Genetic deletion of the adenosine A_2A receptor in mice reduces the changes in spinal cord NMDA receptor binding and glucose uptake caused by a nociceptive stimulus.

M. J. Hussey¹, G. D. Clarke, C. Ledent², I. Kitchen, S. M.O. Hourani
Faculty of Health and Medical Sciences,
University of Surrey,
Guildford GU2 7XH,
UK

¹ Present address: Novartis Horsham Research Centre, Wimblehurst Road, Horsham RH12 5AB
UK

² Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire,
Université Libre de Bruxelles, B-1070, Belgium

Correspondence to Susanna Hourani
Faculty of Health and Medical Sciences,
University of Surrey,
Guildford GU2 7XH, UK
email s.hourani@surrey.ac.uk
Tel 01483 689707
Fax 01483 686401

Number of pages including figures: 19; number of figures: 3
Acknowledgements: This research was supported by the BBSRC and GlaxoSmithKline.

Keywords: Adenosine A_2A receptors, nociception, spinal cord, knockout mice.
Abstract

Mice lacking the adenosine A_{2A} receptor are less sensitive to nociceptive stimuli, and A_{2A} receptor antagonists have antinociceptive effects. We have previously shown a marked reduction in the behavioural responses to formalin injection in A_{2A} receptor knockout mice. This may be due to the presence of pronociceptive A_{2A} receptors on sensory nerves, and if so spinal cords from A_{2A} receptor knockout mice may have altered neurochemical responses to a nociceptive stimulus. We tested this hypothesis by studying two parameters known to change with spinal cord activity, NMDA glutamate receptor binding and $[^{14}C]$-2-deoxyglucose uptake, following intraplantar formalin injection in wild-type and A_{2A} receptor knockout mice. In naïve untreated A_{2A} knockout mice $[^{14}C]$-2-deoxyglucose uptake in all regions of the spinal cord was significantly lower compared to the wild-type, similar to the reduced NMDA receptor binding that we have previously observed. Following formalin treatment, there was an decrease in $[^{3}H]$MK801 binding to NMDA receptors and an increase in $[^{14}C]$-2-deoxyglucose uptake in the spinal cords of wild-type mice, and these changes were significantly reduced in the A_{2A} knockout mice. In addition to altered behavioural responses, there are therefore corresponding reductions in spinal cord neurochemical changes induced by formalin in mice lacking adenosine A_{2A} receptors. These observations support the hypothesis that activation of A_{2A} receptors enhances nociceptive input into the spinal cord and suggests a possible role for A_{2A} antagonists as analgesics.
Introduction

Adenosine can modulate pain pathways, and the nature of this action depends on the receptor subtypes involved. Adenosine acts via four G protein coupled receptors, A1, A2A, A2B, and A3. The A1 and A2A receptor have the highest affinity and are likely to be activated at physiological concentrations of adenosine, whereas the A2B and A3 receptors are more likely to play a role under pathological conditions such as ischaemia when high concentrations of adenosine are released [11, 12]. Adenosine acts via A1 receptors mainly in the spinal cord to inhibit nociception, whereas A2A receptors have a pronociceptive effect which has been suggested to be due to an effect on peripheral nerve terminals [32]. In support of these opposing roles of the A1 and A2A receptors, A1 knockout mice have enhanced nociceptive responses [19], whereas we and others have shown that A2A knockout mice have reduced sensitivity to thermal nociceptive stimuli [3, 14, 24]. We have also shown a significant reduction in both phases of the nociceptive behaviour of A2A knockout mice subjected to intraplantar formalin injection, and a marked antinociceptive effect of the selective A2A antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261) in the same test [18]. Another study in mice also reported that an A2A-selective antagonist injected locally into the paw caused reduction in both edema and pain responses to formalin [4].

