
 
 

  

Abstract—The aim of this study was to improve the diagnosis 
of Alzheimer’s disease (AD) patients applying a blind source 
separation (BSS) and component selection procedure to their 
magnetoencephalogram (MEG) recordings. MEGs from 18 AD 
patients and 18 control subjects were decomposed with the 
algorithm for multiple unknown signals extraction. MEG 
channels and components were characterized by their mean 
frequency, spectral entropy, approximate entropy, and Lempel-
Ziv complexity. Using Student’s t-test, the components which 
accounted for the most significant differences between groups 
were selected. Then, these relevant components were used to 
partially reconstruct the MEG channels. By means of a linear 
discriminant analysis, we found that the BSS-preprocessed 
MEGs classified the subjects with an accuracy of 80.6%, 
whereas 72.2% accuracy was obtained without the BSS and 
component selection procedure. 

I. INTRODUCTION 
INCE their appearance, blind source separation (BSS) 
techniques [1] have been applied to the analysis of 

electroencephalogram (EEG) and magnetoencephalogram 
(MEG) signals [2]. Making several assumptions about the 
data structure, BSS methods can estimate the underlying 
components of a multichannel recording blindly (i.e., the 
real mixing process and inner components are unknown) [1], 
[2]. These algorithms can isolate dissimilar types of 
physiological activity into different components. Hence, 
BSS has been extensively applied to remove artifacts from 
EEG and MEG data [2]–[4]. However, other approaches are 
possible when applying BSS to EEGs or MEGs. Given the 
inherent complexity of brain signals, some components of 
the EEG or MEG might be more sensitive to particular brain 
states than others [5], [6]. Thus, the most relevant 
components may be selected to partially reconstruct the 
signals so that a better differentiation between specific brain 
states might be achieved [5]. Thus, BSS might be a valuable 
preprocessing technique to help in the diagnosis of important 
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mental impairments like Alzheimer’s disease (AD). 
AD is the most frequent degenerative neurological disease 

among elderly people in western countries [7], [8]. It causes 
a progressive and irreparable impairment of mental functions 
[7]. Moreover, AD can only be definitely diagnosed by 
necropsy [7]. Thus, the usefulness of EEG and MEG signals 
in AD diagnosis has been extensively researched in the last 
decades [9]. EEG and MEG record the neural currents with 
high temporal resolution [10]. Moreover, both recordings 
can be analyzed using several methods to gain a better 
understanding of AD. For instance, straightforward spectral 
features such as mean frequency (fmean) [11], [12] or spectral 
entropy (SpEn) [12] have quantified the abnormalities in the 
spectra of AD patients’ EEG and MEG recordings [9]. 
Moreover, nonlinear statistics, like Lempel-Ziv complexity 
(LZC) [13] or approximate entropy (ApEn) [14], can provide 
additional information about the brain dynamics in AD [9]. 

In this preliminary study, we applied a BSS algorithm to 
MEG recordings from control subjects and AD patients. We 
wanted to test whether a BSS and a component selection 
procedure might improve the subject classification when 
straightforward features like fmean, SpEn, LZC or ApEn were 
used to characterize MEG recordings. 

II. MATERIAL AND METHODS 

A. Subjects and MEG recording 
The MEG recordings were acquired from 36 subjects. 

Eighteen patients (7 men and 11 women) who fulfilled the 
criteria of probable AD were recruited from the “Asociación 
de Enfermos de Alzheimer” (AFAL). Their average age was 
72.78 ± 8.61 years – mean ± standard deviation (SD) –. All 
AD patients were diagnosed following the guidelines 
provided by the National Institute of Neurological and 
Communicative Disorders and Stroke – Alzheimer’s Disease 
and Related Disorders Association (NINCDS-ADRDA) 
[15]. The mini-mental state examination (MMSE) [16] score 
was 17.61 ± 3.97 (mean ± SD). No patient was receiving 
medication that could affect the MEG. 

MEG was also recorded from 18 elderly control subjects 
(7 men and 11 women; 72.06 ± 5.51 years, mean ± SD) 
without past or present mental diseases. The control 
subjects’ MMSE score was 29.11 ± 0.90 (mean ± SD). 

All AD patients’ caregivers and control subjects gave 
their informed consent to take part in the current research, 
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which was approved by the local ethics committee. 
The MEG recording was performed in a magnetically 

shielded room with a 148-channel whole-head 
magnetometer (MAGNES 2500 WH, 4D Neuroimaging). 
Five minutes of MEG were acquired from each of the 
subjects while they were lying on a patient bed with eyes 
closed in a relaxed state. The sampling frequency was 
678.19 Hz. Nevertheless, the recordings were down-sampled 
to 169.549 Hz to reduce their length. Afterward, the data 
were digitally filtered between 1.5 Hz and 40 Hz. Finally, 
MEG epochs of 20 seconds (3390 data points) that were 
simultaneously artifact-free at all channels were selected for 
further analysis. 

