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Abstract 26 

Background and Purpose:  27 

The Normal Tissue Complication Probability (NTCP) for rectum is usually defined for late rectal 28 

bleeding.  This study calculates NTCP parameter values for additional rectal toxicity endpoints 29 

observed in clinical practise.   30 

Materials & Methods: 31 

388 patients from the multicentre MRC-RT01 prostate conformal radiotherapy trial were used to 32 

derive independent Lyman Kutcher Burman model (LKB) parameters for 5 late rectal toxicity 33 

endpoints: rectal bleeding, proctitis, stool frequency, loose stools and rectal urgency. The 34 

parameters were derived using maximum likelihood estimation.  Bootstrap and leave-one-out 35 

methods were employed to test the generalisability of the results for use in a general population.  36 

Results:   37 

A consistent pattern of increasing value of TD50(1) for Grade 2 toxicity only compared to Grade 1 & 38 

2 toxicity was observed for all endpoints. Parameter values varied between endpoints (particularly 39 

for the volume parameter n).  TD50(1), m and n were 68.5 Gy (95% CI)(66.8-70.8), 0.15 (0.13-0.17) 40 

and 0.13 (0.10-0.17) respectively for G2 rectal bleeding. Bootstrap and leave-one-out results showed 41 

that the rectal bleeding and proctitis parameter fits were extremely robust.   42 

Conclusions: 43 

The variation between the values derived for different endpoints may indicate different patho-44 

physiological responses of the rectum to radiation.  Therefore different parameter sets would be 45 

required to predict specific rectal toxicity endpoints. 46 

 47 
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Introduction 51 

 52 

The Lyman Kutcher Burman (LKB) model is probably the most well known method for predicting 53 

Normal Tissue Complication Probability (NTCP) for a radiotherapy treatment plan.  The model was 54 

developed by Lyman[1] for heavy charged particle beams where partial volumes of homogenous 55 

dose could be achieved and adapted for conventional radiotherapy through the histogram reduction 56 

work of Kutcher[2] and parameter values of Emami[3] and Burman[4]. There are three parameters in 57 

the LKB model.  TD50(1) represents the dose for a homogenous dose distribution to an organ at 58 

which 50% of patients are likely to experience a defined toxicity within 5 years. m is related to the 59 

standard deviation of TD50(1) and describes the steepness of the dose-response curve and n 60 

indicates the volume effect of the organ being assessed. The recent publication of the Quantec 61 

Report[5] has brought together much of the literature and experience of normal tissue toxicity.   A 62 

dedicated article on radiation induced rectal injury[6] includes a summary of published parameter 63 

values for the LKB model.  Amongst the publications included are data from MD Anderson[7] where 64 

the LKB model was used to predict rectal bleeding from a cohort of 128 patients of which 29 65 

reported rectal bleeding ≥ RTOG Grade 2.   Values of TD50=53.6 Gy, m=0.156 and n=3.91 were 66 

obtained for a calculation based on effective dose (n is the reciprocal of the calculation of effective 67 

volume for small values only).  Sohn et al[8] obtained the LKB parameters using equivalent uniform 68 

dose (EUD) of TD50(1)=78.4 Gy m=0.108 and a=11.9 again for Grade 2 or greater rectal bleeding 69 

(51/319 patients).  Rancati et al[9] found values of TD50(1)=81.9 Gy, m=0.19 n=0.23 for a modified 70 

Grade2/3 for rectal bleeding observed in 38/547 patients. The recent publication of a mixture Lyman 71 

model using data from RT0G 94-06[10,11] reported parameter values of TD50(1)= 76.1Gy m=0.146 72 

and n=0.077 in a cohort where 148/1010 reported ≥RTOG Grade 2.  A meta-analysis of the these 73 

papers [7-9,11] in the Quantec review[6], derived parameter values of TD50(1)=76.9 Gy, m=0.13 95% 74 

