University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera.

Mendum, TA, Newcombe, J, Mannan, AA, Kierzek, AA and McFadden, J (2011) Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biol, 12 (12). R127 - ?. ISSN 1474-760X

[img]
Preview
PDF (licence)
SRI_deposit_agreement.pdf

Download (33kB)
[img]
Preview
PDF
Mendum_2012.pdf
Available under License : See the attached licence file.

Download (483kB)

Abstract

BACKGROUND: Neisseria meningitidis is an important human commensal and pathogen that causes several thousand deaths each year, mostly in young children. How the pathogen replicates and causes disease in the host is largely unknown, particularly the role of metabolism in colonization and disease. Completed genome sequences are available for several strains but our understanding of how these data relate to phenotype remains limited. RESULTS: To investigate the metabolism of N. meningitidis we generated and selected a representative Tn5 library on rich medium, a minimal defined medium and in human serum to identify genes essential for growth under these conditions. To relate these data to a systems-wide understanding of the pathogen's biology we constructed a genome-scale metabolic network: Nmb_iTM560. This model was able to distinguish essential and non-essential genes as predicted by the global mutagenesis. These essentiality data, the library and the Nmb_iTM560 model are powerful and widely applicable resources for the study of meningococcal metabolism and physiology. We demonstrate the utility of these resources by predicting and demonstrating metabolic requirements on minimal medium such as a requirement for PEP carboxylase, and by describing the nutritional and biochemical status of N. meningitidis when grown in serum, including a requirement for both the synthesis and transport of amino acids. CONCLUSIONS: This study describes the application of a genome scale transposon library combined with an experimentally validated genome-scale metabolic network of N. meningitidis to identify essential genes and provide novel insight to the pathogen's metabolism both in vitro and during infection.

Item Type: Article
Additional Information: © 2011 Mendum et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Divisions: Faculty of Health and Medical Sciences > Microbial and Cellular Sciences
Depositing User: Symplectic Elements
Date Deposited: 26 Jul 2012 11:26
Last Modified: 09 Jun 2014 13:17
URI: http://epubs.surrey.ac.uk/id/eprint/629934

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800