1 Supplement

Abbreviations: AEE, activity energy expenditure; ECG, electrocardiography; FFA, free fatty
acids; GCMS, gas chromatography mass spectrometry; HDL, high density lipoprotein; IHCL,
intrahepatocellular lipid; IMCL, intramyocellular lipid; MCR metabolic clearance rate; Ox,
oxidation rate; Ra, production rate; REE, resting energy expenditure; TCA, tricarboxylic
acid; TEE, total energy expenditure; TG, triglyceride; TTR, tracer to tracee ratio; VCO₂
carbon dioxide production; VLDL, very low density lipoprotein.

8 Methods

Exclusion criteria. Subjects were excluded if they were not currently weight-stable, diagnosed
with diabetes or suffering from either cardiovascular or endocrine disease, hepatic and renal
disorders, substantial neurological or psychological illness, history of depression and previous
surgical procedures for weight loss. Exclusion criteria also included the prescribed use of any
medications known to alter body weight or appetite, β-blockers, fibrates and metformin,
restrained eating (established with the Dutch Eating Questionnaire) and under-reporting of
food intake based on a 4 day food diary.

16

Run-in period (Figure 1A). Participants were required to remain weight stable (less than 1 kg 17 variation) during the run-in period in order to proceed into the intervention period. At the 18 beginning of the run-in period REE was measured and participants were fitted with an 19 20 Actiheart monitor to measure activity AEE. AEE was measured over 5 days using an Actiheart monitor (CamNtech Ltd, Cambridge, UK) worn on two standard ECG pads (Pulse 21 Medical Limited, Woking, UK) on the upper chest. The monitors were calibrated before use 22 23 by each subject using an 8 minute linear ramped step test. TEE was calculated assuming diet induced thermogenesis was 10% of REE and compared to recorded dietary intake to ensure 24 25 participants were not under-reporting. Four subjects in the treatment group were studied first

1

26 to allow the monitoring of weight loss which set the dietary intervention for the control group. After 6 weeks, 4 subjects randomised to the control group began the dietary 27 intervention. This was then repeated in a block of 3 subjects in each group. Participants kept a 28 29 continual diet diary throughout the study (including the run-in period) which was analysed using the nutritional analysis programme Windiets Professional 2005 (The Robert Gordon 30 31 University). They were seen by a dietician every 2 weeks and contacted by telephone between visits. In the control group, the energy prescription was based on the estimate of the 32 energy deficit required to achieve the same weight loss as the rimonabant group. Weight and 33 34 diet targets were reviewed each week. In the rimonabant group dietary intake was closely monitored to ensure that this was maintained at baseline levels throughout the study. 35 Medication compliance in this group was assessed by tablet counting at each visit. 36 37 Participants in this group were asked to complete the Beck Depression Inventory II [1] every 2 weeks. 38

39

40 *Study protocols 1 and 2*

Body weight was measured weekly. Prior to study protocols 1 and 2 subjects were asked not 41 to undertake any vigorous exercise or drink any alcohol for 48h. Subjects were provided with 42 a standardised low fat, low fibre meal the evening before the study day and then fasted 43 overnight. In study protocol 1, REE was measured using a Gas Exchange Monitor (GEM 44 Nutrition Limited, Cheshire, UK), (Figure 1B) followed by a priming dose of 1^{-13} C sodium 45 bicarbonate (0.085mg/kg) and a 2h infusion of [1,2-¹³C]acetate (0.08 µmol.kg⁻¹.min⁻¹) via an 46 in-dwelling venous cannula. Measurements of ¹³CO₂ production rate were made to correct 47 palmitate oxidation for the loss of label in the TCA cycle [2]. Immediately after the acetate 48 infusion study a 2 hour intravenous infusion of insulin (40mU/m²/min) was given with a 49 variable infusion of 20% dextrose to maintain blood glucose at 5 mmol/l. Study protocol 2 50

51 took place three days after the acetate infusion. An intravenous bolus of $[1,1,2,3,3^{-2}H_5]$

52 glycerol (75μ mol/kg) was administered to measure VLDL₁ and VLDL₂ TG metabolism

53 (Figure 1C). Blood samples were taken at intervals for 7 hours. A priming dose of 13 C sodium

54 bicarbonate (0.64 mg/kg) and constant infusion of $[U^{-13}C]$ palmitate bound to human albumin

55 (5%) (0.01 μ mol.kg⁻¹.min⁻¹), was administered for 2 hours to measure palmitate Ra and Ox.

