University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Nanoparticle emissions from 11 non-vehicle exhaust sources – A review

Kumar, P, Pirjola, L, Ketzel, M and Harrison, RM (2013) Nanoparticle emissions from 11 non-vehicle exhaust sources – A review Atmospheric Environment, 67. 252 - 277. ISSN 1352-2310

[img]
Preview
PDF
Kumar_Non-exhaust AE Review.pdf
Available under License : See the attached licence file.

Download (565Kb)
[img]
Preview
PDF (licence)
SRI_deposit_agreement.pdf

Download (32Kb)

Abstract

Nanoparticle emissions from road vehicles have been studied extensively in the recent past due to their dominant contribution towards the total airborne particle number concentrations (PNCs) found in the urban atmospheric environment. In view of upcoming tighter vehicle emission standards and adoption of cleaner fuels in many parts of the world, the contribution to urban nanoparticles from non-vehicle exhaust sources (NES) may become more pronounced in future. As of now, only limited information exists on nanoparticle emissions from NES through the discretely published studies. This article presents critically synthesised information in a consolidated manner on 11 NES (i.e. road–tyre interaction, construction and demolition, aircraft, ships, municipal waste incineration, power plants, domestic biomass burning, forest fires, cigarette smoking, cooking, and secondary formation). Source characteristics and formation mechanisms of nanoparticles emitted from each NES are firstly discussed, followed by their emission strengths, airborne concentrations and physicochemical characteristics. Direct comparisons of the strengths of NES are not straightforward but an attempt has been made to discuss their importance relative to the most prominent source (i.e. road vehicles) of urban nanoparticles. Some interesting comparisons emerged such as 1 kg of fast and slow wood burning produces nearly the same number of particles as for each km driven by a heavy duty vehicle (HDV) and a light duty vehicle, respectively. About 1 min of cooking on gas can produce the similar particle numbers generated by ∼10 min of cigarette smoking or 1 m travel by a HDV. Apportioning the contribution of numerous sources from the bulk measured airborne PNCs is essential for determining their relative importance. Receptor modelling methods for estimation of source emission contributions are discussed. A further section evaluates the likely exposure risks, health and regulatory implications associated with each NES. It is concluded that much research is needed to provide adequate quantification of all nanoparticle sources, and to establish the relative toxicity of nanosize particles from each.

Item Type: Article
Additional Information: NOTICE: this is the author’s version of a work that was accepted for publication in Atmospheric Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Atmospheric Environment, 67, March 2013, DOI: 10.1016/j.atmosenv.2012.11.011.
Uncontrolled Keywords: Particle number concentrations, Non-exhaust emissions, Number size distributions, Exposure risks and regulation, Outdoor ultrafine particle formation
Related URLs:
Divisions: Faculty of Engineering and Physical Sciences > Civil and Environmental Engineering
Depositing User: Symplectic Elements
Date Deposited: 13 Dec 2012 12:28
Last Modified: 23 Sep 2013 19:55
URI: http://epubs.surrey.ac.uk/id/eprint/742402

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800