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Abstract Standard practice in building models in software engineering normally involves
three steps: collecting domain knowledge (previous results, expert knowledge); building a
skeleton of the model based on step 1 including as yet unknown parameters; estimating the
model parameters using historical data. Our experience shows that it is extremely difficult
to obtain reliable data of the required granularity, or of the required volume with which we
could later generalize our conclusions. Therefore, in searching for a method for building a
model we cannot consider methods requiring large volumes of data. This paper discusses an
experiment to develop a causal model (Bayesian net) for predicting the number of residual
defects that are likely to be found during independent testing or operational usage. The
approach supports (1) and (2), does not require (3), yet still makes accurate defect
predictions (an R2 of 0.93 between predicted and actual defects). Since our method does not
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require detailed domain knowledge it can be applied very early in the process life cycle.
The model incorporates a set of quantitative and qualitative factors describing a project and
its development process, which are inputs to the model. The model variables, as well as the
relationships between them, were identified as part of a major collaborative project. A
dataset, elicited from 31 completed software projects in the consumer electronics industry,
was gathered using a questionnaire distributed to managers of recent projects. We used this
dataset to validate the model by analyzing several popular evaluation measures (R2,
measures based on the relative error and Pred). The validation results also confirm the need
for using the qualitative factors in the model. The dataset may be of interest to other
researchers evaluating models with similar aims. Based on some typical scenarios we
demonstrate how the model can be used for better decision support in operational
environments. We also performed sensitivity analysis in which we identified the most
influential variables on the number of residual defects. This showed that the project size,
scale of distributed communication and the project complexity cause the most of variation
in number of defects in our model. We make both the dataset and causal model available for
research use.

Keywords Software defect prediction . Qualitative factors . Quantitative data .

Bayesian network . Decision support . Sensitivity analysis

1 Introduction

The ultimate goal of research in software metrics (Fenton and Pfleeger 1998; Jensen 1996;
Jones 1999) is to help project managers make decisions under uncertainty. In particular,
central aids to decision making are the abilities to estimate the cost of developing software,
and to predict the quality likely to be achieved from a given development effort. The
MODIST (‘Models of Uncertainty and Risk for Distributed Software Development’)
Project (MODIST 2003), which was part-funded by the European Commission, was
concerned with these problems in large distributed software projects. The project partners
were Agena, Israel Aircraft Industries, QinetiQ and Philips Electronics. As part of this
project a group of experienced project managers identified a set of factors influencing cost
and quality outcomes, which were formed into a number of causal models. The primary
objective of one such model, the focus of this paper, is to predict the number of residual
defects in major software systems. We believe this model is relevant for many large
commercial software systems, where it is accepted that residual (“non-blocking”) defects
have to be lived with. As it stands, the model will be less relevant for safety critical
software or core algorithmic software where very few post-release defects can be tolerated,
and so where few defects will be found later in testing phases or in operational usage.

The use of a generic version of the MODIST defect prediction model has been described
in (Fenton et al. 2007b) including how the model can be used in multiple life-cycle
iterations. Some brief details of both the validation of the core model and the qualitative
factors used were presented in (Fenton at al. 2007c). The objective of this paper is to extend
the work of (Fenton at al. 2007c) and to describe in more detail both the rationale for the
qualitative factors in the causal model and its validation. We also make the data and model
available to other researchers.

In Section 2 we describe the rationale for our interest in developing causal models
(Bayesian nets) as opposed to classical (notably regression-based) methods. In Section 3 we
provide the details about the structure of our model.
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The data needed for the model was not available in any publicly accessible form, even
though similar factors are used in popular models supporting software managers, most
notably COCOMO-II (Boehm et al. 1995) for software cost estimation. For example, the
ISBSG dataset (ISBSG 2007), containing data on about 4,106 projects, helps us to quantify
some of the relationships in the model, but it does not help in validation because of the
absence of the qualitative, causal factors. To get the necessary data, senior project managers
in one organization provided the information for 31 projects. We had to provide refined and
more detailed descriptions and measurement schemes for most of the factors in the model.
This process is described in Section 4. The resulting quantitative data is presented in
Section 5, with the qualitative data in Section 6. Section 7 describes some issues arising
from data collection, while in Section 8 we summarise the model validation results. The
results show that the causal model, independently built using a combination of expert
judgement and historical data, was able to make reasonably accurate predictions for the new
projects. In Section 9 we present examples of the model’s usage to help managers in
decision-making. Section 10 contains the details of the sensitivity analysis that we
performed on the model.

2 The Need for Causal Models

There have been many non-causal models for software defect prediction and some of these
have achieved very good accuracy with few input variables and no qualitative factors. For
example, in a model for predicting the probability of detecting a defect (pd) and the
probability of false alarm in detecting a defect (pf) (Menzies et al. 2007) the authors achieve
a very respectable predictive accuracy of: pd=71% and pf=25%. However, their model
uses static code attributes as input variables. This means that their model cannot be used
before completing and delivering some source code. Ostrand et al. (2005) also achieve
respectable accuracy in their models (where the focus is on identifying especially fault-
prone components)—20% of the files with the highest predicted number of faults contained
an average of 83% of the faults that were actually detected. However, this type of prediction
depends on the availability of relevant data from previous releases of the same system.

The problemwe were addressing goes far beyond the constraints of these assumptions. In our
target domains, we certainly could not assume that the system under consideration wasmerely an
incremental release of some existing system. Nor could we assume that we had any detailed
information about the code base of the system. Our problem was to make predictions as early as
possible in the project life-cycle including even before any code had been produced or any
defects found in testing. But our model had to be suitably robust and complete to enable updated
predictions once code was developed and defects were being found. Inevitably this meant our
model had to use process factors more than code attributes, but has the benefit of being usable for
development planning where various trade-off scenarios can be assessed.

In many respects what we are doing is confirming the ideas described in previous studies
such as (Fenton and Neil 1999) and (Chulani and Boehm 1999). Although the Chulani and
Boehm work was focused on effort prediction rather than fault prediction, they identify the
problems associated with parametric models being empirically calibrated to actual data
from completed software projects. In particular, they explain why the most commonly used
technique (multiple regression) imposes assumptions frequently violated by software
engineering datasets. By using Bayesian analysis incorporating qualitative factors their
model for estimating project effort was shown to be significantly more accurate than
regression models.
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To emphasize the radically different nature of our modelling approach we note that the
standard practise in building models in software engineering normally involves three steps:

1. Collecting domain knowledge (previous results, expert knowledge);
2. Building a skeleton of the model based on step 1 including as yet unknown parameters;
3. Estimating the model parameters using historical data to either point values (as, for

example, in the regression models) or probability distributions (as, for example, in
Bayesian analysis).

The novelty in our approach in developing a model is to follow only steps 1 and 2
without requiring step 3. Our experience shows that it is extremely difficult to obtain
reliable data of the required granularity, or of the required volume with which we could
later generalize our conclusions. Therefore, in searching for a method for building a model
we cannot consider methods requiring large volumes of data.

The pitfalls of building a defect-prediction model based purely on empirical data were
first laid out in (Fenton and Neil 1999). The biggest danger is in missing explanatory
variables. For example, a number of empirical studies have attempted to use information on
component defects found pre-release to predict component defects post-release, based on
the assumption of some positive correlation. Yet the study (Fenton et al. 2002b) found in
many cases that the components with higher numbers of defects found pre-release
experienced fewer defects in operational usage. Once the systems exhibiting these
apparently counter-intuitive results were further analysed the explanation was (of course)
that, in most cases, the modules for which higher numbers of defects were found during
testing were simply those that were tested more effectively. This particular example was a
key motivation for the MODIST model and it reminds us of the following intriguing
question:

If you discover very few defects in your software is that a ‘good thing’ or a ‘bad
thing’?

