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Noneikonal calculations for few-body projectiles
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Calculations which improve upon the eikonal model description of the scattering of loosely boundn-cluster
composite nuclei at low and medium energies are studied. Each cluster-target eikonal phase shift is replaced by
the continuation of the corresponding exact partial wave phase shift to noninteger angular momenta. Compari-
sons with fully quantum mechanical calculations for two-body projectiles show that this yields an accurate
practical alternative to few-body adiabatic model calculations. Calculations are shown to be accurate for
projectile energies as low as 10 MeV/nucleon at which the eikonal approximation is no longer reliable.
@S0556-2813~99!04703-2#

PACS number~s!: 21.45.1v, 24.50.1g, 25.60.2t, 25.70.Bc
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I. INTRODUCTION

Semiclassical approximations have been used extens
in nuclear physics for approximate solutions of the sm
wavelength scattering problem. Theoretical formulations
volve the phase shifts introduced by the projectile’s inter
tion with a target, expressed as a function of the projecti
impact parameterb. Such models were developed exte
sively by Glauber and co-workers, e.g., Refs.@1,2#, for the
scattering of both elementary and composite systems. In
Glauber diffraction theory, the interaction of an incide
nucleon with a composite nucleus is described by a mult
scattering series in which the incident nucleon scatters f
an ensemble of fixed target nucleons. In the absence of th
body forces, the total projectile-target phase shift is also
sum of the phase shifts due to each target nucleon. The
dividual nucleon-nucleon (NN) scatterings are described b
free NN scattering phase shifts. The use of phase shifts
however, usually not discussed since, when applied at
eral hundred MeV, this explicit reference to phase shifts
recast in favor of theNN scattering amplitude. This is the
parametrized directly from extensive small angleNN scatter-
ing and, through the optical theorem, total cross section d
The nucleon-nucleus scattering amplitude is obtained as
average of these elementary, impact parameter-depen
amplitudes, over the target ground state many-body den
Implicit is that the incident energy is sufficiently high th
the target nucleons can be considered fixed during the
sage of the projectile, the sudden or adiabatic approximat

In this paper our interest is the scattering of very loos
bound composite projectiles from a stable target nucleu
energies of less than 100 MeV/nucleon. The composite p
jectile is assumed to be composed ofn clusters~wheren is
less than the number of projectile nucleons!. For halo nuclei
these clusters are the core and the valence particles. Here
the study of the cluster relative motion degrees of freedom
the projectile, and hence excitation and breakup effe
which are of interest. The projectile-target scattering is n
described as a (n11)-body problem@3,4#, the projectile’s
n-body ground state density must be averaged over once
cluster-target phase shifts have been evaluated, and the
batic approximation is made at the level of the (n11)-body
Schrödinger equation@4#. In this lower-energy regime the
PRC 590556-2813/99/59~3!/1560~7!/$15.00
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scattering is not highly forward angle focused. The natu
expression for the required scattering amplitudes is there
in terms of the cluster-target~impact parameter dependen!
phase shifts, and the accuracy with which this representa
reproduces exact cluster-target scattering amplitudes, an
can be directly connected with experimental observab
needs to be reexamined. We consider this quantitative q
tion in Sec. II. Generally speaking, however, experimen
data are insufficient to allow an unambiguous determinat
of the cluster-target scattering amplitude or phase shifts.

Most recently, semiclassical few-body calculations
scattering and reactions in this lower-energy regime h
made extensive use of the eikonal approximation, e.g., R
@3–5#. The assumption is that, for the purpose of calculat
each cluster-target phase shift, the cluster’s trajectory ca
approximated by a straight line path through an assum
interaction potential with the target. This use of a poten
description is extremely useful for making theoretical pred
tions for exotic and halo systems. Then global optical pot
tial parametrizations, incorporating data systematics,
tested theoretical potential models, can be used for individ
cluster-target systems when data are very limited or unav
able.