In addition to these behavioural changes, we found a large reduction in the level of binding of [3H](5S,10R)-(+-)5-methyl-10,11-dihydro-5H-dibenzo[a,d)cyclohepten-5,10-imine ([3H]MK801) to NMDA glutamate receptors in the spinal cord of A2A knockout mice, but no change in the binding of [3H]substance P to NK1 receptors, showing that removal of the A2A receptor has differential effects on the receptors for the two major transmitters released from primary afferent neurones in the spinal cord [18]. In A2A receptor knockout mice there are also changes in spinal cord opioid
receptor binding that are mirrored by changes in the antinociceptive potency of opioid receptor agonists [3].

The presence and function of A$_{2A}$ receptors in the spinal cord are controversial. Conflicting results have been obtained from binding studies and autoradiography [3, 7, 8], and functional studies have reported some inconsistent effects of A$_{2A}$ receptor ligands [1, 5, 15, 16, 25, 28, 36]. mRNA for the A$_{2A}$ receptor has been reported to be expressed in the dorsal root ganglion but not in the spinal cord [20, 21] suggesting that A$_{2A}$ receptors could be present on the peripheral terminals of the sensory nerves but not to any significant extent in the spinal cord, as suggested by Sawynok [32]. More recent studies have however detected mRNA for the A$_{2A}$ receptor in rat and mouse spinal cord [6, 16], and it has been suggested that these may be on microglia as A$_{2A}$ knockout mice have reduced responses (alldynia, hypoalgesia and increased spinal cord microglia and astrocytes) in a neuropathic pain model thought to involve microglial activation [6]. In summary there seems to be evidence for the presence of A$_{2A}$ receptors in the spinal cord but these receptors do not seem to exist at a density sufficient to be detected by autoradiography and their functional significance is not clear. The changes that we have observed in spinal cord receptor binding in the A$_{2A}$ knockout mice are therefore not likely to be due to the absence of A$_{2A}$ receptors in the spinal cord itself [3, 18]. Instead the changes are likely to be related to the hypoalgesic phenotype of these mice, and may reflect reduced nociceptive input to the spinal cord due to loss of pronociceptive A$_{2A}$ receptors on the peripheral terminals of sensory nerves.

To investigate further the hypothesis that the A$_{2A}$ receptor is involved in pain pathways, and in particular the activation of sensory nerves which have their synapses in the spinal cord, we looked at changes in spinal cord neurochemistry following injection of formalin into the hind paw of wild-type and A$_{2A}$ receptor knockout mice. Formalin is widely used as an acute nociceptive stimulus, with two distinct phases:
the first phase (0-15 min) reflecting mainly direct stimulation of sensory nerves, with
the second phase (15-60 min) reflecting an inflammatory component [10, 33]. As
 glutamate is the major neurotransmitter released by primary afferent neurones [27],
we measured binding to ionotropic NMDA glutamate receptors in the spinal cord as
changes in nerve firing are likely to be followed by changes in receptor binding and
because changes in the expression and phosphorylation state of NMDA receptor
subunits in the spinal cord have been reported in the spinal cord after treatment with
formalin [13, 22]. We have also looked at the in vivo uptake of [14C]deoxyglucose in
the spinal cords of these mice as a marker of neuronal activity [34], because previous
studies using this method have shown an increase in the uptake of [14C]-2-
deoxyglucose in both phases of the formalin test in both rats and mice [2, 30, 31].

Materials and Methods

Animals. Wild-type and A2A knockout age-matched male mice on a CD1 background
[24] aged 8 – 12 weeks were bred from heterozygotes and genotyped at weaning. All
experiments described followed protocols agreed by the UK Home Office in
accordance with the Animals (Scientific Procedures) Act 1986, UK.