The general assumption is that, especially if the question concerns defects found by
customers in operation, then the answer must be ‘a good thing’. But, at an international
software metrics conference some years ago a leading metrics expert recounted an
interesting story about a company-wide metrics programme that he had been instrumental
in setting up. He said that one of the main objectives of the programme was to achieve
process improvement by learning from metrics what process activities worked and what
ones did not. To do this the company looked at those projects that, in metrics terms, were
considered most successful. These were the projects with especially low rates of customer-
reported defects, measured by defects per thousand lines of code (KLOC). The idea was to
learn what processes characterised such successful projects. A number of such ‘star’
projects were identified, including some that apparently achieved the magical perfect
reliability target of zero defects per KLOC in the first 6 months post-release. But, it turned
out that what they learned from this was very different to what they had expected. Few of
the star projects were, in fact, at all successful from any commercial or subjective
perspective. In fact, most were disasters. The reason for the very low number of defects
reported by customers was that they were generally so poor that they were little used, or not
used at all. The programme had completely missed “usage” as a causal impactor on the
number of observed defects.

Causal models, also known as Bayesian Nets (BNs; Jensen 1996; Neapolitan 2004;
Winkler 2003), enable us to incorporate qualitative explanatory factors such as testing
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quality or usage to avoid the above problems, even if we have no relevant empirical data. A
BN consists of two parts:

& A directed acyclic graph—Each node is a model variable, and links between the
nodes reflect (causal) influences between the variables.

& Probability distributions—Unconditional probabilities for the nodes without
parents and conditional probabilities for nodes with parents (depending on the
parents’ states).

Particular advantages of BNs for our research purposes are:

& Handling the missing data—In a BN each variable is assigned a prior probability. If
users do not provide an observation for such a variable the default prior probability
will be used in calculations.

& No fixed list of input and output variables—If a user provides an observation for a
variable such a variable becomes an input variable; if a variable is left without an
observation, it becomes an output variable.

& Explicit capturing of uncertainty about each unknown variable—all predictions are
in the form of probability distributions rather than point values.

& Easier understanding of the relationships between variables—the model explicitly
captures causal/influential relationships between variables shown on the graph.

3 Defect Prediction Causal Model

3.1 Overview of the Model

This section is an overview of the BN model whose factors were elicited from experienced
project managers in the MODIST project (MODIST 2003). The model is presented in
schematic form in Fig. 1. Each rectangle represents a subnetwork illustrated in detail in
Figs. 2, 3, 4, 5, 6, 7, 8. A detailed description of the previous versions of the model can be
found in (Fenton et al. 2002a; Fenton et al. 2002b; Fenton et al. 2004; Fenton et al. 2007b;
Neil et al. 2003). The model itself can be downloaded from (MODIST BN 2007 and
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Fig. 1 Schematic view of defect prediction model
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Boetticher et al. 2008) and viewed and executed using Bayesian net software which can be
downloaded for free from (Agenarisk 2007).

Each subnetwork is a part of the Bayesian network, with nodes representing probabilistic
variables and arcs representing causal relationships between variables. It is important to
note that the model not only reflects relationships between variables, which could be
reflected in regression-type models, but also direct cause–effect relationships. For example,
a more rigorous testing process leads to an increased probability of finding and fixing a

Fig. 3 Scale of new functionality implemented

Fig. 2 Defect insertion and
discovery subnet
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defect and thus to a reduced number of defects left in the software after testing. As an
extreme case, the model includes the knowledge that no defects will be found if no testing
is done. Such causal knowledge is almost impossible to ‘learn’ from limited data alone, yet
can be readily and consistently elicited from experts in the subject domain. This is one of
the reasons that Bayesian networks appear to be so useful.

Descriptions of the qualitative factors used in this model are presented in Section 4.
We developed this causal model based on a combination of the following sources:

& empirical data from the literature;
& empirical data from the project partners;
& subjective judgment of project managers and other experts in the collaborative

project, where no relevant data was available.

This causal model was not developed from the data reported in this paper. The data
presented here were available for us after the model was developed. Thus, we used them
only to validate the model.

Fig. 4 Specification and documentation subnet

Fig. 5 Design and development subnet
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3.2 Defect Insertion and Discovery Subnet

Figure 2 shows the core of this Bayesian network: the defect insertion and discovery
subnet. This subnet contains various categories of defects which are sequentially used to
calculate each other. The nodes with dashed edges are unobservable quantities whose
values are predicted from:

& variables describing new functionality (Fig. 3),
& qualitative process factors (Figs. 4, 5, 6).

The variables with yellow and blue backgrounds represent different categories of
defects. They are explained in Table 1. The variables with blue background have a special
meaning. They are input and output nodes that can be used to link the model instances to
reflect different development lifecycles. ‘Residual defects post’ reflects the number of

Fig. 6 Testing and rework subnet

Fig. 7 Common influences subnet
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Fig. 8 Existing code base subnet

Table 1 Nodes in the defect insertion and discovery subnet

Symbol Name Description Expressiona

IPD Inherent potential defects The number of defects that are
likely to occur in software of
specific size

TNormal(min(10000, 30 *
EKLOC1.1), 100 * EKLOC, 0,
10000)

EKLOC: effective KLOC
implemented this phase

PDSDA Potential defects given
specification and
documentation adequacy

The number of potential defects
in software adjusted by the
‘probability of avoiding
specification defects’ (estimated
by the subnet described in
Section 3.4)

Binomial (IPD, 1—P(ADS))
P(ADS): probability of avoiding
specification defects

ND New defects in The number of defects inserted
during design and development
(coding) activities (Section 3.4)

Binomial (PDSDA,
1—P(ADD))

P(ADD): probability of avoiding
defect in development

TD Total defects in The total number of defects
existing in the whole code base
including residual defects from
the existing code base if such is
used (Section 3.6)

ND+RDPre
RDPre: residual defects pre

DT Defects found in testing The number of all project defects
found during testing activity
(Section 3.4)

Binomial (TD, P(DT))
P(DT): probability of finding
defect

DF Defects fixed The number of all defects found
during testing are fixed during
rework (Section 3.4)

Binomial (DT, P(DF))
P(DF): probability of fixing defect

RDPost Residual defects post The number of defects left in
software after its release

TD–DF

a The syntax for the distributions used here is: TNormal (mean, variance, lower bound, upper bound),
Binomial(number of trials, probability of success)
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defects remaining after a phase of development. It can be connected to the ‘residual defects
pre’ of another instance of the model to reflect the number of defects existing before the
next phase of development. Several examples on using the model in this way are presented
in (Fenton et al. 2007b).

The expression for estimating the number of ‘inherent potential defects’ depending on
the project size has been built based in part on C. Jones’ data (Jones 1986; Jones 1999). The
variability coded into this expression captures not only our uncertainty about the Jones’
data but also the spread from the other reported data.

3.3 Scale of New Functionality Implemented Subnet

As in the other defect prediction models (Chulani and Boehm 1999; Compton and Withrow
1990; Gaffney 1984; Henry and Kafura 1884; Lipow 1982) the main factor influencing the
number of defects in software is the size of the project. Since the “size” in KLOC of the
project may not describe the project well enough our model adjusts the value of the project
size by two ranked variables: ‘complexity of new functionality’, ‘scale of distributed
communication’, and the Boolean variable: ‘integration with third party software’ (Fig. 3).
As a result this subnet estimates the ‘effective KLOC implemented this phase’.