These approximate calculations, including those for8He
scattering@6#, treated as a six-body problem, show that t
eikonal model provides an efficient basis for reaction cal
lations of few- and many-body projectiles. This efficien
arises from the additivity of phases property of the eiko
theory and means that attempts to extend its accuracy a
interest. In a recent Rapid Communication@7# noneikonal
modifications to the phase shift of each cluster were int
duced, but to third order ine (}k22), wherek is the cluster-
target center of mass wave number. In applications to11Be
1 12C scattering above 25 MeV/nucleon, these changes
proved the accuracy of the calculations to lower energies
larger scattering angles.

Here we assess a simpler procedure. Rather than dev
and sum the expansion for the phase shift in powers ofe we
solve directly the radial Schro¨dinger equation for each
cluster-target two-body system at the required impact par
eters or noninteger orbital angular momental. We therefore
no longer make the eikonal approximation, but retain
adiabatic and additivity of phases approximations. Corr
1560 ©1999 The American Physical Society
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PRC 59 1561NONEIKONAL CALCULATIONS FOR FEW-BODY PROJECTILES
tions to the latter, manifest as phase shift contributions du
simultaneous cluster-target potential overlaps, have been
cussed by Feshbach@8#. We have studied such overlap term
quantitatively for halo nuclei using simple potential para
etrizations. The results will be presented elsewhere. Th
estimates of overlap contributions are very small for spatia
extended systems and the results presented here are c
tent with these findings.

This paper deals only with corrections to the eikonal a
proximation. The adiabatic approximation is expected to
reasonable when the relevant excitation energies of the
jectile are small compared with its incident energy. As
Ref. @7# we will use full three-body quantum-mechanical ca
culations, which make the adiabatic approximation but
the eikonal or additivity of phases assumptions, to assess
importance and accuracy of the noneikonal modificatio
We present calculations of applications to two-body proj
tile scattering, namely, the deuteron and11Be (10Be
1neutron).

II. STRUCTURELESS PROJECTILE SCATTERING

A. Neutral point particle scattering

Glauber, Franco, and Wallace@1,2,9# have discussed in
detail the mathematical and physical relationship of the d
crete exact~partial wave sum! representation

F~u!5
1

2ik (
l 50

`

~2l 11!Pl~cosu!@Sl21#, ~1!

and the Fourier-Bessel~impact parameter! integral represen-
tation of the scattering amplitude for a point particle. Herk
is the projectile incident wave number in the center of m
frame. The exact partial waveS matrix Sl5exp(2idl) is ob-
tained by solution of the radial Schro¨dinger equation for a
given orbital angular momentuml in the presence of the
assumed projectile-target interactionV(r ). Upon continuing
these discretel values to continuous angular momental, and
associating the physical angular momental with impact pa-
rametersb according tobk5 l 11/2, one can write@2,9#

f ~u!52 ikE
0

`

b db J0~qb!@S~b!21#, ~2!

whereq52k sin(u/2) is the momentum transfer.S(b) in Eq.
~2! is the continuation ofSl for real noninteger angular mo
menta, and can be obtained by solution of the radial Sch¨-
dinger equation for angular momentuml5bk21/2. Explic-
itly, asymptotically inr

cl~r !→
i

2
@Hl

~2 !~kr !2SlHl
~1 !~kr !#, ~3!

where theH (6) are the usual in- and out-going waves rad
asymptotic solutions, but for nonintegerl. Thus S(b)5Sl

5exp@iX(b)# coincides with the exactSl for all integerl,
with X(b)52dl . We refer toS(b) as the exact continue
~EC! S matrix. It is important that Eq.~2! has not made the
eikonal approximation to the scattering phase shift.

The amplitudesf andF are not formally equal. In writing
Eq. ~2!, in addition to the discrete to continuous variab
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transformation, only the leading term in the small forwa
angle expansion of the Legendre functionPl , has been re-
tained ~e.g., Appendix A of Ref.@2# and Ref. @9#!. This
yields the Bessel functionJ0(qb). An additional factor
W@d#, which multipliesS(b) in a complete formal deriva-
tion @9#, is unity in this limit. The approach followed by
Wallace, with higher energies in mind, is to develop expa
sions of both theW@d# term andS(b) in inverse powers of
k2 and to collect terms of equal order. At the low energies
interest here and particularly for light projectiles, i.e., f
smallk, such an expansion scheme is not particularly use
This will be seen below in the context of the phase sh
expansion@7#.