IHCL and IMCL. On a separate day, IHCL and IMCL were measured by magnetic resonance 56 spectroscopy at the MRC Clinical Sciences Centre Hammersmith Hospital. Subjects fasted 57 for 6 hours before the scans. Two subjects in the rimonabant group and one subject in the 58 control group were unable to have scans due to metal implants. IHCL and tibialis and soleus 59 IMCL levels were acquired on an Intera 1.5T Achieva multinuclear system (Philips Medical 60 Systems, Best, Holland) as previously reported [3]. IMCL spectra were obtained from the 61 tibialis and soleus muscles. IMCL was expressed as a ratio to the muscle creatine signal. 62 63 IHCL was expressed as a ratio to liver water content.

64 Laboratory methods. VLDL₁ (Sf 60-400) and VLDL₂ (Sf 20-60) were separated by sequential ultracentrifugation [4]. VLDL1 and VLDL2 TG were extracted with chloroform-65 methanol (2:1), isolated by thin layer chromatography, hydrolysed in a solution of 2%HCL in 66 67 methanol and the liberated glycerol purified by ion exchange chromatography and derivatised to form the tri-acetate derivative [5]. Isotopic enrichment was measured by positive chemical 68 69 ionisation gas chromatography mass spectrometry (GCMS, Agilent 5973 network MSD) monitoring the ions 159 and 164. FFA were extracted from plasma, and derivatised to their 70 methyl esters. The isotopic enrichment of the palmitic acid methyl ester was measured by 71 GCMS monitoring the ions 270 and 286. CO₂ enrichment was measured by isotope ratio MS 72 (Delta XP, coupled with a Gas Bench II (ThermoElectron, Bremen, Germany). Plasma 73 palmitate concentration was measured by GCMS after addition of an internal standard, 74 75 heptadecanoic acid. Enzymatic assays were used to measure plasma FFA, total cholesterol,

76	triglyceride, VLDL1 and VLDL2 TG (ABX, Chicksands, Shefford, Bedfordshire, UK),
77	HDL-cholesterol (HDL-C L-Type, Alpha Labs, Eastleigh, Hampshire, UK) and glycerol
78	(Randox Laboratories, Antrim, N Ireland) using a Cobas MIRA (Roche, Welwyn Garden
79	City, UK). Insulin, adiponectin, and leptin, were measured by immunoassay using
80	commercially available kits (Millipore corporation, Billerica, MA, USA)
81	
82	
83	Data analysis
84	Tracer enrichment of palmitate, glycerol and CO ₂ was expressed as TTR corrected for
85	baseline enrichment. Palmitate Ra (=Rd) was calculated as infusion rate of tracer/TTR.
86	Palmitate MCR was calculated by dividing palmitate Rd by palmitate concentration. The
87	production rate of 13 CO ₂ (13 CO ₂ Ra) from the infused palmitate tracer was calculated as CO ₂
88	TTRxVCO ₂ / k .Ac recovery where VCO ₂ is carbon dioxide production (l/min), k is the volume
89	of 1 mol of CO_2 (22.4 1), and Ac recovery is the fractional ¹³ C label recovery in breath CO_2 ,
90	observed after infusion of labeled acetate [2] and calculated as CO ₂ TTRxVCO ₂ /k.2F where F
91	is the infusion rate of [1,2- ¹³ C]acetate. Plasma palmitate oxidation was calculated as palmitate
92	Rd x (13 CO ₂ Ra/Fx16) where F is the palmitate infusion rate and 16 is the number of carbon
93	atoms in palmitate. $VLDL_1$ and $VLDL_2$ TG secretion rate and fractional catabolic rate were
94	calculated using a model of $VLDL_1$ and $VLDL_2$ TG kinetics [6], which included a
95	compartment for tracer recycling [7], using the SAAM II program (SAAM Institute, Seattle,
96	WA). The dextrose infusion rate corrected for insulin concentration between 150-180 minutes
97	of the clamp gave a measure of insulin sensitivity [8].
98	