3.4 Subnets for Development Activities

The model distinguishes three development activities:

& specification and documentation (Fig. 4) with the outcome ‘probability of avoiding
specification defects’;

& design and development (Fig. 5) with the outcome ‘probability of avoiding defect
in development’;

& testing and rework (Fig. 6) with the outcomes ‘probability of finding defect’ and
‘probability of fixing defect’.

They all have a similar structure in the sense that qualitative factors are used in the same
way:

& Process and people quality for each activity is established;
& The appropriate effort allocated to each activity is included.

Apart from the factors mentioned above, the specification and documentation subnet
includes:

& ‘overall management effectiveness’ (the outcome from the ‘Common influences’
subnet);

& ‘requirements creep’—reflecting the quality of requirements passed from the customer;
& ‘quality of any previous documentation’—important for projects which are

enhancements or re-developments.

The values for child nodes in these subnets are calculated using weighted expressions
(Fenton et al. 2007a):

& weighted max—for ‘requirements creep’;
& weighted min—for ‘spec and doc process effectiveness’;
& weighted means—for all other child nodes.
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The weights in these expressions have been estimated by experienced software
managers. However, users can also add their own factors describing process and people
quality as well as modify their importance by changing the weights.

Each of the development activity subnets ends with a numeric ‘probability’ node used in
the defect insertion and discovery subnet (Fig. 2). The expressions for these ‘probability’
nodes are partitioned expressions where, for each state of the parent node (overall
effectiveness of the specific activity), the Truncated Normal distribution is entered. For
example, the expression for the probability of finding a defect for the testing when the
testing process overall effectiveness is at its lowest value is defined as: TNormal(0.01,
0.001, 0, 1); since the mean here is 0.01 this says that typically we would expect to find
only 1% of the defects when the testing process overall effectiveness is at its worst level.
When the testing process overall effectiveness is at its highest level the distribution for
defects found is defined as: TNormal(0.9, 0.001, 0, 1)—so this says that typically in the
best case we would expect to find 90% of the defects. The values for the means in these
distributions depending on the value of the parent node are presented in Table 2. The
variance for these distributions was 0.001 in all ‘probability’ nodes except in ‘probability of
avoiding defect in development’ where it was 0.005. Because of the range of possible
probability values we defined truncation points of 0 and 1.

3.5 Common Influences Subnet

This subnet describes the quality of management (Fig. 7). The outcome from this subnet is
the ranked variable: ‘overall management effectiveness’. It does not influence any ‘defects’
variable directly. Rather, it influences the quality of development activities.

3.6 Existing Code Base Subnet

During the initial model validation we realized that predictions for some projects were heavily
biased by the fact that an existing code base was used in these projects. We added a subnet
that predicts the number of residual defects in this existing portion of code. Figure 8 illustrates
the structure of this subnet.

The main factor in this subnet is the size of the existing code (‘KLOC existing code
base’). Adjusting this by the ‘complexity of existing code base’, the model estimates the

Table 2 The mean values in expressions of the ‘probability’ nodes

Ordinal value of
activity effectiveness

Probability of avoiding
specification defects

Probability of avoiding
defect in development

Probability of
finding defect

Probability of
fixing defect

1 (worst) 0.0001 0.01 0.01 0.001
2 0.01 0.1 0.1 0.1
3 0.03 0.2 0.2 0.2
4 0.1 0.3 0.3 0.3
5 0.2 0.4 0.4 0.4
6 0.27 0.5 0.5 0.5
7 0.35 0.6 0.6 0.6
8 0.5 0.7 0.7 0.7
9 0.6 0.8 0.8 0.8
10 (best) 0.75 0.9 0.9 0.9
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number of inherent defects in the existing code. This value is then adjusted by the ‘overall
process and testing quality of existing code base’. The latter is a ranked node with neither
indicators nor parents, which could help users to estimate its value. However the users can
add indicators to explain the overall process and testing quality.

4 Qualitative Factors

The first stage of developing the causal model outlined in Section 3, required partners in the
MODIST Project (MODIST 2003) to identify qualitative factors that they believed had a
significant influence on the outcome of a software project. Once the model had been built
the second stage was to gather a dataset to validate the model; to do this effectively a more
detailed description of each factor was needed. In Section 4.1 we describe the set of factors,
together with the first level of detailed description. Section 4.2 gives an extract of the
subsequent questionnaire given to project managers to gather data from completed projects.
Section 4.3 discusses some issues arising from this method of measuring the qualitative
project factors.

Although it was intended that the validation dataset would cover all the data used in the
Bayesian network, this was not achieved; some project managers did not answer all the
questions. A small number of variables were omitted altogether. This arose when the data
recording practices of the project did not match the assumptions of the questionnaire: in
particular rework was not distinguished from testing, and the concept of the ‘effort’ spent
on a project phase, relative to what would be expected on average, was not used by project
managers. Also the data about the code base existing prior to the main development cycle
was not included in the dataset by our industrial partners. Fortunately, a Bayesian network
handles missing data (see Section 7.3).

4.1 Factor Descriptions

For ease of understanding and presentation the factors are grouped under five topics:
specification and documentation process (Table 3), new functionality (Table 4), design and
development process (Table 5), testing and rework (Table 6) and finally project
management (Table 7). This grouping also reflects the Bayesian Network structure.
However, despite the grouping the factors are all be considered to be project attributes.

Each factor is named and described by a question to be answered. The descriptive
questions were specifically tailored for the organisation providing the project data. These
tables also show on which figures these factors are present or indicate that some of these
factors are missing in this version of the model (but were present in the original MODIST
model).

4.2 Questionnaire Design

Qualitative data are expressed on a five-point ordinal scale. The ordinal values used are:
Very High, High, Medium, Low, Very Low. The data values were gathered using a
questionnaire, which was completed by the project manager, project quality manger or
other senior project staff. Each questionnaire item consists of:

& More detailed questions,
& An interpretation of the ordinal scale.
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For example, for factor S1 ‘Relevant Experience of Spec and Doc Staff’, the additional
questions are:

1. Did the Requirements team have adequate experience in analysing and generating
requirements?

2. Did the Requirements team have adequate domain expertise?

and the ordinal scale points are:

Very High: Software engineers with greater than 3 year’s experience in requirements
management, and with extensive domain knowledge.
High: Software engineers with greater than 3 year’s experience in requirements
management, but with limited domain knowledge.
Medium: Software engineers having between 1 and 3 year’s experience in require-
ments management.

Table 4 New functionality

Factor name Descriptive question Figure reference

F1 Complexity of new functionality What was the complexity of the new
development or new features that happened
in your project?

Fig. 3

F2 Scale of new functionality
implemented

How large was the extent of working on new
functionality rather than just enhancing the
older functionalities in your project?

–

F3 Total no. of inputs and outputs For your product domain, would you rate the
total no of outputs/inputs (newly developed/
enhanced) as high?

–

Table 3 Specification and documentation process

Factor name Descriptive question Figure reference

S1 Relevant experience of
spec and doc staff

How would you rate the experience and
skill set of your team members for
executing this project during the
requirements and specifications phase?

Fig. 4

S2 Quality of documentation
inspected

How would you rate the quality of the
requirements given by the client or
other groups?

Fig. 4 as ‘Quality of any
previous documentation’

S3 Regularity of spec and doc
reviews

Have all the Requirements, Design
Documents and Test Specifications been
reviewed in the project?

Fig. 4

S4 Standard procedures
followed

In your opinion, how effective was the
review procedure?

Fig. 4

S5 Review process
effectiveness

What was the review effectiveness in the
project for the requirements phase?