B. Blind source separation (BSS) algorithm 
BSS methods estimate de set of n unknown components, 

s(t) = [s1(t), …, sn(t)]T, which were linearly mixed by the full 
rank n × n matrix A to form n temporally and spatially 
correlated recordings, x(t) = [x1(t), …, xn(t)]T [1], [2]. Thus, 
x(t) represents the MEG signals: 

( ) ( ).tt Asx =  (1) 

Making several assumptions [1] which have been 
previously validated for EEG and MEG data [2], some BSS 
algorithms use the temporal dependences of x(t) to compute 
a demixing matrix, W. Using W, the estimated components, 
y(t) = [y1(t), …, yn(t)]T, are recovered by [2]–[5]: 

( ) ( ).tt Wxy =          (2) 

Some BSS components may be more affected by AD than 
others [5]. Thus, a subset of the most sensitive components – 
yp(t) – may be back projected to the channels using the 
inverse of W, W-1, to compute a partial reconstruction of the 
MEGs – xp(t):  

( ) ( ).1 tt pp yWx −=        (3) 

xp(t) may have enhanced specific features of AD. Thus, a 
better classification of AD patients versus control subjects 
may be achieved [5]. However, a fixed order is needed to 
compare components from different epochs and subjects [5], 
[6]. Hence, we employed the algorithm for multiple 
unknown signals extraction (AMUSE) [1], [17], which 
orders the components by linear predictability [5]. AMUSE 
decorrelates the input signals at two times delays [2], [17] 
(usually, at lags τ = 0 and τ = 1 samples [1], [4], [5]). 
Similarly to these studies, we decorrelated the MEG epochs 
at time delays τ = 0 and τ = 1 samples. 

C. Feature extraction 
MEG channels and AMUSE components were 

characterized by two spectral features (fmean and SpEn) and 
two nonlinear statistics (ApEn and LZC). 

1) Mean frequency (fmean) 
fmean summarizes the spectral content of a signal. It has 

already been used to study brain signals in AD [9], [11], 
[12]. Firstly, the power spectral density (PSD) of the signal 

is computed as the Fourier transform of its autocorrelation 
function [12]. Then, the PSD is normalized (PSDn) and the 
fmean is estimated as the average frequency of the PSDn with 
a logarithmic transformation to get a distribution closer to 
the Gaussian one: 
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2) Spectral entropy (SpEn) 
SpEn has been applied to AD patients’ EEG and MEG 

data to measure the flatness of the spectrum [12]. Broad and 
flat spectra produce high SpEn values, whereas narrower 
PSDs have lower SpEn values [18]. It is estimated applying 
the Shannon’s entropy to the PSDn [18]: 
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where N is the number of frequency bins and log(N) 
normalizes the SpEn to a range from 0 to 1. 

3) Lempel-Ziv complexity (LZC) 
Recently, LZC has been widely used to estimate the 

complexity in the Kolmogorov’s sense of various biomedical 
signals [19], [20]. LZC is a non-parametric statistic that 
measures the number of distinct substrings and their rate of 
recurrence along the signal. It assigns larger values to more 
complex data [19]. Moreover, LZC can provide useful 
information about the MEGs of AD patients [13]. The 
algorithm to compute the LZC can be found in [13] or [20]. 

4) Approximate entropy (ApEn) 
In 1991, Pincus [21] introduced the ApEn as a family of 

statistics to quantify the regularity of time series by 
evaluating the appearance of repetitive patterns [22]. ApEn 
has been used on biological data, such as AD patients’ EEG 
recordings, providing potentially useful information [14], 
[22]. ApEn has two parameters: a run length m and a 
tolerance window r [21]. In this study, ApEn was estimated 
with the commonly used parameter values of m = 1 and r = 
0.25 times the SD of the original time series [22]. The 
implementation of the ApEn is detailed in [21] or [22]. 

D. Statistical analysis 
Student’s t-test was used to decide whether there were 

significant differences between both subject groups in the 
fmean, SpEn, LZC, and ApEn values of the AMUSE 
components. Normality and homoscedasticity were verified 
with Shapiro-Wilk and Levene’s test, respectively. 

A linear discriminant analysis (LDA) with a leave-one-out 
cross-validation procedure was used to compute the increase 
in the classification accuracy of the subjects when a subset 
of AMUSE components was retained to reconstruct the 
MEGs. Specificity was defined as the percentage of control 
subjects correctly detected, and sensitivity represented the 
rate of AD patients properly identified. Accuracy denotes the 
total fraction of subjects well recognized. In addition, 
(receiver-operating characteristic) ROC curves were plotted 



 
 

to visually assess the separation between groups in each 
case, and the corresponding area under the ROC curve 
(AROC) values were computed. 

