thgnase requires screening arguments to be used, see, e.g., Ref.
phase shift expansion, manifest in the 25 MeV calculation i1 1], The result is thattyc(b) = Xy, (b) + X, where the first
Fig. 1. . _ term is the phase due to the assumed Coulomb interaction
Figure 2 shows the calculateti'*C elastic differential ang.x, = — 2 In(2ka) is a constantscreening phasea de-
cross section angular distributions at 10, 25, and 50 MeéVnoting the screening radius. The eikonal amplitude analo-
The solid curves are the exact partial wave calculations usingoys to Eq(6) can be written
Eqg. (1), the dashed curves use the approximatgact pa-
rameter integralamplitude of Eq(2), and the dotted curves — v (> % (b)
use the eikonal amplitude of E@). The improvements re- fo(6)=e€'"a) fo( 9)_'kf0 b db J(gb)e' et
sulting from the use o§(b) rather thanSy(b) are clear and
extend to reasonably large scattering angles. The small de- —
viations from the exact calculations suggest that corrections X[So(b)—l]], (0
to theW[ 6]=1 approximation are indeed small.
where X,,(b) =27 In(kb) is a point Coulomb interaction ei-
. . . konal phase. The effect of screening appears only as an over-
B. Charged point particle scattering all real phase on the elastic amplitude and has no conse-
To consider °Be scattering we need to generalize thequences for observables. We will not show it explicitly in
formalism to include the Coulomb interaction. The exact parsubsequent expressiory(b) here characterizes the devia-
tial wave amplitude is now tions from point Coulomb scattering and includes the phase



PRC 59 NONEIKONAL CALCULATIONS FOR FEW-BODY PROJECTILES 1563

1.00

10 T T T T
10 12
o7s | Be+ C o Lo x10° ]
— 10 MeV/ ‘ 10 MeV/nucleon
% 0.50 | nucleon \ N
= 10° : :
0.25 |
2
0.00 ——t——z4 10N N\ A=
s o\ VvV T T
> 1
R £ 10
0.75 ©
J— S~
o) 25 MeV/ © .
5 090 nucleon 10
0.25 | 10"
0.00 — -2 10 12
10 Be+ C 3
0.75 |
= 50 MeV/ 10° L L 1
% 0.50 | nucleon 0 10 20 30 40
- 6, .. (degrees)
0.25 | .
/, FIG. 4. Exact(solid curve$, approximate impact parameter in-
0.00 . 1 L1 1 tegral (dashed curvgsand eikonal mode{dotted curvescalcula-
0 2 4 6 8 10 tions of the elastic differential cross section angular distributions

b (fm) (ratio to Rutherfordl for °Be+ %C scattering at 10, 25, and 50
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ing at 10, 25, and 50 MeV/nucleon calculated using the eikonal ) )
(dashed curvésand EC(solid curves phase shifts. MeV/nucleon. The solid curves are the exact partial wave

calculations resulting from Ed6). The dashed curves result

shifts due to both the nuclear interaction and the short-ranggom the impact parameter integral amplitulewhile the
(uniform spherg deviations from a point Coulomb interac- dotted curves are the results of the eikonal amplitude of Eq.
tion, i.e., (7). The improvements in the calculated cross sections which

_ _ _ . result from the use of5(b) are significant and the small
So(b) = expli Xon(b) +1Xp,(b) =i Xy(b) ]. (8)  deviations from the exact calculations suggest that errors in-
_ troduced by theW[ §]=1 approximation are also small in
As for uncharged projectiles we replace the eiko8@lb)  this heavier charged particle case.
with S(b) =S, =exdiX(b)], obtained by solution of the ap-
propriate radial Schiinger equation for noninteger. This
yields an approximatéuclear-Coulomb) impact parameter
integral amplitude We now consider the scattering of a bourtiody system
from a target. In addition to the considerations already dis-
o) — a7 X (DS Y cussed, for composite projectiles one also makes an adiabatic
FO)=1l) |kJ’0 bdbh(qbje e S(b)~1]. (9) approximation. The positions of the clusters within the pro-
jectile are thus fixed for the calculation of their scattering
For the 1°Be+'°C potential we assume Woods-Saxon pa-phase shifts with the target. In the eikonal limit each of these
rametersV=123.0 MeV, r,=0.75 fm, a,=0.8 fm, W  phase shifts is computed, as in the point projectile case, as-
=65.0 MeV,r=0.78 fm, anda,,=0.8 fm. This potential, suming a straight line path through the interaction region.
consistent with the availablé®Be+%C data at 59.4 MeV/ However, having madenly the adiabatic approximation,
nucleon[12], is used for all three energies. The Coulombit is also possible to solve the Scllinger equation without
interaction is taken as due to a uniformly charged sphere ahe use of the eikonal or additivity of phases approximations.
radius parametar,= 1.20 fm. All 1°Be radius parameters are Such scattering calculations can be carried out for both two-
multiplied by 13”*+ 122 Figure 3 compares the calculated body[13,14 and three-body15] projectiles. However, even
moduli of theS matrices as a function of impact parameterfor two-body projectiles, such calculations involve large
using the eikonal(dashed curvgsand EC (solid curve$  coupled channels sets and are time consuming. For three-
phase shifts for the'Be+ °C system at 10, 25, and 50 body projectiled15] they are at the limit of what is compu-
MeV/nucleon incident energy. Due to the lardefor this  tationally feasible. In the following the results of calculations
heavy fragment the deviations from the eikonal model ardor deuteron *2C and1'Be+ °C scattering, which solve the
smaller but nevertheless still significant. three-body adiabatic equation without further approximation
Figure 4 shows the calculated elastic differential cros§14,7], are compared with those of the approximate proce-
section angular distribution&as a ratio to the Rutherford dure discussed here.
cross sectionfor 1%Be+ °C scattering at 10, 25, and 50 Consider first the eikonal model elastic scattering ampli-

