University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Importance of capillary forces in the assembly of carbon nanotubes in a polymer colloid lattice.

Jurewicz, I, Keddie, JL and Dalton, AB (2012) Importance of capillary forces in the assembly of carbon nanotubes in a polymer colloid lattice. Langmuir, 28 (21). 8266 - 8274. ISSN 0743-7463

[img]
Preview
PDF
Langmuir - manuscript v17.pdf - Accepted Version
Available under License : See the attached licence file.

Download (532Kb)
[img]
Preview
PDF (licence)
SRI_deposit_agreement.pdf

Download (32Kb)

Abstract

We highlight the significance of capillary pressure in the directed assembly of nanorods in ordered arrays of colloidal particles. Specifically, we discuss mechanisms for the assembly of carbon nanotubes at the interstitial sites between latex polymer particles during composite film formation. Our study points to general design rules to be considered to optimize the ordering of nanostructures within such polymer matrices. In particular, gaining an understanding of the role of capillary forces is critical. Using a combination of electron microscopy and atomic force microscopy, we show that the capillary forces acting on the latex particles during the drying process are sufficient to bend carbon nanotubes. The extent of bending depends on the flexural rigidity of the carbon nanotubes and whether or not they are present as bundled ensembles. We also show that in order to achieve long-range ordering of the nanotubes templated by the polymer matrix, it is necessary for the polymer to be sufficiently mobile to ensure that the nanotubes are frozen into the ordered network when the film is formed and the capillary forces are no longer dominant. In our system, the polymer is plasticized by the addition of surfactant, so that it is sufficiently mobile at room temperature. Interestingly, the carbon nanotubes effectively act as localized pressure sensors, and as such, the study agrees well with previous theoretical predictions calculating the magnitude of capillary forces during latex film formation.

Item Type: Article
Additional Information: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/la301296u
Divisions: Faculty of Engineering and Physical Sciences > Physics
Depositing User: Symplectic Elements
Date Deposited: 30 Jul 2012 10:52
Last Modified: 23 Sep 2013 19:30
URI: http://epubs.surrey.ac.uk/id/eprint/605790

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800