The Influence of Auger Processes on Recombination in Long-Wavelength InAs/GaAs Quantum Dots

I. P. Marko¹, A. D. Andreev¹, S. J. Sweeney¹, A. R. Adams¹, R. Krebs², S. Deubert², J. P. Reithmaier², A. Forchel²

¹Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
²Technische Physik, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany

Abstract. Analysis of the temperature dependencies of the threshold current and of the unamplified spontaneous emission in 0.98-µm and 1.3-µm InAs/GaAs quantum dot lasers as well as high hydrostatic pressure studies show that the recombination and loss mechanisms are wavelength dependent. The results indicate that the temperature dependence of the threshold current is due to two non-radiative recombination processes. Auger recombination is very important in the 1.3-µm devices at room temperature and causes their temperature sensitivity. In the 980 nm lasers Auger recombination is negligible, but thermal escape of carriers out of the dots followed by defect related recombination leads to an increase of the threshold current with temperature.

INTRODUCTION

It has been predicted that if the electrons can be confined to a single discrete atomic like level in quantum dot (QD) lasers, they will not suffer large thermal broadening and the threshold current will be temperature insensitive. However, despite the growth of very good self-assembled layers of quantum dots, the longer wavelength lasers with the low threshold currents required for optical communication are still temperature sensitive [1]. Therefore it is very important to understand the physical mechanisms responsible for QD laser operation and their temperature performance.

RESULTS AND DISCUSSION

InAs quantum dot lasers with emission wavelengths near 980 nm and 1.3 µm at room temperature with similar waveguide and cladding structures [2, 3] were studied using measurements of stimulated and of unamplified spontaneous emission as a function of temperature and while applying high hydrostatic pressure [3]. The 1.3 µm lasers were symmetrically or asymmetrically designed “dot in a well” (DWELL) structures [2].

The threshold current density, J_th, and its radiative component, J_rad, which is proportional to the integrated spontaneous emission at threshold, of different QD lasers are shown in Fig. 1. We observed that J_rad is much less temperature sensitive than the total threshold current, demonstrating that there must be at least one temperature sensitive non-radiative loss process. The characteristic temperature, T_0, of J_th was T_0=110-130 K and T_0=40 K in the 980 nm lasers and in the 1.3 µm lasers, respectively, indicating that the recombination mechanisms in these lasers are different and most probably wavelength dependent. An asymmetric design of the active region of 1.3 µm lasers significantly decreased J_th, but did not increase T_0. It was also found that in the 1.3 µm devices there is a non-radiative loss process that decreases strongly with increasing hydrostatic pressure, P. Hydrostatic pressure allows the band gap, E_g, to be varied at constant temperature while keeping all other basic properties of the structure effectively unchanged. This allows the relative importance of different recombination mechanisms to be determined. The mechanisms we considered are: i) electron leakage via the AlGaAs cladding layers, ii) intervalence band
absorption, iii) thermal excitation from the dots and subsequent non-radiative recombination, probably via defects and iv) Auger recombination.

Normalized pressure dependencies of I_{th} for different QD structures are given in Fig. 2. The increase in I_{th} with p in the 980 nm QDs can be fitted by assuming that the difference between J_{th} and J_{rad} in Fig 1 is due to process iii) together with a small (0.06%) of process i). Process iii) is pressure independent but gives rise to the strong temperature dependence of J_{th} in Fig 1. On the other hand process i) does not affect the temperature dependence at atmospheric pressure but explains the high-pressure behavior. Processes i) and iii) are expected to be much smaller in the 1.3 µm QD lasers since the quasi Fermi level separation at lasing is less. Also in both 1.3-µm laser types I_{th} decreases strongly with increasing pressure. The only process, which behaves in this way and can also explain the temperature behavior is Auger recombination [3].

To estimate the contribution of Auger recombination in different lasers, we fit experimental results in fig. 2 using a simple theoretical model, assuming that $I_{th}=I_{rad}+I_{Aug}$ and that the radiative component increases as E_g^2 [3]. An Auger component is required corresponding to 60% and 70% of the threshold current in the asymmetric and symmetric devices respectively.

![FIGURE 1. Temperature dependencies of the threshold current density, J_{th}, and its normalized radiative component, J_{rad}, for the 980 nm QD lasers with single (SQDs) and double layers of QDs (DQDs), and for the 1.3 µm QD lasers with dots grown symmetrically and asymmetrically in the well.](image)

In conclusion, the importance of Auger recombination in 1.3 µm QD devices may explain their strong temperature dependence, just as was observed in quantum well 1.3 µm devices. Further understanding of Auger process in quantum dots would be very helpful in design of more temperature insensitive quantum dot lasers.

ACKNOWLEDGMENTS

The authors gratefully acknowledge EPSRC for financial support.

REFERENCES