University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Fractional delay estimation for blind source separation and localization of temporomandibular joint sounds

Took, CC, Sanei, S, Rickard, S, Chambers, J and Dunne, S (2008) Fractional delay estimation for blind source separation and localization of temporomandibular joint sounds IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 55 (3). pp. 949-956.

[img] Text
Fractional Delay Estimation for Blind Source Separation and Localization of Temporomandibular Joint Sounds.pdf
Restricted to Repository staff only
Available under License : See the attached licence file.

Download (600kB)
[img] Text (licence)
Restricted to Repository staff only

Download (33kB)


Temporomandibular joint (TMJ) sound sources are generated from the two joints connecting the lower jaw to the temporal bone. Such sounds are important diagnostic signs in patients suffering from temporomandibular disorder (TMD). In this study, we address the problem of source separation of the TMJ sounds. In particular, we examine patients with only one TMJ generating "clicks". Thereafter, we consider the TMJ sounds recorded from the two auditory canals as mixtures of clicks from the TMD joint and the noise produced by the other healthy/normal TMJ. We next exploit the statistical nonstationary nature of the TMJ signals by employing the degenerate unmixing estimation technique (DUET) algorithm, a time-frequency (T-F) approach to separate the sources. As the DUET algorithm requires the sensors to be closely spaced, which is not satisfied by our recording setup, we have to estimate the delay between the recorded TMJ sounds to perform an alignment of the mixtures. Thus, the proposed extension of DUET enables an essentially arbitrary separation of the sensors. It is also shown that DUET outperforms the convolutive Infomax algorithm in this particular TMJ source separation scenario. The spectra of both separated TMJ sources with our method are comparable to those available in existing literature. Examination of both spectra suggests that the click source has a better audible prominence than the healthy TMJ source. Furthermore, we address the problem of source localization. This can be achieved automatically by detecting the sign of our proposed mutual information estimator which exhibits a maximum at the delay between the two mixtures. As a result, the localized separated TMJ sources can be of great clinical value to dental specialists.

Item Type: Article
Authors :
Took, CC
Sanei, S
Rickard, S
Chambers, J
Dunne, S
Date : 1 March 2008
DOI : 10.1109/TBME.2007.909534
Uncontrolled Keywords : Science & Technology, Technology, Engineering, Biomedical, Engineering, blind source separation (BSS), click, fractional delay estimation, temporomandibular joint (TMJ) sounds, TMJ SOUNDS, CLASSIFICATION, DISORDERS, DIAGNOSIS, RANGE, SIDE
Related URLs :
Depositing User : Symplectic Elements
Date Deposited : 28 Mar 2017 14:12
Last Modified : 31 Oct 2017 14:55

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800