Formalin treatment. Mice were lightly restrained before receiving a single 20μl
injection of 5% formalin solution subcutaneously into the ventral, plantar surface of
the left hind paw. Mice were assigned to one of two groups designated ‘early’ or
‘late’, corresponding to the two phases of the response to formalin. Mice assigned to
the ‘early’ group were killed 15 minutes after formalin injection, whereas mice
designated to the ‘late’ group were killed 60 minutes following formalin injection.
The spinal cords were dissected out, frozen in isopentane at -25°C and stored at -80°C
until required.
For the study of [14C]-2-deoxyglucose uptake mice designated to the ‘early’ group were restrained in a plastic cylinder, their tails warmed under a heat lamp and 3700kBq/kg [14C]-2-deoxyglucose dissolved in sterile saline (stock concentration of 3700kBq/ml) was injected intravenously via the tail vein. After five minutes they were treated with formalin, then returned to the observation chamber for a further 15 minutes before being killed. “Late” mice were treated with formalin 15 minutes before they were injected with 3700kBq/kg [14C]-2-deoxyglucose. They were then returned to the observation chamber for a further 45 minutes before being killed. Control mice for each group followed the same treatment protocol as “early” or “late” mice but received no formalin injection.

Spinal cord receptor autoradiography. Sections (20μm) were cut from all four anatomical regions of the spinal cord (cervical, thoracic, lumbar and sacral) using a cryostat (Microm 505E, Zeiss, UK) maintained at -20°C and thaw-mounted onto gelatine-coated slides. Adjacent sections were cut for determination of total binding and non-specific binding (NSB). Slides with tissue sections were placed into storage boxes containing desiccant (Drierite) for a period of two hours at 40°C before being frozen at -20°C until used.

Binding to NMDA receptors was determined using [3H]-MK801 as previously described [18]. Sections were pre-incubated in 50mM Tris buffer (Trizma) at pH 7.4 containing 1μM glutamate, 1μM glycine and 1μM spermidine for 20 minutes at room temperature. Total binding was determined by incubating in the same buffer with 70nM [3H]-MK801 for 1 hour at 4°C, and NSB was determined by the addition of 1 mM unlabelled MK801. Sections were washed for a total of 60 seconds in three changes of ice-cold, briefly rinsed in distilled water and dried in a stream of cool air.

Slides were placed into autoradiography cassettes and apposed to [3H]-Hyperfilm for three weeks alongside [3H]-microscale standards (4048 Bq/mg – 3.74 Bq/mg). The
resultant autoradiograms were developed in Develex for 5 minutes, washed in distilled water for 30 seconds and fixed in Amfix fixative for 4 minutes, washed for 30 minutes in distilled water then air-dried.

Autoradiographic assessment of $[^{14}\text{C}]-2$-deoxyglucose uptake. Sections (20μm) were cut, mounted and dried as above, then the slides were apposed for three weeks to Kodak MR-1 film alongside $[^{14}\text{C}]-$microscale standards (31.89kBq/g – 1.11kBq/g). The resultant autoradiograms were developed in Kodak D-19 for 75 seconds, washed in distilled water containing acetic acid for 30 seconds and fixed in Kodak rapid fixer for 3 minutes, washed in distilled water for 30 minutes and then air-dried.

Analysis of autoradiographic images. Quantitative analysis was performed using an MCID imaging system (Imaging Research, Canada). For each region of spinal cord examined, at least three sections were used for quantification. All anatomical areas of the spinal cord were analysed by free-hand drawing and referenced to the rat atlas of Paxinos and Watson [29]. For $[^{3}\text{H}]$MK801 binding, measurements were taken from laminae I-II, III-VI, VII-IX and X on both left and right sides for each section analysed, therefore representing a duplicate determination in each section except for lamina X where only one measurement was taken. Although data were originally obtained from ipsilateral and contralateral sides of the spinal cord there were no significant differences observed between the two sides so data were pooled. There were also no differences between the different laminae after either the early or the late phase of formalin treatment in the binding of $[^{3}\text{H}]$MK801, so the data were pooled for clarity and to provide a more robust comparison between the genotypes. For $[^{14}\text{C}]-2$-deoxyglucose uptake the images were not so well resolved but measurements were taken from laminae I-VI, VII-IX and X for the naïve mice. As there were no differences between the laminae in these mice and inspection of the films for the treated mice did not indicate any obvious visual differences, for the treated mice measurements were taken from the whole spinal cord section to improve accuracy and
provide a more robust comparison between the genotypes. Radioligand binding was quantified by reference to the $[^3\text{H}]$-microscale standards and expressed as fmol/mg tissue. $[^1\text{C}]$-2-deoxyglucose uptake was quantified by reference to the $[^1\text{C}]$-microscale standards and expressed as kBq/g.