CI (0.10-0.17) and n=0.09 95% CI (0.04-0.14) for Grade2 rectal bleeding which are similar to the 75 

original Emami values for rectum[3] (TD50(1)=80Gy, m=0.15, n=0.12). 76 

 77 

Although rectal bleeding is the most frequently reported rectal toxicity, it is not necessarily the most 78 

prevalent and a number of other endpoints are known to concern patients.  It would therefore be 79 

useful to be able to predict a range of toxicities that are commonly observed including rectal 80 

bleeding and quality of life related issues such as continence and bowel habits.  Less data are 81 

available for these endpoints.  However, Peeters et al[12] fitted the LKB model for rectal bleeding, 82 
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stool frequency and fecal incontinence (anal canal only) with significant differences in the estimated 83 

parameter values compared to rectal bleeding. The incidence of complication was 5%, 6% and 7% 84 

respectively.  The values for rectal bleeding were TD50(1)=81 Gy, m=0.4, n =0.13, stool frequency 85 

TD50(1)=84 m=0.24 and n =0.39 and  faecal incontinence TD50(1)=105 Gy, m=0.46 and n=7.48    86 

 87 

The ability to fit the parameters of the model hinges on the availability of detailed dosimetric 88 

information and corresponding clinical follow up data with accurate reporting of toxicity.  This study 89 

presents results of maximum likelihood estimation to derive parameter values for the LKB model 90 

fitted with data from five specific rectal toxicity endpoints.  In addition, the robustness of the 91 

parameters when generalised to a wider population was also investigated. 92 

 93 

 94 

Methods and Materials 95 

 96 

Rectal NTCPs were calculated for 388 patients treated with prostate radiotherapy as part of the MRC 97 

RT01 trial (ISRCTN 47772397)[13,14]. The trial randomised the radiotherapy prescription to 64Gy or 98 

74Gy.  All patients received 64Gy using either a 3 or 4 field beam arrangement.  Those patients 99 

randomised to 74Gy receive an extra 10Gy boost to the prostate only delivered using either a 4 or 6 100 

field beam arrangement.  Fields were conformed using either low melting point alloy blocks or MLCs.  101 

The field arrangement and conformallity method were chosen by the participating centres.  The 102 

treatment planning CT was performed with an empty rectum.   The rectum was outlined from the 103 

anus taken at the level of the ischial tuberosities or 1cm below the PTV whichever was more inferior 104 

to the recto-sigmoid junction and considered as a solid organ (including rectal filling). All rectal 105 

contours were reviewed by a single observer.  The LKB model was fitted to five different toxicity 106 

endpoints; these were rectal bleeding (RMH toxicity score), proctitis (RTOG), stool frequency 107 

(LENT/SOMA) which were clinician reported and loose stools (UCLA-PCI) and rectal urgency (UCLA-108 

PCI) which were patient reported.  As previously reported [15] the grading schemes were unified to 109 

a common grading scheme where the grading was designed to consider the impact on patients.   In 110 

each case the fit was made separately for Grade 0 vs. Grade 1&2 (G1&2) i.e. none vs. 111 

mild/moderate/severe and Grade 0&1 vs. Grade 2 (G2) i.e. none/mild vs. moderate/severe.  In each 112 

case the maximum grade recorded over the entire length of follow-up was used.  Patients who 113 
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experienced a defined endpoint prior to treatment were excluded from the parameter fitting for 114 

that endpoint only.  Details of the number of patients included for each endpoint and the grade of 115 

toxicity reported are presented in table 1. 116 

 117 

The LKB model was taken from the original publications  118 

 119 

 120 

 121 

TD50(1) is the tolerance dose for a homogenous dose distribution to an organ at which 50% of 122 

patients are likely to experience a defined toxicity within 5 years, TD50(V) is the tolerance dose for a 123 

partial volume V.  The parameter m multiplied by TD50(V) approximates the standard deviation of 124 

volume V and n indicates the volume effect of the organ being assessed.  n = 0 indicates a 125 

completely serial structure where the maximum dose dominates outcome and n=1 indicates a 126 