–

S6 Spec defects discovered in
review

In your opinion, is the defect density of
spec reviews on the high side?

–

S7 Requirements stability How stable were the requirements in
your project?

Fig. 4
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Low: Software engineers having between 1 and 3 year’s experience, but with no
experience in requirements management.
Very Low: Software engineers with less than 1 year’s experience, and with no previous
domain experience.

In some cases the questionnaire used a set of criteria and a score. An example is the
factor S4 ‘Standard (Review) Procedures Followed’. The detailed questions, giving the
criteria, are:

1. In case of changes after baselining, have the major changes been re-reviewed?
2. Are there any re-review triggers/criteria defined?
3. Have some domain specific standards been adhered to (like design rules, re-

engineering guidelines, architectural guidelines, etc)?
4. Was the requirements document checked for review worthiness or pre-review

checklist filled before the review?
5. Have the reviews been planned upfront?
6. Have the reviewers been assigned upfront?
7. Were the reviews role-based?
8. Were the reviewers identified appropriate and experienced enough for reviewing?
9. Was there adequate preparation time available for the reviewers?
10. Were there overview sessions for all complex work products?

Table 5 Design and development process

Factor name Descriptive question Figure reference

D1 Relevant development staff
experience

How would you rate the experience and skill set
of your team members for executing this project
during the design and development phase?

Fig. 5

D2 Programmer capability On an average, how would you assess the Quality
of code produced by the team members?

Fig. 5

D3 Defined processes followed What was the review effectiveness in the project
for the Design and Development phase?

Fig. 5

D4 Development staff motivation What is your opinion about the motivation levels
of your team members?

Fig. 5

Table 6 Testing and rework

Factor name Descriptive question Figure reference

T1 Testing process well
defined

How effective was the testing process adopted by your
project?

Fig. 6

T2 Staff experience—
unit test

What was the level of software test competence of those
performing the unit test?

Fig. 6 as‘Testing staff
experience’

T3 Staff experience—
independent test

How would you rate the experience and skill set of the
independent test engineers (Integration, functional or
sub-system testing, Alpha, Beta)?

Fig. 6 as‘Testing staff
experience’

T4 Quality of documented
test cases

What was the extent of the defects that were found using
formal testing against the intuitive/random testing?

Fig. 6
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The scale point is then derived as follows:

Very High: All the ten subquestions answered ‘yes’,
High: 7–9 of the subquestions answered ‘yes’,
Medium: 5–6 of the subquestions answered ‘yes’,
Low: 4 of the subquestions answered ‘yes’,
Very Low: less than 4 of the subquestions answered ‘yes’.

4.3 Measurement Issues

The factors used in the model were originally identified by a group of project managers
from different partners in the MODIST project. Although from different organisations, it
was possible for the project managers to agree on the importance of factors such as
‘Requirements Stability’. A further issue is whether it is possible to measure such values
consistently between organisations.

As shown by the example in Section 4.2, we designed the questionnaire to use objective
criteria, such as the number of years of experience, whenever possible. However, we do not
claim external validity of these measurements, since this is not needed for our approach, as
we explain below.

One way experts were used in building the model was to estimate the ‘strength’ of the
effect of each qualitative factor in the causal model. This information is represented in the
conditional probability table for each node in the Bayesian network. As a result of this
process, the model is applicable within the organisation where the experts have gained their

Table 7 Project management

Factor name Descriptive question Figure reference

P1 Dev. staff training quality What is the coverage of the identified project/
process related trainings as well as trainings
identified as per the roles, by the team
members?

Fig. 5

P2 Configuration management How effective is the project’s document
management and configuration
management?

–

P3 Project planning Has the project planning been done
adequately?

Fig. 7

P4 Scale of distributed
communication

How many sites/groups were involved in the
project.

Fig. 3

P5 Stakeholder involvement To what extent were the key project
stakeholders involved?

Fig. 4

P6 Customer involvement How good was customer interaction in the
project?

–

P7 Vendor management How would you rate the Vendor/Sub-
contractor Management (if applicable)?

Fig. 7 as ‘Subcontractor
management’ and
‘Significant subcontracts’

P8 Internal communication/
interaction

How would you the rate the quality of
internal interactions/communication within
the team?

Fig. 7 as ‘Internal
Communications
Quality’

P9 Process maturity What’s your opinion about process maturity
in the project?

Fig. 7
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experience. Since the model itself is not universal, there is no need for the measurements to
be so. It does not follow that the scope of the validation (see Section 8) becomes trivial,
even tautological, as a result. Instead, the validation shows that a model constructed using
expert judgement and historical data, within one organisation, can be used within the same
organisation to predict accurately the outcome of new projects. On the other hand, the
validation described here does not consider issues such as the external validity of the causal
structure of our model (see Section 7.4).

5 Quantitative Data

The projects developed software embedded in consumer electronics products. Each project
developed or enhanced some functionality provided by a product. The developed software
was not stand-alone but was integrated with other software subsystems in the product.

A waterfall lifecycle was followed. The software engineering part of the lifecycle
covered a specification review, design, a design review and development up to unit testing.
The software was then passed to independent test in several phases, from software
integration testing to overall system (i.e. product) testing.

Most of the software development was at one site, but the overall development was
distributed over different locations in a global organisation. Both the software specification
and the independent testing were typically at a different location to the software
development.

The data values are shown in Table 8:

& Software size: the size, in KLoC of the developed code and the development
language (Fig. 9 shows the distribution of code size in the dataset). Note that for
two projects, this data was not available: the Bayesian network can still be used
and it will assume the projects to be ‘medium’ but of uncertain size.

& Effort: development effort measured in person hours for the software development,
from specification review to unit test.

& Defects: functional defects discovered during all the independent testing phases,
following the software development.

In some projects existing software was reused as part of the development. The impact of
this on the dataset is considered in Section 7.

This new dataset could, of course, be used to build traditional statistical/regression based
models, as indicated, for example, by Fig. 10. This could be the basis for a simple
regression model relating KLoC to defects; indeed the correlation coefficient here is quite
high (0.78). However, this does not correspond to the way that we used this data, which
was to validate a model created before the data was gathered. Therefore, we do not pursue
this comparison.

6 Qualitative Data

The data values are shown in Tables 9, 10, 11, 12. Missing data values are marked with ‘–’
(see Section 7.3). The letters VL, L, M, H, VH correspond to the ordinal scale described in
Section 4.2 (‘very low’ to ‘very high’).
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7 Issues Arising from the Data Collection

The complexity of software projects makes gathering data a challenge. The most important
challenges we faced and lessons we learned during this work are described below. Some of
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Fig. 9 Code size distribution

Project Hours KLoC Language Defects

1 7,109 6.0 C 148
2 1,308 0.9 C 31
3 18,170 53.9 C 209
4 7,006 – C 228
5 9,434 14.0 C 373
6 9,441 14.0 C 167
7 13,888 21.0 C 204
8 8,822 5.8 C 53
9 2,192 2.5 VC++,MFC 17
10 4,410 4.8 C 29
11 14,196 4.4 C 71
12 13,388 19.0 C 90
13 25,450 49.1 C 129
14 33,472 58.3 C 672
15 34,893 154.0 C 1,768
16 7,121 26.7 C 109
17 13,680 33.0 C 688
18 32,366 155.2 C 1,906
19 12,388 87.0 C 476
20 52,660 50.0 C 928
21 18,748 22.0 C 196
22 28,206 44.0 C 184
23 53,995 61.0 C 680
24 24,895 99.0 C 1,597
25 6,906 23.0 C 546
26 1,642 – C 261
27 14,602 52.0 C 412
28 8,581 36.0 C 881
29 3,764 11.0 C 91
30 1,976 1.0 C 5
31 15,691 33.0 C 653