Data analysis and statistical procedures. Because of the different basal values observed between naïve wildtype and adenosine A$_{2\text{A}}$ receptor knockout mice, data were transformed to generate values as a % of control. Control values for $[^3\text{H}]$-MK801 binding were taken from data in [17], while ‘early’ control values in kBq/g for $[^1\text{C}]$-2-deoxyglucose uptake averaged 2.50 (wildtype) and 1.46 (knockout) and ‘late’ controls averaged 1.24 (wild-type) and 1.15 (knockout), with some regional variation. Statistical analysis was carried out using two-way analysis of variance (ANOVA) for factors region and genotype, with post-hoc analysis using Fischer’s LSD test where appropriate. Unpaired Student’s t-tests were carried out on the raw data to identify differences between control values and data obtained at 15 and 60 minutes following formalin injection and P<0.05 was defined as significant.

Materials: $[^1\text{C}]$-2-deoxyglucose was from ARC, USA and $[^3\text{H}]$-MK801 was from Perkin Elmer, USA. Autoradiography cassettes, $[^3\text{H}]$-Hyperfilm and $[^3\text{H}]$- and $[^1\text{C}]$-microscales were from G.E. Healthcare, UK. Develex developer and Amfix fixative were from Patterson Scientific, UK. Drierite desiccant was from VWR, UK, and all other drugs and chemicals were from Sigma, UK.

Results

Glutamate receptor binding in mouse spinal cord. We have previously reported a large decrease in $[^3\text{H}]$MK801 binding to NMDA receptors in all regions of the spinal cords of A$_{2\text{A}}$ knockout mice compared to wild-type controls [18]. There were also differences in the response of these mice to formalin treatment throughout the spinal
cord (Figure 1). In wild-type mice there was a significant decrease in $[^{3}H]$MK801 binding at 15 and 60 minutes in all segments of the spinal cord (P<0.05), whereas significant changes were not seen in the A_{2A} receptor knockout mice except at 15 minutes in the thoracic segment (Figure 1). Overall there was a significant effect of genotype in every region (P<0.05, two-way ANOVA).

Uptake of $[^{14}C]$-2-deoxyglucose in mouse spinal cord. The uptake of $[^{14}C]$-2-deoxyglucose in all regions of the spinal cords from naïve A_{2A} receptor knockout mice was significantly reduced compared to wild-type mice (Figure 2, significant effect of genotype, P<0.05, two-way ANOVA). In wild-type mice treated with formalin there was an increase in $[^{14}C]$-2-deoxyglucose uptake after 60 min which achieved statistical significance in the lumbar region only (P<0.05), and this increase was not seen in the A_{2A} receptor knockout mice (Figure 3). Overall there was also a significant effect of genotype in the lumbar section (P<0.05, two-way ANOVA).

Discussion

We have previously shown that in A_{2A} receptor knockout mice there is a large decrease in NMDA glutamate receptor density as indicated by $[^{3}H]$MK801 binding throughout the spinal cord [18], and we now show that this is accompanied by a large decrease in $[^{14}C]$-2-deoxyglucose uptake in all regions of the spinal cord. The decrease in $[^{14}C]$-2-deoxyglucose uptake demonstrates reduced spinal neuronal activity and, like the change in NMDA receptor binding, may be a result of loss of A_{2A} receptors in the spinal cord or, perhaps more likely, reduced sensory nerve activity and input into the spinal cord during development due to the loss of pronociceptive A_{2A} receptors on peripheral nerves [32].