The eikonal approximationf 0 to the scattering amplitude
f has the same form@1#,

f 0~u!52 ikE
0

`

b db J0~qb!@S0~b!21#, ~4!

but S0(b) is now determined by the eikonal approximation
the phase shiftX0(b) the integral of the assumed interactio
along a straight line path at impact parameterb

S0~b!5exp@ iX0~b!#5expF2
i

\vE2`

`

V~Ab21z2!dzG .
~5!

Here v5\k/m is the asymptotic relative velocity andm is
the reduced mass of the projectile and target.

In this work we perform calculations based directly on t
amplitude of Eq.~2!, in which we make the small angl
W@d#[1 approximation only. This can also be viewed
replacing the eikonal profile functionS0(b) by an improved
description, a viewpoint helpful in its generalization to com
posite projectiles. This scheme was used in Ref.@7# for com-
posite systems. There, however, only an approximate
scription ofS(b) andS̄(b) of the next subsection, was use
Specifically, the power series expansion of the phase s
X(b) to third order ine51/\kv about the eikonal phase wa
used which included the correction terms detailed by Ro
and Yennie@9,10#. The accuracy of theS(b) arising from
this expansion is a related but different issue to the accur
of the approximate amplitudef of Eq. ~2!. Below we com-
pare theS(b) from this expansion with those of the exa
continuation~radial equation solution! and from the eikonal
model. We also require these two-bodyS matrices for the
three-body scattering calculations considered in the next
tion where they appear as inputs.

To assess the accuracy with which the approximate
plitudesf of Eq. ~2! reproduce observables calculated usi
the exact partial wave amplitudeF, Eq. ~1!, and f 0 , Eq. ~4!,
we first perform calculations for neutron and10Be112C scat-
tering at low and medium energies. For each system we c
sider energies of 10, 25, and 50 MeV/nucleon assuming,
simplicity, the same interaction parameters at each ener

For n112C we assume a complex volume Woods-Sax
neutron potential with parametersV537.4 MeV, r V51.2
fm, aV50.75 fm, W510.0 MeV, r W51.3 fm, aW50.6 fm
@7#. Figure 1 compares the moduli of then112C S matrices
as a function of impact parameter calculated using the e
nal ~dashed curves! and EC~solid curves! phase shifts at the
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1562 PRC 59J. M. BROOKE, J. S. AL-KHALILI, AND J. A. TOSTEVIN
three energies. Even at the higher energy there are signifi
noneikonal corrections. These make the target appear la
and also more transparent to the neutron at small imp
parameters. The dot-dashed curves at 25 and 50 MeV ar
results when including terms to third order in the power
ries expansion of the phase shift@7#. To the same order this
expansion is unstable at the lowest energy. The imagin
part of the approximate phase shift becomes positive fo
range of impact parameters and so does not yield usefu
sults. Direct use of the ECSmatrix avoids such instabilities
is much simpler, and also avoids the slow convergence of
phase shift expansion, manifest in the 25 MeV calculation
Fig. 1.

Figure 2 shows the calculatedn112C elastic differential
cross section angular distributions at 10, 25, and 50 M
The solid curves are the exact partial wave calculations u
Eq. ~1!, the dashed curves use the approximate~impact pa-
rameter integral! amplitude of Eq.~2!, and the dotted curve
use the eikonal amplitude of Eq.~4!. The improvements re
sulting from the use ofS(b) rather thanS0(b) are clear and
extend to reasonably large scattering angles. The small
viations from the exact calculations suggest that correcti
to theW@d#51 approximation are indeed small.

