University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Stability Results for Steady, Spatially--Periodic Planforms

Dionne, B, Silber, M and Skeldon, AC (1998) Stability Results for Steady, Spatially--Periodic Planforms Nonlinearity, 10 (2).

[img]
Preview
PDF
DSS_97.pdf - Accepted Version
Available under License : See the attached licence file.

Download (558Kb)
[img]
Preview
PDF (licence)
SRI_deposit_agreement.pdf

Download (32Kb)

Abstract

We consider the symmetry-breaking steady state bifurcation of a spatially-uniform equilibrium solution of E(2)-equivariant PDEs. We restrict the space of solutions to those that are doubly-periodic with respect to a square or hexagonal lattice, and consider the bifurcation problem restricted to a finite-dimensional center manifold. For the square lattice we assume that the kernel of the linear operator, at the bifurcation point, consists of 4 complex Fourier modes, with wave vectors K_1=(a,b), K_2=(-b,a), K_3=(b,a), and K_4=(-a,b), where a>b>0 are integers. For the hexagonal lattice, we assume that the kernel of the linear operator consists of 6 complex Fourier modes, also parameterized by an integer pair (a,b). We derive normal forms for the bifurcation problems, which we use to compute the linear, orbital stability of those solution branches guaranteed to exist by the equivariant branching lemma. These solutions consist of rolls, squares, hexagons, a countable set of rhombs, and a countable set of planforms that are superpositions of all of the Fourier modes in the kernel. Since rolls and squares (hexagons) are common to all of the bifurcation problems posed on square (hexagonal) lattices, this framework can be used to determine their stability relative to a countable set of perturbations by varying a and b. For the hexagonal lattice, we analyze the degenerate bifurcation problem obtained by setting the coefficient of the quadratic term to zero. The unfolding of the degenerate bifurcation problem reveals a new class of secondary bifurcations on the hexagons and rhombs solution branches.

Item Type: Article
Additional Information: Copyright 1998 Institute of Physics. This is the author's accepted manuscript.
Related URLs:
Divisions: Faculty of Engineering and Physical Sciences > Mathematics
Depositing User: Symplectic Elements
Date Deposited: 27 Jan 2012 11:06
Last Modified: 23 Sep 2013 18:57
URI: http://epubs.surrey.ac.uk/id/eprint/72371

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800