parallel structure where the mean dose is related to outcome.  D is the maximum dose of the DVH to 127 

ensure V<1[16].  Histogram reduction was performed to calculate the effective volume V according 128 

to the method described in Kutcher et al[2]    129 

 130 

 131 

 132 

where Di is the dose defined for each bin in a differential dose volume histogram and D is the 133 

maximum dose to the organ. ∆Vi is the volume in a specific dose bin i.  The dvh data were available 134 
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in bins which were 1% of the prescription dose.  The bin size therefore varied depending on the arm 135 

of the trial which the patient was randomised to.   136 

 137 

Maximum likelihood estimation (MLE)[7,9,12,17] was employed to find the best fit values of the 138 

parameters TD50(1), m and n of the NTCP model for the known binary outcomes y(i) of the available 139 

data by maximising the natural log of the likelihood (LLH) that the fitted model describes the data 140 

correctly.  Fits were made separately for the 5 specific rectal toxicities and the 2 Grades of 141 

complication, mild (G1&2) and moderate/severe (G2 only).  142 

 143 
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 145 

Confidence intervals for the optimal fit parameters were obtained using profile likelihood 146 

estimation[18,19].  147 

 148 

 It is acknowledged that the parameter fits are specific to the data used for fitting therefore to 149 

generalise the fit to a wider population a bootstrap method was employed[20].1000 different 150 

cohorts of 388 patients were generated from the patient data using sampling with replacement.  The 151 

LKB model was refitted for the 5 endpoints for each of the 1000 sampled populations using 152 

maximum likelihood estimation.  In addition the effect of removing individual patients was 153 

investigated using a leave-one-out approach where maximum likelihood estimation was repeated 154 

with each individual case omitted iteratively.   155 

 156 

 Finally since NTCP is often used for ranking, the non parametric Mann Whitney U test was 157 

calculated using SPSS (SPSS Inc Chicago Illinois vs 15) to test for a statistically significant difference in 158 

the NTCP values of the group of patients who reported a specific endpoint compared to those 159 

patients who did not.   160 

 161 

Results  162 
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 163 

The maximum likelihood estimation of the LKB parameters obtained for the entire patient cohort for 164 

each endpoint and toxicity level considered are shown in table 2 along with associated confidence 165 

intervals. The parameter values for m fitted to G1&2 toxicity indicate large variability in the patient 166 

data. However the values of m are much smaller for the LKB fits to G2.   The TD50(1) values for G2 167 

are all higher than the corresponding fits for G1&2 but in most cases still lower than the original 168 

Emami value of 80Gy.  The values of n are reasonably consistent between the two fits for each 169 

endpoint but vary between endpoints with loose stools and rectal urgency both having a much less 170 

serial response than rectal bleeding and proctitis, where the results are a little higher than the 171 

Quantec value of 0.09.    The results for G1&2 stool frequency have a large value for m with a wide 172 

confidence interval which suggests a poor fit to the model.  It was not possible to derive a maximum 173 

likelihood estimation for Grade 2 stool frequency as the value of log likelihood was still tending to a 174 

maximum at very high values of TD50(1). This is demonstrated in figure 1 which compares how the 175 

log likelihood varied over a range of TD50(1) and n values for G2 rectal bleeding and stool frequency 176 

for the optimal value of  m.  It is easy to observe the region of best fit  for the rectal bleeding data 177 

however for stool frequency, TD50(1) tends to a maximum around 300Gy but a  range of nearly 178 

50Gy shows comparatively little variation.  It is also interesting to note the shape of the rectal 179 

bleeding distribution; a swathe of results which indicate results close to the best log-likelihood value 180 

highlight interrelationship in the model between the TD50(1) and n parameters.   181 