B. Charged point particle scattering

To consider 10Be scattering we need to generalize t
formalism to include the Coulomb interaction. The exact p
tial wave amplitude is now

FIG. 1. Moduli of the elasticSmatrices forn1 12C scattering at
10, 25, and 50 MeV calculated using the eikonal~dashed curves!
and EC~solid curves! phase shifts. The dot-dashed curves at 25 a
50 MeV result from the expansion of the phase shift used in Ref.@7#
~see text!.
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F̄~u!5 f pt~u!1
1

2ik (
l 50

`

~2l 11!Pl~cosu!e2is l@S̄l21#,

~6!

where f pt(u) is the amplitude for point charge~Rutherford!
scattering ands l is the Coulomb phase shift. TheS̄l here,
obtained by matching to Coulomb functions the solution
the radial Schro¨dinger equation in the presence of bo
nuclear and Coulomb interactions, characterize only the
viations from point Coulomb scattering.

The eikonal approximation toF̄ is obtained by including
both Coulomb and nuclear interactions,V(r )[VN(r )
1VC(r ), in the eikonal phase of Eq.~5!, yielding a sum
X̄0(b)5X0N(b)1X0C(b) of nuclear and Coulomb terms
The Coulomb interaction is taken to be that of a uniform
charged sphere. The logarithmic divergence of the Coulo
phase requires screening arguments to be used, see, e.g
@11#. The result is thatX0C(b)5X0r(b)1Xa where the first
term is the phase due to the assumed Coulomb interac
andXa522h ln(2ka) is a constant~screening! phase,a de-
noting the screening radius. The eikonal amplitude ana
gous to Eq.~6! can be written

f̄ 0~u!5eiXaH f pt~u!2 ikE
0

`

b db J0~qb!eiXpt~b!

3@S̄0~b!21#J , ~7!

whereXpt(b)52h ln(kb) is a point Coulomb interaction ei
konal phase. The effect of screening appears only as an o
all real phase on the elastic amplitude and has no co
quences for observables. We will not show it explicitly
subsequent expressions.S̄0(b) here characterizes the devia
tions from point Coulomb scattering and includes the ph

d

FIG. 2. Exact~solid curves!, approximate impact parameter in
tegral ~dashed curves!, and eikonal model~dotted curves! calcula-
tions of the elastic differential cross section angular distributions
n1 12C scattering at 10, 25, and 50 MeV.
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PRC 59 1563NONEIKONAL CALCULATIONS FOR FEW-BODY PROJECTILES
shifts due to both the nuclear interaction and the short-ra
~uniform sphere! deviations from a point Coulomb interac
tion, i.e.,

S̄0~b!5exp@ iX0N~b!1 iX0r~b!2 iXpt~b!#. ~8!

As for uncharged projectiles we replace the eikonalS̄0(b)
with S̄(b)5S̄l5exp@iX̄(b)#, obtained by solution of the ap
propriate radial Schro¨dinger equation for nonintegerl. This
yields an approximate~nuclear1Coulomb! impact parameter
integral amplitude

f̄ ~u!5 f pt~u!2 ikE
0

`

b dbJ0~qb!eiXpt~b!@S̄~b!21#. ~9!

For the 10Be112C potential we assume Woods-Saxon p
rameters V5123.0 MeV, r V50.75 fm, aV50.8 fm, W
565.0 MeV, r W50.78 fm, andaW50.8 fm. This potential,
consistent with the available10Be112C data at 59.4 MeV/
nucleon @12#, is used for all three energies. The Coulom
interaction is taken as due to a uniformly charged spher
radius parameterr c51.20 fm. All 10Be radius parameters ar
multiplied by 101/31121/3. Figure 3 compares the calculate
moduli of theS matrices as a function of impact parame
using the eikonal~dashed curves! and EC ~solid curves!
phase shifts for the10Be1 12C system at 10, 25, and 5
MeV/nucleon incident energy. Due to the largerk for this
heavy fragment the deviations from the eikonal model
smaller but nevertheless still significant.

