University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Realizing the Benefits of Wireless Network Coding in Multirate Settings

Kim, T-S, Broustis, I, Vural, S, Syrivelis, D, Singh, S, Krishnamurthy, SV and La Porta, TF (2012) Realizing the Benefits of Wireless Network Coding in Multirate Settings IEEE ACM Transactions on Networking.

[img] Text
Restricted to Repository staff only

Download (1MB)


Network coding has been proposed as a technique that can potentially increase the transport capacity of a wireless network via mixing data packets at intermediate routers. However, most previous studies either assume a fixed transmission rate or do not consider the impact of using diverse rates on the network coding gain. Since in many cases, network coding implicitly relies on overhearing, the choice of the transmission rate has a big impact on the achievable gains. The use of higher rates works in favor of increasing the native throughput. However, it may in many cases work against effective overhearing. In other words, there is a tension between the achievable network coding gain and the inherent rate gain possible on a link. In this paper, our goal is to drive the network toward achieving the best tradeoff between these two contradictory effects.We design a distributed framework that: 1) facilitates the choice of the best rate on each link while considering the need for overhearing; and 2) dictates the choice of which decoding recipient will acknowledge the reception of an encoded packet. We demonstrate that both of these features contribute significantly toward gains in throughput.We extensively simulate our framework in a variety of topological settings. We also fully implement it on real hardware and demonstrate its applicability and performance gains via proof-of-concept experiments on our wireless testbed. We show that our framework yields throughput gains of up to 390% as compared to what is achieved in a rate-unaware network coding framework.

Item Type: Article
Authors :
Kim, T-S
Broustis, I
Vural, S
Syrivelis, D
Singh, S
Krishnamurthy, SV
La Porta, TF
Date : 6 September 2012
DOI : 10.1109/TNET.2012.2214487
Uncontrolled Keywords : Experiments, rate adaptation, rate adaptation, simulation, testbed, wireless network coding
Depositing User : Symplectic Elements
Date Deposited : 28 Mar 2017 14:09
Last Modified : 31 Oct 2017 14:44

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800