When wild-type mice were challenged with formalin there was a decrease in NMDA receptor binding in all regions of the spinal cord at both 15 and 60 minutes,
corresponding to the two phases of the formalin response. Although the second phase of the formalin response primarily involves an inflammatory component rather than direct stimulation of sensory nerves by formalin, it is still a nociceptive response as indicated by behavioural studies [see eg 18] and therefore involves activation of sensory nerves. The NMDA receptor is known to play a role in the second phase of the formalin response [9] and the reduction in NMDA receptor binding may be due to a rapid desensitisation of the receptors following repetitive stimulation, as has been observed in other studies [23, 35]. This decrease in NMDA receptor binding was not confined to one side or region of the spinal, so is likely to reflect a generalised increase in neuronal traffic up and/or down the spinal cord, possibly corresponding to the descending inhibition which is known to result from nociceptive stimulation [26]. Whatever the mechanism for the decrease, it is clear that this response to formalin is greatly reduced in the A2A knockout mice, in parallel with the reduction in behavioural responses to formalin [18]. There was also a more localised increase in [14C]-2-deoxyglucose uptake after 60 min, particularly in the lumbar region where the sensory inputs from the hindpaw enter the spinal cord, which is likely to be a more direct consequence of peripheral afferent input. This response, which reflects changes in neuronal excitability in the spinal cord, was also abolished or greatly attenuated in the A2A receptor knockout mice confirming a role for these receptors in nociceptive stimulation.

In conclusion, our results for two different neurochemical parameters in the spinal cord of A2A knockout mice, [3H]MK801 binding and [14C]-2-deoxyglucose uptake, show significantly lower basal levels in naïve mice as well as reduced changes after formalin treatment. This supports the suggestion of Sawynok [32] that activation of A2A receptors enhances nociceptive input into the spinal cord, and is consistent with the antinociceptive effects of A2A antagonists and the reduced nociceptive responses seen in A2A knockout mice [3, 6, 14, 18, 24]. Overall these results suggest that A2A antagonists may have potential for use as analgesics.
Acknowledgements

This research was supported by a BBSRC CASE studentship in collaboration with Glaxo SmithKline.
Figure Legends

Fig. 1. Changes in $[^3]$H]MK801 binding to NMDA glutamate receptors in spinal cord sections from wildtype and adenosine A$_{2A}$ receptor knockout mice following 5% formalin injection (mean ± S.E.M., n=4-6). Measurements were taken from (A) cervical (B) thoracic (C) lumbar and (D) sacral regions, results for all laminae being pooled. Two-way ANOVA revealed a significant effect of genotype in every level of the spinal cord following formalin injection (P<0.05). Unpaired t-tests were carried out on non-transformed data to reveal any differences between control values and the data obtained at 15 and 60 minutes after formalin injection * = P<0.05 time point vs control. Filled circles represent wild-type and open circles represent adenosine A$_{2A}$ receptor knockout mice.

Fig. 2. Uptake of $[^{14}]$C-2-deoxyglucose into spinal cord sections from wildtype and adenosine A$_{2A}$ receptor knockout mice (mean ± S.E.M., n=7-11). Measurements were taken from (A) cervical (B) thoracic (C) lumbar and (D) sacral regions. Two-way ANOVA revealed a significant difference between genotypes (P<0.05) in all regions. In all cases filled bars represent wild-type and open bars represent adenosine A$_{2A}$ receptor knockout mice.

Fig. 3. Uptake of $[^{14}]$C-2-deoxyglucose into spinal cords from wildtype and adenosine A$_{2A}$ receptor knockout mice following 5% formalin injection. (mean ± S.E.M., n=4-6) Measurements were taken from (A) cervical (B) thoracic (C) lumbar and (D) sacral regions. Two-way ANOVA revealed a significant effect of genotype in lumbar sections of the spinal cord (P<0.05). Unpaired t-tests were carried out non-transformed raw data to reveal any differences between control values and the data obtained at 15 and 60 minutes after formalin injection * = P<0.05 time point vs control. Filled circles represent wild-type and open circles represent adenosine A$_{2A}$ receptor knockout mice.
References