Figure 4 shows the calculated elastic differential cro
section angular distributions~as a ratio to the Rutherford
cross section! for 10Be1 12C scattering at 10, 25, and 5

FIG. 3. Moduli of the elasticS matrices for10Be1 12C scatter-
ing at 10, 25, and 50 MeV/nucleon calculated using the eiko
~dashed curves! and EC~solid curves! phase shifts.
e

-

of

r

e

s

MeV/nucleon. The solid curves are the exact partial wa
calculations resulting from Eq.~6!. The dashed curves resu
from the impact parameter integral amplitudef̄ while the
dotted curves are the results of the eikonal amplitude of
~7!. The improvements in the calculated cross sections wh
result from the use ofS̄(b) are significant and the sma
deviations from the exact calculations suggest that errors
troduced by theW@d#51 approximation are also small i
this heavier charged particle case.

III. COMPOSITE PROJECTILE SCATTERING

We now consider the scattering of a boundn-body system
from a target. In addition to the considerations already d
cussed, for composite projectiles one also makes an adia
approximation. The positions of the clusters within the p
jectile are thus fixed for the calculation of their scatteri
phase shifts with the target. In the eikonal limit each of the
phase shifts is computed, as in the point projectile case,
suming a straight line path through the interaction region

However, having madeonly the adiabatic approximation
it is also possible to solve the Schro¨dinger equation without
the use of the eikonal or additivity of phases approximatio
Such scattering calculations can be carried out for both t
body @13,14# and three-body@15# projectiles. However, even
for two-body projectiles, such calculations involve larg
coupled channels sets and are time consuming. For th
body projectiles@15# they are at the limit of what is compu
tationally feasible. In the following the results of calculatio
for deuteron1 12C and11Be1 12C scattering, which solve the
three-body adiabatic equation without further approximat
@14,7#, are compared with those of the approximate pro
dure discussed here.

Consider first the eikonal model elastic scattering am

l

FIG. 4. Exact~solid curves!, approximate impact parameter in
tegral ~dashed curves!, and eikonal model~dotted curves! calcula-
tions of the elastic differential cross section angular distributio
~ratio to Rutherford! for 10Be1 12C scattering at 10, 25, and 5
MeV/nucleon.
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tude for ann-body projectile, comprising uncharged cluste
and with a ground state relative motion wave functionF0

(n) .
The amplitude, then-body equivalent off 0 of Eq. ~4!, is

f 0
~n!~u!52 ikE

0

`

b dbJ0~qb!@S0
~n!~b!21#, ~10!

whereS0
(n)(b) is now then-cluster projectile eikonalSmatrix

S0
~n!~b!5^F0

~n!u)
j 51

n

S0
j ~bj !uF0

~n!&. ~11!

In these equationsb andk are the impact parameter and wa
number of the projectile center of mass. EachS0

j (bj ) in Eq.
~11! is a point particle eikonalSmatrix for clusterj evaluated
at its own impact parameterbj , as defined in Eq.~5!.

When one or more of the clusters is charged we m
follow the Coulomb screening arguments used above. N
for each charged cluster,X 0C

j (bj )5X 0r
j (bj )1X a

j . Since the
screening phasesX a

j 522h j ln(2ka) depend linearly on the
Sommerfeld parameter of each clusterh j and h5( jh j ,
these phases add to give the screening phase appropria
the projectileXa . The few-body eikonal amplitude in th
presence of nuclear and Coulomb forces, analogous tof̄ 0 of
Eq. ~7!, is therefore~omitting the overall screening phase!

f̄ 0
~n!~u!5 f pt~u!2 ikE

0

`

b dbJ0~qb!eiXpt~b!@S̄0
~n!~b!21#,

~12!

where

S̄0
~n!~b!5^F0

~n!uexpH (
j 51

n

@ iX 0N
j ~bj !1 iX 0r

j ~bj !#

2 iXpt~b!J uF0
~n!&. ~13!