 182 

Table 3 details the results for 1000 bootstrap cohorts to test the idea that a different selection of 183 

cases might influence the parameters.  The results show that the mean values of TD50(1) and m are 184 

reasonably close to the exact fit to the patient cohort for all 5 endpoints.  For rectal bleeding and 185 

proctitis this is also true for the volume parameter n.  However, with the exception of G1&2 rectal 186 

urgency, the values for the other endpoints show much larger values of n and relatively large 187 

standard deviations.  It was possible to derive parameters for G 2 stool frequency using the 188 

bootstrap method, indicating that the model fit is very sensitive to the selection of cases.  The large 189 

standard deviations in the result represent a large variation in the optimal parameter fits.  This 190 

implies that the incidence of stool frequency (as it is described and reported in this dataset) is likely 191 

to have a weak dependence on dosimetry.  For the other 4 endpoints, further analysis was 192 

performed to investigate the effect on the LKB parameters when each individual case was left out of 193 

the MLE.  The parameter values obtained are summarised in figure 2.  The fitted parameter values 194 

for rectal bleeding and proctitis remained consistent, however for the other endpoints, the 195 
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parameter values varied as different cases were removed.  The exact NTCP parameter values, 196 

derived using the entire cohort of patients, were able to discriminate between the cohort of patients 197 

with and without toxicity with a statistical significance at the level p<0.01 for rectal bleeding, 198 

proctitis, loose stools and rectal urgency (for both G 1&2 and G 2 only). 199 

 200 

Discussion 201 

  202 

The maximum likelihood estimation of TD50(1)  for rectal bleeding for both G1&2 and G2 only are 203 

significantly less than the Quantec value of 76.9Gy.  The RT01 trial was conducted in an era when 204 

conformal radiotherapy was first being implemented and the only rectal constraint in the trial 205 

protocol was that the maximum dose to the rectum should not exceed the prescribed dose.   As such 206 

the volume of rectum at a range of dose levels may be larger compared to more contemporary 207 

studies which included constraints. Variations in the grading and reporting of late toxicities may also 208 

account for the difference between the results. Most of the papers in the Quantec analysis reported 209 

on either RTOG rectal bleeding or global score which are perhaps slightly more severe endpoints 210 

than the Grade 2 toxicity fitted here.  The advantage of using milder toxicity is that it is more 211 

relevant to the patient population.  It can be argued, should the model be for the few worst cases or 212 

more general experience? 213 

 214 

The fitted values for rectal bleeding of m and n are in better agreement with the Quantec values of 215 

0.13 and 0.09 respectively.  All 3 parameters have narrow confidence intervals and have been shown 216 

to be resilient to the effect of variations in fitting data, as shown using the bootstrap and leave one 217 

out methods.  This confirms a good fit to the data and the serial nature of the response of the 218 

rectum to radiation which results in rectal bleeding and proctitis.   219 

 220 

 221 

The value of TD50(1) steps up as the severity of complication increases for each endpoint.  222 

Parameter values for TD50(1) and m for loose stools and rectal urgency are not dissimilar to those 223 

obtained for rectal bleeding and proctitis for the exact fit of the patient data.  However the fitted 224 

value for n is consistently larger for the other endpoints and is more marked for rectal urgency.  The 225 
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bootstrap results are similarly consistent for n although the standard deviations are generally larger 226 

for these endpoints.  An increase in n equates to a fit that takes in more of the DVH than just the 227 

highest doses perhaps representing composite values from different patient groups with different 228 

patho-physiological responses to radiation. For example reduced absorption of the rectal mucosa or 229 

neurovascular damage impairing musculature [ Fiorino R&O Pelvis review ref]   Figure 1 is a reminder 230 

that variation in n is also related to variation in TD50(1) we have previously postulated that if large 231 

areas of rectum receive intermediate doses this may inhibit repair to surrounding high dose regions 232 

[RT01 constraints paper]  233 

 234 

The only endpoint other than rectal bleeding that can be compared to other published literature is 235 

stool frequency, however large uncertainties are demonstrated in the results reported here, this 236 

may be in part due to the subjective nature in reporting stool frequency and confounding causes 237 

other than radiotherapy.  For comparison the parameters obtained by Peeters et al were for >6 238 

times per day compared to Grade 2 which was >5 times per day.  The parameters obtained were 239 