Ill. COMPOSITE PROJECTILE SCATTERING
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tude for ann-body projectile, comprising uncharged clusters These ECS matrices include noneikonal corrections to

and with a ground state relative motion wave funcmbgi‘). each cluster-target phase shift to all orders. The resulting

The amplitude, thex-body equivalent of, of Eq. (4), is calculation retains the efficient computational structure of the
few-body Glauber model, involving a product of each cluster

A S matrix. This approximation is expected to be good for
fg”>(9):—|kfo bdbl(ab)[S"(b)~1], (10 weakly bound halo systems where the valence nu¢son

spend most of their time far from the core. The full adiabatic

wheresg”)(b) is now then-cluster projectile eikongmatrix ~ calculations referred to earlier do not make the additivity of

phases approximation and so provide an assessment of such

effects.

S"(b)=(2g” [1 S(b))|@5). (11

] ) A. Application to deuteron+ '°C scattering
In these equations andk are the impact parameter and wave

number of the projectile center of mass. E&hbj) in EqQ. For deuteron spattering the inputs required are the deu-
(11) is a point particle eikonabmatrix for clustelj evaluated ~€ron wave function and the proton- and neutron-target
at its own impact parametds; , as defined in Eq(5). matricesSP(b,) andS"(b,,) obtained by solution of the free

When one or more of the clusters is Charged we musp- and n-target Scattering problems at half the incident deu-
follow the Coulomb screening arguments used above. Nowteron energy. The three-body elastic amplitude is
for each charged clustekt(b;) = X}, (b)) + X} . Since the .
screening phase¥’,=—27; In(2ka) depend linearly on the {2 (g)= o 9)_ikf b dbJy(qb)e P [S@(b) 1],
Sommerfeld parameter of each clustgy and =37, 0
these phases add to give the screening phase appropriate to (16)
the projectileX,. The few-body eikonal amplitude in the

presence of nuclear and Coulomb forces, analogodig td  whereb, b,, andb, are the deuteron, proton, and neutron
Eq. (7), is therefore(omitting the overall screening phase  impact parameters, and

0= 1501k | D dbH@bIHOIEIbI-1l,  So(5)— (S (by)S(by)exi2imin(oy )]0,
(12) 17
where

We consider deuteron scattering at the three incident ener-
n . _ gies per nucleon of the previous section. The neutron and
gon)(b)=<q>g‘>|exp{ > [ixhy(bp+ixh (b)] proton optical potential parameters at the three energies were
=1 calculated from the global parametrization of Rdf6]. The
deuteron ground state wave function was assumed to be a
—j Xpt(b)] |, (13)  pureSwave and was calculated using a central Wood-Saxon
interaction with depth 83.37 MeV, a radius of 0.95 fm, and a
) ) ) ) _diffuseness of 0.65 fm. These parameters gave a deuteron
In the charged point particle d|scu35|on above, the assoCiginding energy of 2.224 MeV and an rmg separation of 4
tion is made between the E®matrix S(b) and the Coulomb  fm.

modified eikonalS matrix Sy(b) given by Eq.(8). In the Figure 5 shows the calculated elastic differential cross
few-body case we replace, for each clugter section angular distribution@s a ratio to Rutherfoydfor d
. _ _ _ _ + °C scattering at 10, 25, and 50 MeV/nucleon. The dotted
Sh(bj)=exdiXby(by) +ix, (b)) — Xi(b)]—S(by), curves are obtained using the eikonal model and the dashed

(14  curves using the EC phases. The solid curves are obtained
) from a full quantum-mechanicétoupled channelscalcula-
with X'pt(b]-) =27;In(kb). That is we replace each clust®r tion which makes only the adiabatic approximation. The lat-
matrix by the exact continued one. With these replacementter calculation is time consuming and include$, d, andf
SIV(b) of Eq. (13) is renamed™(b), consistent with ear- Wave np breakup states. The eikonal and EC calculations,
lier notation, where which include all breakup states through closure, are ex-
tremely fast. Even for this very light projectile system,
_ " tightly bound in comparison with halo nuclei, the agreement
S(”)(b)=<q’8n)|{ﬂ Sj(bj)} between the EC phase shifts and exact adiabatic calculations
=1 is rather good, even down to energies as low as 10 MeV/
nucleon. There is no indication that corrections to the addi-
|®gMy. (15)  tivity of phases approximation, included in the full adiabatic
calculation, are significant even for this light-ion and weakly
_ absorptive system. Of greater current interest is the applica-
EachS/(b;) is obtained by solution of the appropriate two- tion of such ideas to halo nuclei with weaker binding, en-
body radial equation for all requireld) . hanced breakup channels, and larger radial extent.