In the charged point particle discussion above, the asso
tion is made between the ECSmatrix S̄(b) and the Coulomb
modified eikonalS matrix S̄0(b) given by Eq.~8!. In the
few-body case we replace, for each clusterj,

S̄0
j ~bj ![exp@ iX 0N

j ~bj !1 iX 0r
j ~bj !2X pt

j ~bj !#→S̄j~bj !,
~14!

with X pt
j (bj )52h j ln(kbj). That is we replace each clusterS

matrix by the exact continued one. With these replaceme
S̄0

(n)(b) of Eq. ~13! is renamedS̄(n)(b), consistent with ear-
lier notation, where

S̄~n!~b!5^F0
~n!uF)

j 51

n

S̄j~bj !G
3expF (

j 851

n

X pt
j 8~bj 8!2 iXpt~b!G uF0

~n!&. ~15!

EachS̄j (bj ) is obtained by solution of the appropriate tw
body radial equation for all requiredbj .
st
,

to

ia-

ts

These ECS matrices include noneikonal corrections
each cluster-target phase shift to all orders. The resul
calculation retains the efficient computational structure of
few-body Glauber model, involving a product of each clus
S matrix. This approximation is expected to be good f
weakly bound halo systems where the valence nucleo~s!
spend most of their time far from the core. The full adiaba
calculations referred to earlier do not make the additivity
phases approximation and so provide an assessment of
effects.

A. Application to deuteron1 12C scattering

For deuteron scattering the inputs required are the d
teron wave function and the proton- and neutron-targeS

matricesS̄p(bp) andSn(bn) obtained by solution of the free
p- andn-target scattering problems at half the incident de
teron energy. The three-body elastic amplitude is

f̄ ~2!~u!5 f pt~u!2 ikE
0

`

b dbJ0~qb!eiXpt~b!@S̄~2!~b!21#,

~16!

whereb, bp, andbn are the deuteron, proton, and neutr
impact parameters, and

S̄~2!~b!5^F0
~2!uS̄p~bp!Sn~bn!exp@2ih ln~bp /b!#uF0

~2!&.
~17!

We consider deuteron scattering at the three incident e
gies per nucleon of the previous section. The neutron
proton optical potential parameters at the three energies w
calculated from the global parametrization of Ref.@16#. The
deuteron ground state wave function was assumed to b
pureSwave and was calculated using a central Wood-Sa
interaction with depth 83.37 MeV, a radius of 0.95 fm, and
diffuseness of 0.65 fm. These parameters gave a deut
binding energy of 2.224 MeV and an rmsnp separation of 4
fm.

Figure 5 shows the calculated elastic differential cro
section angular distributions~as a ratio to Rutherford! for d
1 12C scattering at 10, 25, and 50 MeV/nucleon. The dot
curves are obtained using the eikonal model and the das
curves using the EC phases. The solid curves are obta
from a full quantum-mechanical~coupled channels! calcula-
tion which makes only the adiabatic approximation. The l
ter calculation is time consuming and includess, p, d, andf
wave np breakup states. The eikonal and EC calculatio
which include all breakup states through closure, are
tremely fast. Even for this very light projectile system
tightly bound in comparison with halo nuclei, the agreeme
between the EC phase shifts and exact adiabatic calcula
is rather good, even down to energies as low as 10 M
nucleon. There is no indication that corrections to the ad
tivity of phases approximation, included in the full adiaba
calculation, are significant even for this light-ion and weak
absorptive system. Of greater current interest is the appl
tion of such ideas to halo nuclei with weaker binding, e
hanced breakup channels, and larger radial extent.
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B. Application to 11Be1 12C scattering
11Be is a good example of a two-body halo nucleus co

posed of a10Be corec and a valence neutron. We consid
11Be1 12C scattering using the neutron and10Be1target S
matrices already computed and shown in Figs. 1 and 3
Sec. II. The scattering amplitude is given by Eq.~16!. The
two-body projectileS matrix S̄(2)(b) appropriate to11Be is

S̄~2!~b!5^F0
~2!uS̄c~bc!S

n~bn!exp@2ih ln~bc /b!#uF0
~2!&,

~18!

with bc and bn the core and neutron impact paramete
The11Be ground state wave functionF0

(2) was taken to be a
pure 2s1/2 neutron single particle state, with separation e
ergy 0.504 MeV, calculated in a central Wood-Saxon pot
tial of geometryr 051.00 fm anda050.53 fm. With a10Be
root mean squared~rms! matter radius of 2.28 fm this gen
erates a11Be composite with rms radius of 2.90 fm, in agre
ment with recent few-body analyses@17#.