Table 8 Size, effort and defects
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Fig. 10 Code size versus defects

Table 9 Specification and documentation process data

Project S1 S2 S3 S4 S5 S6 S7

1 H M VH H M H L
2 H H VH H M H H
3 H H VH H H VH H
4 L L M L L L L
5 H M H M H – M
6 VH M VH M H – H
7 L M VH H H L M
8 M M H M H L H
9 H VH VH H VH M VH
10 H H H M H M H
11 H M H M H H H
12 H M H M M M L
13 VH M M L M H L
14 H H H H H H H
15 H H H H H VH VL
16 H H H H H H M
17 VH H M L H H M
18 M H H H H VH VL
19 H M H H H H M
20 L L M VL L M VL
21 H H H M L M M
22 L L M M M M L
23 M H VH H L M M
24 M M M H M H L
25 M H – H M M M
26 M M H M H H H
27 H M VH M M VH M
28 H L VH M M M L
29 H M VH H M M VH
30 H H VH H H M VH
31 – H H M M H M
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these challenges are not fully resolved by the data included in this dataset; how these issues
were addressed in our models is described elsewhere (Fenton et al. 2007b).

7.1 Software Size: Intrinsic Complexity

Because of the need to have a size based measure based only on the amount of functionality
to be implemented, we had hoped to use function points as the key metric for this purpose,
as recommended from the MODIST work. The model was developed before gathering the
data but then it was modified when we realized that function points were not being used by
the software development organisation providing this data. It is well known (Fenton and
Pfleeger 1998) that KLoC measures program length but the length of the program is only
one aspect of the size of the development task. There is an additional measure which we
term the ‘intrinsic complexity’. The factors F1–F3 were included in the data gathered to
give a better estimate of the intrinsic complexity than code size alone. Unfortunately,
intrinsic complexity is not an observable quantity, so finding sufficient factors to estimate
the size of the development task remains a challenge.

Table 10 Data for new functionality, design and development process

Project F1 F2 F3 D1 D2 D3 D4

1 M L M L H H H
2 L VL M L H H H
3 H H VH H VH H VH
4 M L M L M L M
5 H H VH L M H H
6 M M VH M H M M
7 L VL M M VH H H
8 M L M H H M M
9 L L M H VH VH H
10 M L M H H H H
11 H H H H H H H
12 H H H VH M M H
13 H H H H H H H
14 VH H H H H H H
15 H H M H H H H
16 L VL M H H H H
17 L VL M M M H H
18 VH VH H M H H H
19 H H H H H H H
20 VH H VH VL VL L H
21 L M VH H H H H
22 M M VH H M L H
23 H VH VH L H H H
24 M M H M H H M
25 H VL H M H M H
26 M H M L M M M
27 H VH VH M L M H
28 VH VH VH M L H H
29 M M H VH VH H H
30 L L M H H H H
31 M M H H H H H
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7.2 Code Reuse

It is very common for software development to be carried out as part of a product line
development, naturally giving rise to software reuse. This complicates the measurement of
software size—the lines of developed software differs from the length of the developed
program—and also impacts the prediction of defects, since the quality of the reused
software is variable. The original MODIST model did not take into account the code reuse.
After one of the validation rounds we added the ‘existing code base’ subnet to the model for
the final validation round (Section 8).

7.3 Missing Data Values

Given the complexity of a dataset that attempts to cover relevant software cost and quality
drivers, it is inevitable that some data values will be missing. It is essential that software
prediction methods are able to cope with missing data values.

The Bayesian net model used in this study is one such method that handles missing data,
since the model includes prior probability distributions for all the project data.

Project T1 T2 T3 T4

1 M H L H
2 H H L H
3 H H H H
4 VL VL VL L
5 M M L M
6 H – M M
7 H M M H
8 H M M M
9 H VH VH H
10 H M M M
11 H H M M
12 H H M M
13 M M L M
14 H H H H
15 M H M M
16 M H M M
17 M L L H
18 H H M M
19 H M M H
20 VL VL VH H
21 H H H H
22 H M M H
23 H H H H
24 H M M M
25 VL M H L
26 M L H M
27 M M M M
28 M M M M
29 H VH VH H
30 H H H H
31 M H M M

Table 11 Testing and rework
data
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7.4 Generality of the Data

An objective of the partners in the MODIST project was to identify only factors (and the
means of measuring them) that were generally relevant to complex software projects.
Achieving this objective would enable different organizations to make use of the causal
model. We recognize that the more detailed descriptions and questionnaires refer to
process-specific information. The objective of generality would still be partly achieved if
other organizations (using different processes) used the same factors, but adapted the
questionnaire as a means of measuring them.

8 Model Validation

8.1 Evaluation Measures

To validate the model which we developed using the dataset provided in Sections 5 and 6
we used the following evaluation measures which are commonly used and suggested to

Table 12 Project management data

Project P1 P2 P3 P4 P5 P6 P7 P8 P9

1 VH H H L H M – VH H
2 VH H H L H M – VH H
3 H VH H – VH VH – VH VH
4 L M VL L M M M H M
5 H H H M M H L VH M
6 H H H M M VH L VH H
7 H H VH VL VH VH – H VH
8 M H H VL H H – H H
9 VH VH VH L VH VH – VH VH
10 H H H VL H H – M H
11 H H H VL H H – M M
12 H H H L H H – M H
13 M H H VL H M H M M
14 H H H – H H – H H
15 VH M H M VH VH – VH H
16 VH M H M VH VH – VH H
17 M M M M M H – H M
18 VH M H H VH VH – VH H
19 M H H L H H – H H
20 H M L H H M – H H
21 H H H H H H – H H
22 H H M H H H – H H
23 H H H H H M – H H
24 H H M L M H – VH H
25 M M M M M M M H H
26 L M M L H H L H M
27 H M L L M H H H M
28 H M L L M M – H M
29 M H H L VH VH – H H
30 M H H L VH VH – H H
31 H H H H VH VH – VH VH
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validate such types of models (Chulani et al. 1999; Fenton et al. 2007b; Kitchenham et al.
2001; Stensrud et al. 2002):

1. Coefficient of determination (R2)

R2 ¼ 1�
Pn

i¼1
yi � ŷi
� �2

Pn

i¼1
yi � yið Þ2

2. Mean Magnitude of Relative Error (MMRE)

MMRE ¼ 1

n

Xn

i¼1

MREi

MREi ¼ yi � ŷi
yi

�
�
�
�

�
�
�
�

3. Median Magnitude of Relative Error (MdMRE)

MdMRE ¼ MedianðMREiÞ
4. Balanced Mean Magnitude of Relative Error (BMMRE)

BMMREi ¼ 1

n

Xn

i¼1

yi � ŷi
�
�

�
�

Min yi; ŷi
� �

5. Mean Magnitude of Relative Error relative to the Estimate (MEMRE)

MEMRE ¼ 1

n

Xn

i¼1

EMREi

EMREi ¼ yi � ŷi
yi

�
�
�
�

�
�
�
�

6. Median Magnitude of Relative Error relative to the estimate (MdEMRE)

MdEMRE ¼ MedianðEMREiÞ
7. Prediction at level l—measures the fraction of observations for which predictions are

within ± l percent of actuals.