References

101	1.	Beck AT, Steer RA, Brown GK. Manual for the Beck Depression Inventory. 2nd ed.
102		San Antonio, TX: Psychological Corp 1996.
103		
104	2.	Sidossis LS, Coggan AR, Gastaldelli A, et al. A new correction factor for use in
105		tracer estimations of plasma fatty acid oxidation. Am J Physiol Endocrinol Metab
106		1995; 269: E649–E656.
107		
108	3.	Thomas EL, Hamilton G, Patel N, et al. Hepatic triglyceride content and its relation
109		to body adiposity: a magnetic resonance imaging and proton magnetic resonance
110		spectroscopy study. Gut 2005; 54: 122-127.
111		
112	4.	Watts GF, Mandalia S, Brunt JNH, Slavin BM, Coltart DJ, Lewis B. Independent
113		associations between plasma lipoprotein subfraction levels and the course of coronary
114		artery disease in the St. Thomas' Atherosclerosis Regression Study (STARS).
115		Metabolism 1993; 42:1461-7.
116		
117	5.	Ackermans MT, Ruiter AF, Endert E. Determination of glycerol concentrations and
118		glycerol isotopic enrichments in human plasma by gas chromatography/mass
119		spectrometry. Anal Biochem 1998; 258:80-6.
120		
121	6.	Adiels M, Packard C, Caslake MJ, et al. A new combined multicompartmental model
122		for apolipoprotein B-100 and triglyceride metabolism in VLDL subfractions. J Lipid
123		Res 2005; 46:58-67.
124		

125	7. Patterson BW, Mittendorfer B, Elias N, Satyanarayana R, et al. Use of isotopically
126	labeled tracers to measure very low density lipoprotein-triglyceride turnover. J Lipid
127	Res 2002; 43:223-33.
128	
129	8. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for

130 quantifying insulin secretion and resistance. Am J Physiol 1979; 237:E214-23.

	Rimonabant Group		Control Group		Δ rimonabant
					vs Δ control
	Week 0	Week 12	Week 0	Week 12	
Age (years)	58.1±1.9	-	57.4±1.9	-	
Body weight (kg)	89.0±2.2	86.4±2.1*	84.2±3.0	$81.1 \pm 3.1^{\dagger}$	NS
BMI	32.9±0.7	31.9±0.7*	33.0±0.8	$31.8 \pm 0.7^{\dagger}$	NS
Waist (cm)	108±3	$105\pm2^{\dagger}$	107±5	103±4	NS
Fat mass (kg)	40.2±1.4	39.2±1.4 [†]	36.9±2.2	34.2±2.8 [†]	NS
IHCL (%)	12.3±6.4	14.9±8.0	19.7±11.2	8.7±4.4	NS
SIMCL	10.4 ± 2.1	11.9± 2.6	11.1±2.2	9.6± 2.1	NS
TIMCL	6.2±1.0	6.8±1.2	8.1±0.9	11.0±2.0	NS
Beck Depression	1.86±0.46	3.43±1.02	_	_	_
Score					

132Table 1. Body composition and energy expenditure (mean±SEM)

133 IHCL, intrahepatocellular lipid; SIMCL, soleus intramyocellular lipid; TIMCL, tibialis

intramyocellular lipid. Significantly different from 0 weeks, $^{\dagger}p < 0.05$. * p< 0.005, $^{\pm}p = 0.055$.

135

137 Table 2. Food intake during the 4 week run-in period and the intervention period

138 (mean±SEM)

	Rimonabant Group		Control Group		Δ rimonabant
					vs Δ control
	Run-In	Intervention	Run-In	Intervention	
Fat (g)	87±5	84±3	82±3	$61\pm4^{\dagger}$	P=0.001
SFA (g)	31±2	29±1	28±2	$21\pm1^{\dagger}$	P=0.046
PUFA (g)	14 ± 1	13±1	15±1	12 ± 1	NS
MUFA (g)	28±3	26±2	24±1	$19\pm1^{\dagger}$	NS
Carbohydrate (g)	215±21	213±16	215±10	185±10	P=0.03
Protein (g)	78±2	81±4	78±4	73 ± 2	NS

139 SFA, saturated fatty acids; PUFA, polyunsaturated fatty acids; MUFA, monounsaturated fatty 140 acids; significantly different from run-in period, † p<0.02, * p=0.001.

141

142

143	
144	Figure legends
145	
146	Figure 1. A) Study design, B) Study protocol 1, and C) Study protocol 2
147	
148	Figure 2. Energy intake during the 4 week run-in and 12 week intervention period in the
149	rimonabant (solid diamonds) and control group (open squares).
150	