Figure 6 shows the calculated elastic differential cro
section angular distributions~as a ratio to Rutherford! for
11Be1 12C scattering at 10, 25, and 50 MeV/nucleon. T
curves have the same meanings as those in Fig. 5. The a
ment with the full adiabatic calculations in this case is exc
lent. We attribute the improved agreement in this h
nucleus case to the weaker binding and the probable fur
reduction in correlated scattering or overlapping poten
contributions. As the figure shows, for practical purpos
using the EC phases provides a reliable method for adiab
model calculations of the scattering of one-nucleon halo s
tems.

C. Applications to many-body projectiles

The scheme presented here is readily applied to three
more-cluster projectiles. A short report of an application

FIG. 5. Calculated elastic differential cross section angular
tributions~ratio to Rutherford! for d1 12C scattering at 10, 25, an
50 MeV/nucleon using the eikonal~dotted curves! and EC~dashed
curves! phase shifts. The solid curves are the results of the e
adiabatic model calculations.
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scattering of the two-neutron halo nucleus6He was recently
presented elsewhere@18#. Comparisons, in the case wit
four-body adiabatic model calculations@15#, showed a very
similar quality of agreement to that reported here. Wher
the four-body calculations with EC phase shifts are rat
straightforward, those adiabatic calculations are at the li
of computational feasibility. Use of the EC phase shifts
projectiles such as8He, modeled as a five-body (a14n)
structure, and whereS̄(5)(b) can be calculated using rando
sampling techniques, e.g., Ref.@6#, is also straightforward. In
that case the larger number of clusters occupy a relativ
smaller volume of space. The probability that pairs
cluster-target interactions will overlap will therefore b
greater and the additivity of phases approximation which
derpins the current discussion may need to be reexami
This possibility remains to be fully investigated.

IV. SUMMARY AND CONCLUSIONS

We have assessed calculations of the scattering of loo
boundn-cluster composite projectiles within the framewo
of a few-body Glauber model. Each cluster-target eiko
phase shift is replaced by the continuation of the exact pa
wave phase shift for noninteger orbital angular momental.
The latter are computed, for each cluster(j )-target pair with
wave numberkj , by numerical solution of the radial Schro¨-
dinger equation for the required impact parametersbj , or
angular momental j5bjkj21/2. The calculations retain th
simplicity which arises from the additivity of phases
Glauber’s diffraction theory.

The accuracy of results using these phase shift contin
tions was first assessed in the cases of neutral and cha
point projectile-target scattering. Results were then co
pared with full three-body adiabatic model calculations
two-cluster projectiles. The calculated cross sections in

-

ct

FIG. 6. Calculated elastic differential cross section angular d
tributions ~ratio to Rutherford! for 11Be1 12C scattering at 10, 25
and 50 MeV/nucleon. The curves have the same meanings as in
5.
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two cases are found to be in good agreement, even at
jectile energies as low as 10 MeV/nucleon.

We have assumed an adiabatic treatment of the pro
tile’s cluster coordinates. At the lowest incident energy co
sidered, 10 MeV/nucleon, there will almost certainly be c
rections needed to the adiabatic approximation. This pa
does not address these effects. We have shown, how
that the use of the continued exact phases may provid
alternative approximate starting point from which to consid
such effects, as it provides an efficient means for perform
s.

g
V.
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-

ro-

c-
-
-
er
er,
an
r
g

such calculations. The procedure used is readily applied
three- and more-cluster projectiles for which full adiaba
model calculations are either extremely difficult or, in th
latter case, not yet practical.
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