Pred lð Þ ¼ 1

n

Xn

i¼1

ai

ai ¼
1 if MREi � l

0 if MREi > l

�

8.2 Validation Results

We validated the causal model using the presented project dataset. We did this by entering,
for each project, data excluding the defect data and ran the Bayesian net model. This
produces a (predicted) probability distribution for number of defects found in independent
testing. Using the median values of these distributions enables us to calculate the accuracy
of the predictions. Table 13 illustrates the actual and predicted number of defects.
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As presented in Fig. 11, we achieved a very high accuracy measured with an R2=0.9311.
We can observe the greater variation between the actual and predicted defects for generally
smaller projects which overall have smaller numbers of defects.

The R2 value is vulnerable to outliers—three projects with number of defects >1,500
clearly cause the increase in the value of R2. That is why we decided to calculate other
measures reflecting the prediction accuracy. Apart from calculating these measures for the
whole dataset we also analyzed the prediction accuracy of the model depending on the size
of the project: small, medium and large projects. The values for validation measures are
listed in Table 14.

We can observe that the predictive accuracy of the model, expressed by the different
measures presented in Table 14, increases with the size of the project and achieves highly
desirable values in such types of models:

& the measures based on relative error (MMRE, MdMRE, BMMRE, MMER,
MdMER) decrease significantly, as project size increases;

& Pred with different l levels increases (with one exception for Pred10 for medium-
sized projects).

Project Actual defects Defects predicted

1 148 75
2 31 52
3 209 254
4 228 355
5 373 349
6 167 123
7 204 262
8 53 48
9 17 57
10 29 203
11 71 51
12 90 347
13 129 516
14 672 674
15 1,768 1,526
16 109 145
17 688 444
18 1,906 1,886
19 476 581
20 928 986
21 196 259
22 184 501
23 680 722
24 1,597 1,514
25 546 641
26 261 407
27 412 430
28 881 721
29 91 116
30 5 46
31 653 505

Table 13 Actual and predicted
number of defects
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The lower prediction accuracy for smaller projects can be explained by the fact that the
prior knowledge which we incorporated into the model based on expert opinions from the
partner companies did not involve smaller projects. The validation using the data provided
in previous sections shows that using the model with the data outside the original model
scope does not ensure accurate predictions.

We can observe a high value for MMRE compared to other measures based on the
magnitude of relative error both for the dataset as a whole and the subsets depending on the
project size. This was due to the fact that in six projects the magnitude of relative error was
>1 (the absolute prediction error was higher than the actual value)—even several times
higher than typical relative errors in other projects. These six projects caused the shift in
MMRE but not so much in other measures based on relative error, which were all of a
similar level.

These satisfactory results from the model validation gives confidence in the value of the
causal model, but of course further validation using additional datasets would provide even
greater confidence in the integrity and robustness of the model. Moreover, the validation we
have described does not do full justice to the benefits of a Bayesian net model. For
example, in the Bayesian net model it is possible to enter data at any of the variables and
obtain the probability distributions at any of the unobserved variables. We will expand on
this flexibility of use in the next section.

Table 14 Values of model evaluation measures

Evaluation measures Dataset for validation

Projects <10 KLoC
(n=7)

Projects ≥10
and < 50 KLoC (n=13)

Projects ≥50 KLoC
(n=9)

All projects
(n=31)

R2 0.003 0.523 0.984 0.931
MMRE 2.55 0.77 0.09 0.96
MdMRE 0.49 0.28 0.06 0.27
BMMRE 0.53 0.33 0.08 0.30
MMER 0.62 0.36 0.08 0.34
MdMER 0.70 0.25 0.06 0.24
Pred30 0.29 0.54 1 0.58
Pred10 0.14 0.08 0.67 0.26

Fig. 11 Predicted and actual
values
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9 Decision Support for Software Manager

A clear benefit of a Bayesian net model, compared for example to a more traditional
statistical model derived purely from regression analysis, is its provision of a range of
decision-support and risk assessment capabilities. These are potentially extremely valuable
to project managers. We illustrate this with two example scenarios in this section.

9.1 Example 1

In the first scenario we assume that the software company is about to deliver software with
predicted size of 100 KLoC of ‘medium’ complexity. Without entering any other data as
inputs to the model we get a prediction of 1438 (median) residual defects. Let us further
assume that there will be no special allowances for testing and reworking on this project
and so we set the value for ‘Testing process overall effectiveness’ and the ‘Rework process
overall effectiveness’ as ‘medium’. The revised prediction for number of residual defects is
1709 (median). The software manager might decide that this is far too high and that the
maximum number of residual defects that can be tolerated is 200. Then in the BN model we
can enter the value 200 in the residual defects node. Since the BN is able to propagate
evidence backwards as well as forwards we can compare the predictions for unknown
variables such as development process effort and development process quality. Figure 12
illustrates the resulting probability distributions for the two scenarios (one where we do not
incorporate the constraint on defects and the other where we do). What the model is saying
is that we are unlikely to achieve the low defect target unless both the development process
effort and quality are significantly higher than normal.

The model allows managers to perform various types of what-if-analyses and trade-offs.
For example, suppose resource constraints make it impossible to increase development
effort. If we enter ‘medium’ effort then the distribution for development process quality
shifts even further towards very high (Fig. 13) making it clear that, in the absence of other
information it is extremely unlikely we will meet the target unless there is some drastic
overall improvement to the development process compared to previous projects.

9.2 Example 2

In this example we again have to develop 100 KLoC of medium complexity. Let us assume
that this is a completely new project (no existing code base and thus no residual defects in
the existing code base). The prediction for number of residual defects given only this

Fig. 12 Revised prediction for development effort and process quality with a product quality constraint
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information is 1497 (median). But this time we want to analyze the impact of differences in
various aspects of process quality among development activities. Assuming that every time
we allocate appropriate effort for a specific activity (further assuming we know from past
projects what is the appropriate effort allocation) and ‘requirements creep’ is fixed
(’Medium’) we analyze the impact of process quality in development activities in various
combinations. The results are presented in Table 15.

Based on the predicted results we can observe that:

& As expected, increasing the process quality of any activity increases the quality of
the software (number of residual defects decreases)—e.g. by comparing scenario 1
and 2, 3 and 4 etc;

& When the process quality is ‘low’ only in one of the activities and ‘high’ in the
others (scenarios 4, 6, 7), the best is the scenario with low “specification and
documentation process quality’ (no. 4) and the worst is the scenario with low
“development process quality” (no. 6);

& When the process quality is ‘high’ only in one of the activities and ‘low’ in the
others (scenarios 2, 3, 5), the best is the scenario with high “development process
quality” (no. 3) and the worst is the scenario with high “specification and
documentation process quality” (no. 5).

These observations provide useful insights into where to prioritise effort if resources are
constrained.

Fig. 13 Revised prediction for development process quality with an effort constraint

Table 15 Predictions for number of defects for various combinations of process quality

Scenario No. Entered observations Predicted numberof
residual defects

Specification and
documentation
process quality

Development
process quality

Testing and rework
process quality

Mean Median

1. Low Low Low 2,185 2,210
2. Low Low High 1,668 1,663
3. Low High Low 1,326 1,284
4. Low High High 1,020 980
5. High Low Low 2,101 2,101
6. High Low High 1,605 1,593
7. High High Low 1,248 1,188
8. High High High 961 914
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10 Sensitivity Analysis

In this section we perform two levels of sensitivity analysis. The first (Section 10.1) is a
basic analysis that can be viewed as an extension of the approach in the example of
Section 9.2. The second (Section 10.2) is a deeper ‘global sensitivity analysis’ in which the
sensitivity estimates of specific factors are evaluated incorporating changes in all other
factors and which also incorporate the probability distributions associated with the
variables. In Section 10.3 we discuss the overall impact of the sensitivity analysis results.

