University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Thickness dependence of structural relaxation in spin-cast, glassy polymer thin films

Keddie, JL, Lopez-Garcia, I, Richardson, H and Sferrazza, M (2004) Thickness dependence of structural relaxation in spin-cast, glassy polymer thin films Physical Review E, 70, 051805.

Richardson-PRE-published.pdf - Version of Record
Available under License : See the attached licence file.

Download (224kB)
[img] Text (licence)

Download (1kB)


The isothermal structural relaxation of glassy, spin-cast polymer thin films has been investigated. Specifically, the thickness, h, of freshly-cast poly(methyl methacrylate) thin films was measured over time using spectroscopic ellipsometry. The spin-cast films exhibit a gradual decrease in thickness, which is attributed to structural relaxation of the glass combined with simultaneous solvent loss. In all cases, h was found to be greater than the equilibrium thickness, h0, which is obtained by cooling slowly from the melt. It is observed that both the rate of the volume relaxation and the fractional departure from h0 (referred to as ∂o) increase with increasing film thickness. In the limit of very thin films, the initial h is close to h, and o is small, whereas in thick films (> 500 nm), a plateau value of ∂o of 0.16 is observed, which is close to the volume fraction of the solvent at the vitrification point. This dependence of ∂o on thickness is observed regardless of the substrate, polymer molecular weight, or angular velocity during spin-casting. Enhanced mobility near film surfaces could be leading to greater relaxation in thinner films prior to, and immediately after, the vitrification of the polymer during the deposition process.

Item Type: Article
Divisions : Faculty of Engineering and Physical Sciences > Physics
Authors :
Keddie, JL
Lopez-Garcia, I
Richardson, H
Sferrazza, M
Date : 22 November 2004
DOI : 10.1103/PhysRevE.70.051805
Uncontrolled Keywords : solvent, polymer, thin film, glass transition, Tg, relaxation
Additional Information : Copyright 2004 The American Physical Society.
Depositing User : Symplectic Elements
Date Deposited : 13 Jan 2012 13:51
Last Modified : 31 Oct 2017 14:10

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800