III. RESULTS 
We applied the AMUSE algorithm to 20-seconds MEG 

epochs from 18 AD patients and 18 controls. AMUSE 
ordered the components by decreasing linear predictability 
[5]. Thus, it was straightforward to compare AMUSE 
components between both subject groups. Every component 
was characterized by its fmean, SpEn, LZC, and ApEn values. 

A Student’s t-test was carried out to statistically assess the 
significance of the differences between groups for the four 
variables. The t-test was applied separately to the values of 
each feature at every AMUSE component. The significance 
level was set at 0.01. Table I shows the largest continuous 
range of AMUSE components that provided significant 
differences between both groups for each feature. As it can 
be seen, differences were significant for all variables at the 
AMUSE components ranked from 5 to 32. Hence, we chose 
this subset of 28 AMUSE components to partially 
reconstruct the MEGs. Then, these signals xp(t) were used to 
classify the subjects. This case was denoted by BSS-{5,32}. 
For comparison, we also classified the AD patients and 
control subjects using the MEG recordings without any kind 
of BSS and component selection procedure. 

For each of the two cases – without BSS and BSS-{5,32} 
–, an average value of fmean, SpEn, LZC, and ApEn was 
computed per MEG channel and subject. Thus, for each 
feature, we obtained 148 values per subject. In order to 
reduce the problem dimensionality, we averaged the 148 
values of each variable for every subject and case. Hence, 
the classification analysis was performed using one mean 
value of fmean, SpEn, LZC, and ApEn per subject and case. 

A LDA with a leave-one-out cross-validation procedure 
was applied to the four variables to model and classify the 
subjects for each case. Sensitivity, specificity, and accuracy 
values are shown in Table II for both cases (no BSS and 
BSS-{5,32}). The case BSS-{5,32} improved the accuracy 
from 72.2% to 80.6%. Moreover, the model selected by 
LDA when no BSS was used only contained fmean, whereas 
in the case BSS-{5,32} the data were modeled by both LZC 
and ApEn. In addition, Fig. 1 illustrates the ROC curves for 
each variable without BSS and with BSS-{5,32}. The 
AROC values are also shown in Fig. 1 for each case. 

IV. DISCUSSION AND CONCLUSIONS 
In this study, AMUSE [17] was used to decompose MEG 

epochs of 18 AD patients and 18 control subjects. Every 
component was described by its fmean [11], [12], SpEn [12], 
[18], LZC [13], [19], and ApEn [14], [21] values. Student’s t-
test was applied to decide which components offered the 
most significant differences between subject groups. The 
results showed that 28 components, from 5 to 32, provided 
significant differences (p < 0.01) for all variables. Thus, the 
classification achieved with the partially reconstructed 

MEGs – BSS-{5,32} – was compared to that obtained 
without BSS-preprocessing. The accuracy improved an 8.4% 
(from 72.2% to 80.6%). Moreover, it should be noted that 
the component selection and the classification were carried 
out with different techniques. Whereas the first one was 
based on the Student’s t-test, the classification was assessed 
with a LDA with a leave-one-out cross-validation procedure. 
Nevertheless, it is important to note that other basic BSS 
algorithms [1], such as principal component analysis, and 
other feature selection techniques might be also applied to 
improve the classification of subject groups. 

In contrast to other applications of BSS to EEG or MEG 
data, we did not aim to isolate specific physiological activity 
[2]–[4]. Instead, we wanted to enhance the differences 
between AD patients and control subjects’ MEG recordings 
by retaining only the most relevant components [5]. 

The ROC curves depicted in Fig. 1 show clear 
improvements in the differentiation between AD patients 
and control subjects for three variables (SpEn, LZC, and 
ApEn). Nevertheless, the AROC value did not increase 
appreciably for fmean. This could be due to the fact that the 
component selection was based on all variables. Thus, it is 
likely that this process did not optimize the subject 
differentiation based on every single variable. 

To sum up, our results suggest that a BSS and component 
selection procedure may be useful to improve the 
classification between AD patients and control subjects’ 
MEGs. This agrees with studies from other authors [5]. 
However, our results must be confirmed analyzing a larger 
database with AMUSE and other BSS algorithms. 
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Fig. 1.  ROC curves illustrating the ability of the features included in this study to distinguish AD patients from control subjects. Comparison with (grey 
full curve) and without (black dashed curve) the BSS and component selection procedure is plotted. For each case, the AROC value is also shown. (a) 
fmean. (b) SpEn. (c) LZC. (d) ApEn. 