10.1 Basic Sensitivity Analysis

In the basic analysis we analyze the impact on the key model “output” variable (namely the
number of residual defects) of one or two model input variables at a time in different
combinations. The aim of this analysis is to visualize the impact of the model inputs on the
model output in the selected scenarios.

10.1.1 Case 1

In this case (Fig. 14) we analyze the impact of different combinations of two factors on
number of residual defects:

& (Left hand side) project size (KLOC) with overall process effectiveness (ranked
scale from ‘very low’ (VL) to ‘very high’ (VH)),

Fig. 14 Impact of project size,
process effectiveness and project
complexity
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& (Right hand side) project size (KLOC) with complexity of new functionality (ranked
scale from ‘very low’ (VL) to ‘very high’ (VH)).

To simplify the analysis we assume that no code will be reused and all other factors are
kept constant. Specifically:

& Factors measured on a ranked scale are set to ‘Medium’,
& Boolean factors are set to ‘No’.

Figure 14 illustrates the results for this example. Note that, since the model predicts the
number of residual defects as a probability distribution, we use the median value of the
predicted distribution. We can observe that both process effectiveness and project
complexity cause increasing variation in predicted number of residual defects as the size
of the project increases.

We can also observe that when process effectiveness is ‘very high’ the number of defects
increases much more slowly with project size than when process effectiveness is ‘very low’.
The similar relationship cannot be observed between project complexity and project size.
This may suggest that project complexity tends to cause lower variation in the number of
defects than process effectiveness.

We found that the model becomes less sensitive to changes in project size and other
factors influencing the ‘effective KLoC implemented this phase’ (Fig. 3) for larger projects.
The limit in project size is around 150 KLoC for the most complex projects and around 400
KLoC for the least complex. This can be observed on Fig. 14 as a flatter area in which the
predicted number of residual defects does not increase with an increase in project size.
These limits arise from the original expert-elicitation sessions; specifically projects beyond
that range had never been considered (primarily because the experts were focused on
knowledge of components or subsystems). We observed similar insensitivity to project size
increases in subsequent scenarios.

10.1.2 Case 2

Here we analyze the impact of project complexity, overall process effectiveness and factors
describing requirements quality. We consider four scenarios depending on the project size:
10, 30, 70 and 150 KLoC. From Fig. 15, we can observe that the variation in process
effectiveness indeed causes higher variation in the number of residual defects than the
variation of project complexity or requirements quality. The variation of project complexity
seems to cause increasing variation in the number of defects together with decreasing
process effectiveness. The requirements quality does not follow such behaviour. Although
Fig. 15 illustrates predictions for constant project size (KLoC new=70) we also observed
similar relationships in scenarios with different project sizes.

10.1.3 Case 3

Here we analyze the impact of each activity’s effectiveness on the number of residual
defects. The results in Fig. 16 suggest that we can conclude that the development
effectiveness (coding) has the most important impact. Testing and rework effectiveness is
only slightly less important. Much less important appears to be specification and
documentation effectiveness. We observed similar relations in scenarios with other values
of project size.
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10.1.4 Case 4

Here we analysed the impact in predicted number of residual defects of all qualitative
factors independently. Each single factor is changed from its lowest to highest value while
all others are kept constant (set as their most probable value). We assume that there is a
project to be developed which will reuse 3 KLoC from previous projects. We performed
this analysis in four scenarios of varying project size: 10, 30, 70 and 150 KLoC of new
functionality. The results for the case KLoC=10 are illustrated in the Tornado graph shown
in Fig. 17 (the overall relative sensitivity of the factors observed for the other project size
scenarios were similar). The graph plots the range of predicted residual defects resulting
from changes in each factor. For example, for the factor ‘complexity of new functionality’
the residual defects ranges from 75 (when complexity of new functionality is at its lowest)
to 195 (when complexity of new functionality is at its highest)

Clearly there are three factors significantly more important than the rest:

& complexity of new functionality,
& scale of distributed communication,
& integration with third party software—the actual variation in number of defects

caused by change in this variable ranged from 132 to 529 (the high boundary is
truncated on the graph to improve its overall clarity).

It is also worth noting the influence of the last two factors in Fig. 17, namely
‘complexity of existing code base’ and ‘overall process and testing quality of existing code

Fig. 15 Impact of overall pro-
cess effectiveness, project com-
plexity and requirements quality

Empir Software Eng (2008) 13:499–537 527



base’. It turns out that the influence of these factors increased with the increase in the
proportion of size of reused code to the size of the new code. So, not surprisingly, the
model suggests that the more code (proportionally) we reuse the more important it becomes
as to how this existing code was developed.

Fig. 16 Comparison of impact of different development activities effectiveness

Fig. 17 Impact of each qualitative factor
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10.2 Global Sensitivity Analysis

In the previous subsection we analyzed the change of one or two input variables at a time
and we did not make any use of the probability distributions associated with the variables.
Now we perform a deeper ‘global sensitivity analysis’ in which the sensitivity estimates of
specific factors are evaluated incorporating changes in all other factors and which also
incorporate the probability distributions associated with the variables (Saltelli 2000; Wagner
2007b). Such global sensitivity analysis has been previously used in analyzing other
software engineering models (Cangussu et al. 2003; Musilek et al. 2002; Wagner 2007a;
Wagner 2007b).

To perform this analysis we first generated 3000 random sample data based on the prior
probability distributions of the nodes without parents in the model (such nodes may be
thought of as the ‘true’ inputs in our model). The number 3000 provides a reasonable
balance between coverage and calculation time efficiency.

Next, we analyzed visually the relationship between the input variables and the output
variable. For example, Fig. 18 illustrates the relationship between project size (KLoC new)
and the number of residual defects. This relationship closely matches a number of
empirically reported studies (Fenton and Neil 1999) showing that, despite the positive
correlation, other factors can minimise its predictive impact

Finally, we used the SimLab tool (SimLab 2004) to calculate and analyze three
numerical measures of the global sensitivity:

& Spearman’s rank correlation coefficient—measuring the degree of correlation
between each input variable and the output variable. We did not use the more
popular Pearson product-moment correlation coefficient because most of our input
variables were ranked scale variables rather than numeric. For the same reason the
other measures were calculated on ranks rather than on exact values.

& Standardised rank correlation coefficient—measuring the effect of varying each
input variable away from its mean (rank) by a fixed fraction of its variance, while
maintaining all other variables at their expected values (rank).

& Partial rank correlation coefficient—measuring the strength of correlation between
an input factor and an output factor with any effect of possible correlation of this
particular input factor with other input factors removed.

Fig. 18 Relationship between
estimated project size and num-
ber of residual defects

Empir Software Eng (2008) 13:499–537 529



The results of this analysis are presented in Table 16, with the six most influential factors
on the number of residual defects being:

& KLoC (new);
& scale of distributed communication;
& complexity of new functionality;
& KLOC existing code base;
& testing staff experience;
& rework effort.