xex;{E XD ) =1 Xpy(b)

j'=1
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FIG. 5. Calculated elastic differential cross section angular dis- FIG. 6. Calculated elastic differential cross section angular dis-
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50 MeV/nucleon using the eikong@otted curvesand EC(dashed and 50 MeV/nucleon. The curves have the same meanings as in Fig.
curves phase shifts. The solid curves are the results of the exach.
adiabatic model calculations.

B. Application to 'Be+ '%C scattering scattering of the two-neutron halo nucletlde was recently

1156 is a good example of a two-body halo nucleus Cc)m_presented elsewhergl8]. Comparisons, in the case with
mg P y - four-body adiabatic model calculatioh$5], showed a very
posed of a**Be corec and a valence neutron. We consider

1IBe+ 12C scattering using the neutron aRfBe+ target S similar quality of agregment Fo that reported here. Whereas
matrices already computed and shown in Figs. 1 and 3 o e four-body calculations with EC phase shifts are rather
Sec. II. The scattering amplitude is given by Ef6). The straightforward, those adiabatic calculations are at the limit

o = . 1o of computational feasibility. Use of the EC phase shifts for

two-body projectileS matrix S*?)(b) appropriate to*'Be is projectiles such adHe, modeled as a five-bodya@ 4n)

S (b)=(d?|S%(b,)S"(b,)ex 2i 7 In(b. /b) ]| D)), structure, and wherg®)(b) can be calculated using random

(18  sampling techniques, e.g., REB], is also straightforward. In

. . that case the larger number of clusters occupy a relatively
with b, and b, the core and neytrc;n Impact parameters.smaller volume of space. The probability that pairs of
The''Be ground state wave functioh(” was taken to be a cluster-target interactions will overlap will therefore be
pure Z,/, neutron single particle state, with separation en-greater and the additivity of phases approximation which un-
ergy 0.504 MeV, calculated in a central Wood-Saxon potengerpins the current discussion may need to be reexamined.

tial of geometryro=1.00 fm anda,=0.53 fm. With a'Be  Tpis possibility remains to be fully investigated.
root mean square@tms) matter radius of 2.28 fm this gen-

erates a'Be composite with rms radius of 2.90 fm, in agree-
ment with recent few-body analysgk7].

Figure 6 shows the calculated elastic differential cross Wwe have assessed calculations of the scattering of loosely
section angular distributiongas a ratio to Rutherfojdfor  poundn-cluster composite projectiles within the framework
!Be+ '°C scattering at 10, 25, and 50 MeV/nucleon. Theof a few-body Glauber model. Each cluster-target eikonal
curves have the same meanings as those in Fig. 5. The agrgshase shift is replaced by the continuation of the exact partial
ment with the full adiabatic calculations in this case is excelwave phase shift for noninteger orbital angular momenta
lent. We attribute the improved agreement in this haloThe |atter are computed, for each clusj¢narget pair with
nucleus case to the weaker binding and the probable furthgyayve numbek; , by numerical solution of the radial Scéhro
reduction in correlated scattering or overlapping potentialiinger equation for the required impact parameteyrs or
contributions. As the figure shows, for practical purposesangular momenta;=b;k;— 1/2. The calculations retain the
using the EC phases provides a reliable method for adiabatigimplicity which arises from the additivity of phases in
model calculations of the scattering of one-nucleon halo sysgjauber's diffraction theory.
tems. The accuracy of results using these phase shift continua-
tions was first assessed in the cases of neutral and charged
point projectile-target scattering. Results were then com-

The scheme presented here is readily applied to three- grared with full three-body adiabatic model calculations for
more-cluster projectiles. A short report of an application totwo-cluster projectiles. The calculated cross sections in the

IV. SUMMARY AND CONCLUSIONS

C. Applications to many-body projectiles
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two cases are found to be in good agreement, even at prguch calculations. The procedure used is readily applied to
jectile energies as low as 10 MeV/nucleon. three- and more-cluster projectiles for which full adiabatic
We have assumed an adiabatic treatment of the projeanodel calculations are either extremely difficult or, in the
tile’s cluster coordinates. At the lowest incident energy condatter case, not yet practical.
sidered, 10 MeV/nucleon, there will almost certainly be cor-
rections needed to the adiabatic approximation. This paper
does not address these effects. We have shown, however,
that the use of the continued exact phases may provide an The financial support of the Engineering and Physical Sci-
alternative approximate starting point from which to considerences Research CoundU.K.) through Grant No. GR/
such effects, as it provides an efficient means for performing 95867 is gratefully acknowledged.
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