TD50(1)=84 Gy m=0.24 and n=0.39.  These results are significantly different to the bootstrap results 240 

obtained for G2 stool frequency however in both cases the value of n indicates a less serial response. 241 

 242 

The results presented here emphasise the benefit of bootstrap and leave-one-out analysis where the 243 

effect on the wider population can be tested.  Since in general the number of positive events is small 244 

for each end point (especially at G2) it is interesting to observe through the leave-one-out analysis 245 

how much influence a single case may have.  The reasons for this are many and varied.  Issues 246 

related to the accuracy in reporting toxicity have the potential to skew data as do confounding 247 

causes of late effects which are plausible for most of the endpoints fitted here.  Although the 388 248 

patients included in the study was less than half of those enrolled in the trial there was no obvious 249 

bias in the available data, it is expected that if more patients from the cohort had been available the 250 

parameter fits would have had smaller confidence intervals. 251 

 252 

 253 

 The Lyman model has traditionally been coupled with a histogram reduction method to account for 254 

the heterogeneous dose distribution received by normal tissues.  It was developed in an 255 

environment where partial volumes of homogenous dose were more prevalent and applied in an era 256 
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where the ability to spare normal tissues was limited.  The advances in delivery techniques allow us 257 

to create sculpted dose distributions using inverse optimisation.  The dose-volume histogram 258 

reduction methods are generally insufficient to fully characterise these dose-distributions since they 259 

take all the available dosimetric information and condense it to a single value which may not be 260 

representative of the response of the rectum to the dose distribution.  A correction for dose per 261 

fraction (on a bin by bin basis) was not included the histogram reduction model since the recent 262 

publication by Tucker et al[21] demonstrated that for fractionation near to 2Gy there was no 263 

significant difference in the parameters derived for late rectal toxicity using the LKB model.   In 264 

addition to the model uncertainties, variation between the planned dose-distribution to the rectum 265 

and the treated dose-distribution introduce uncertainty in to the dosimetric data.  However in a 266 

reasonably large cohort including patients from a large number of centres there is unlikely to be a 267 

systematic error and random errors are likely to reduce the statistical power of results rather than 268 

skew them. 269 

 It is reassuring that, tested on a set of varied conformal dose distributions, the LKB model is still 270 

applicable for proctitis and rectal bleeding.  However for other endpoints, the poorer fits may be due 271 

to variability in reporting of toxicity or perhaps an insufficient characterisation of the dose 272 

distribution to the rectum. 273 

 274 

Conclusion 275 

 It has been shown that the dose-volume response of the rectum is different for different endpoints 276 

and that quality of life related issues such as stool frequency, rectal urgency and loose stools may 277 

not be fully predicted by the classic n value of the LKB model for rectum.  In addition, the 278 

degeneracy of the model can lead to parameter fits being influenced by single cases.  This should be 279 

fully explored when deriving parameter sets for clinical use.   280 

 281 

 282 

 283 

 284 

  285 

Figure Legends 286 
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 287 

Figure 1. Maximum Likelihood Estimation values plotted as a function of LKB parameters TD50(1) 288 

and n with fixed value of m fitted to a) rectal bleeding  and b) stool frequency.  Both plots use the 289 

best fit value of m which were 0.15 and 0.6 respectively. The effect of m is illustrated with the 290 

significant difference in the range of TD50(1) values displayed on the x axis. The relatively large value 291 

of m observed for stool frequency indicates  that clinical data fits poorly to the LKB model resulting 292 

in similar MLE estimates for a wide range of TD50(1) and n parameters.  The deceptively better MLE 293 

value for stool frequency results from the small number of Grade 2 cases for stool frequency 29 (vs 294 

54 for rectal bleeding.) 295 

 296 

Figure 2. Distribution of leave-one-out results obtained using  Maximum Likelihood Estimation to fit 297 

parameters TD50(1) (a), m(b) and n (c) to the LKB model for specific Grade 2 rectal toxicity 298 

endpoints.  299 
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