Table 16 Results of global sensitivity analysis

Input variable Sensitivity measure

Spearman’s rank
correlation
coefficient

Standardised rank
correlation
coefficient

Partial rank
correlation
coefficient

KLOC (new) 0.670a 1 0.663a 1 0.853 1
Complexity of new functionality 0.353a 3 0.339a 3 0.640 3
Scale of distributed communication 0.454a 2 0.455a 2 0.746 2
Integration with third party s/w 0.041a 18 0.056a 12 0.136 12
Quality of any previous documentation −0.038 22 −0.043 17 −0.105 17
Requirements stability −0.022 25 −0.010 31 −0.024 31
Stakeholder involvement 0.038a 21 −0.001 32 −0.002 32
Requirements management −0.019 27 −0.018 26 −0.043 26
Regularity of spec and doc reviews −0.010 29 −0.017 28 −0.041 28
Standard procedures followed −0.053 13 −0.014 30 −0.034 30
Relevant experience of spec and doc staff −0.050 14 −0.055 13 −0.133 13
Spec and doc effort −0.007 31 −0.016 29 −0.039 29
Development staff motivation −0.029 23 −0.018 25 −0.043 25
Relevant development staff experience −0.040 20 −0.065 9 −0.158 9
Programmer capability −0.048 16 −0.067 8 −0.163 8
Development staff training quality −0.023 24 −0.031 22 −0.075 22
Defined process followed −0.085 7 −0.056 11 −0.137 11
Development process effort −0.061 10 −0.071 7 −0.171 7
Testing process well defined −0.011 28 −0.018 24 −0.045 24
Quality of documented test cases −0.019 26 −0.032 20 −0.077 20
Testing staff experience −0.088 6 −0.089 5 −0.213 5
Testing effort −0.040 19 −0.033 19 −0.080 19
Rework process quality −0.068 8 −0.053 14 −0.129 14
Rework effort −0.092 5 −0.083 6 −0.199 6
Process maturity −0.050 15 −0.043 16 −0.105 16
Internal communications quality 0.001 32 −0.020 23 −0.050 23
Project planning −0.053 12 −0.031 21 −0.077 21
Subcontractor management −0.010 30 −0.017 27 −0.042 27
Significant subcontracts 0.059a 11 0.043 15 0.106 15
KLOC existing code base 0.105a 4 0.089a 4 0.214 4
Complexity of existing code base 0.043a 17 0.038 18 0.094 18
Overall process and testing quality
of existing code base

−0.062 9 −0.065 10 −0.157 10

Values in italics indicate the rank of the specific factor for each measure
a For SPEA and SRCC—values significant at p=0.95
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Box-plots presented on Fig. 19 illustrate the impact of the two most influential
qualitative model inputs on the number of residual defects. The plots show, for example,
that while the predicted number of defects increases significantly as the complexity of new
functionality increases, the variance also increases significantly (as seen by the increase in
size of the 25–75% range).

The major difference between the results of the global analysis and that of the simple
analysis in Section 10.1 concerns the factor ‘integration with third party software’. In fact,
its apparent lesser importance based on the global analysis results has a simple explanation.
The value ‘Yes’ for this factor has a small prior probability assigned in the model (0.05)
compared to the value ‘No’ (0.95; this simply reflects the empirical observation that only
5% of the projects involved integration with third party software). Consequently the 3000
sampled data (whose generation was based on the prior distributions) contained very few in
which ‘integration with third party software’ was set as ‘Yes’. The previous analysis
considered Yes and No values equally.

10.3 Discussion

The results of the sensitivity analysis are useful for two main reasons:

1. They provides a basis for ‘internal’ validation of the model
2. They provide a practical method for using the model for ‘fast’ prediction

In the case of 1 the results can be fed back to the experts involved in the model
development. The sensitivity analysis results provide a ‘holistic’ view of the model that was
never part of the original expert elicitation. When the model was built experts were not
asked to rank attributes in order of their expected impact on residual defects; nor were they
asked to consider the impact on residual defects of any given factor across the range of
possible values of that factor. Yet the sensitivity analysis results provide exactly this
information in a way that summarises the overall cumulative effects of many individual
assumptions built into the model. If either

a. the experts disagree with the results of the sensitivity analysis (for example, if they
disagree about the relative impact of a certain factor) or

Fig. 19 Impact of the two most influential qualitative factors
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b. empirical results from real projects clearly contradict the results of the sensitivity
analysis

then this would suggest that some aspect of the model needs to be fixed. As yet we make
no claim about a. and b. other than that the sensitivity analysis results did not throw up any
obvious contradictions to either the experts’ judgements or to what has been observed
empirically in real projects. Having said that, we offer one caveat. The analysis indicated that
the variables covering the requirements process had little impact on the number of defects.
Yet, poor requirements processes are often the first focus of any improvement activities. We
believe this point does need further investigation, although given the relatively informal
requirements processes of the projects being studied, “scale of distributed communication”
acted to a certain extent as a proxy for the requirements process.

In the case of 2 the idea is that we can use the results of the sensitivity to identify a very
small set of factors for early predictions. One of the benefits of a Bayesian Net model is
that it is not necessary to enter values for all of the project factors in order to get a
prediction. It turns out that, for this model, reasonably accurate predictions of the residual
defects can be achieved by entering just a small number of the most influential factors.
Typically we have found that entering only values for size, scale of distributed
communication, complexity of new functionality, and third party integration, results in
reasonably accurate predictions. Hence, this kind of model can be used for effective
decision-support and trade-off analysis during early development phases (in the way
demonstrated in the examples of Section 9).

11 Conclusions

We have presented a causal model for defect prediction that is a revised version of the
MODIST model (MODIST 2003). The main feature that distinguishes it from other defect
prediction models is the fact that it explicitly combines both quantitative and qualitative
factors.

We have also presented a dataset for 31 software development projects. This dataset
incorporates the set of quantitative and qualitative factors that were previously built into a
causal model of the software process. The factors (which had been identified by a
consortium of software project experts) include values for code size, effort and defects,
together with qualitative data values judged by project managers (or other project staff)
using a questionnaire. We have used this data to evaluate the causal model and the results
are promising. Specifically, the model predicts, with satisfactory accuracy, the number of
software defects that will be found in independent testing. This accuracy increases with
increasing project size.

To determine which model variables have the greatest impact on the number of residual
defects predicted, we have performed various sensitivity analyses. We found that the most
influential qualitative factors are project complexity and scale of distributed communication.
Although none of the individual process factors appear to be highly influential on their
own, the aggregation of such factors as ‘process effectiveness’ are highly influential. One of
the benefits of a Bayesian Net model is that it is not necessary to enter values for all of the
project factors in order to get a prediction. In fact, for this model, reasonably accurate
predictions of the defects can be achieved typically by entering values for just the three or
four most influential factors identified in the sensitivity analysis. Hence, this kind of model
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can be used for effective decision-support and trade-off analysis during early development
phases.

The model presented in this paper was developed for a specific context (distributed
projects in which the focus was typically a ‘subsystem’ type component of between 10 and
150 KLOC) and the validation was also largely within this context. Crucially the notion of
what was a ‘defect’ was well-defined within this context. However, the experts involved in
building the model were always conscious of the need to make it as general as possible. As
a result we feel that the model could be generally used by companies developing
commercial software, providing some minimal calibration is considered. There is ongoing
research (Radliński et al. 2007) on how to calibrate such models to take account of
company specific defect counting methods and defect rates. There may also be a need to
add other process factors that are identified as important in a particular company. The
information about such factors can be obtained through a modified questionnaire. After this,
adding new process variables to the model only requires changing expressions in the child
nodes. The process of finding the most appropriate expressions may be tricky if there are
significant multi-dimensional correlations between the input variables that we may need to
incorporate in the model.

By presenting the raw data in this paper, we hope to enable other researchers to evaluate
similar models and decision-support techniques for software managers (the dataset can of
course also be used for evaluating more traditional types of software prediction models).
We also hope that similar datasets will become more widely available in future.

To ensure full visibility and repeatability, we also provide an electronic version of the
causal model for researchers (MODIST BN 2007). The model can be viewed and executed
by downloading the free trial version of the Bayesian network software (AgenaRisk 2007).
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