
Image template matching using Mutual Information and NP-Windows

NDH Dowson*, R Bowden* and T Kadir†
*Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK

†Siemens Molecular Imaging Advanced Applications, 23-38 Hyth Bridge Street, Oxford, OX1 2EP, UK
{n.dowson;r.bowden}@surrey.ac.uk; t.kadir@robots.ox.ac.uk

Abstract

A non-parametric (NP) sampling method is introduced
for obtaining the joint distribution of a pair of images. This
method is called NP windowing and is equivalent to sam-
pling the images at infinite resolution. Unlike existing meth-
ods, arbitrary selection of kernels is not required and the
spatial structure of images is used. NP windowing is ap-
plied to a registration application where the mutual infor-
mation (MI) between a reference image and a warped tem-
plate is maximised with respect to the warp parameters. In
comparisons against the current state of the art MI registra-
tion methods NP windowing yielded excellent results with
lower bias and improved convergence rates.

1. Introduction
NP windowing is a new method for obtaining the joint

distribution of a pair of images, which is equivalent to
sampling the images at infinite resolution. Unlike existing
methods, arbitrary selection of a kernel is not required, and
the spatial structure inherent to images specified as a lattice
of pixel values is used. To demonstrate its effectiveness,
we apply NP windowing in a registration application rely-
ing on the maximisation of Mutual Information (MI). For
registration, MI measures the similarity of a template and a
corresponding region within in a reference image. The cor-
responding region varies with a set of warp parameters. The
actual MI value is measured from an estimate of the joint
probability distribution function (PDF) or joint histogram.

MI is widely used in registration applications, due to its
robustness to occlusion and noise, and invariance to non-
linear intensity relationships. The latter is particularly use-
ful for registering multi-modal images in medical imaging
[1] and tracking objects in rapidly changing lighting condi-
tions [2], to name just two applications. Moreover, MI is
only slightly more expensive to compute than the (widely
used) sum of squared differences measure.

Despite its good performance the registration accuracy
for MI may still be improved upon, since only a limited

number of samples are available. This limits the resolution
of the PDF estimate, because overly sparse histograms are
statistically meaningless [9]. Also, the position of the im-
age lattice points relative to the world is arbitrary as are the
histogram bin boundaries relative to the light spectrum. So
small changes in position result in unpredictable changes in
the PDF and instability in the MI value. Using each pixel as
a single sample assumes independence and identical distri-
bution. The fact that these assumptions are often incorrect,
is generally ignored.

Parzen windowing [9] and Partial Volume Estimation
(PVE) [4, 1] have been proposed to improve the estimates
and improve stability. Parzen windowing accounts for un-
certainty in intensity by blurring the histogram slightly.
PVE explicitly smooths MI values for small shifts by us-
ing a boxcar to measure the relative effects of nearby pix-
els. However both require sufficient samples to populate
the histogram and may suffer from artifacts and bias [7].
Parzen windowing requires a kernel to be specified before-
hand, and both require the kernel size and histogram bin
size to be specified.

A method without these shortcomings was proposed by
Kadir and Brady, where the statistics in arbitrary regions
of interest in single images are estimated in [3]. Notably
the ordering of the samples is used in their method. This
is the foundation of this work. However we apply it to the
more complicated case of a pair of 2D images. In addi-
tion substantial simplifications to the theory are made using
Green’s Theorem and standard polygon rendering methods.
This avoids consideration of multiple geometric cases.

For test purposes the registration accuracy of this method
was compared to the current state-of-the-art methods us-
ing MI. Testing was performed on eight real data sets
and results are given in terms of convergence and bias.
Excellent results were obtained. Importantly, the imple-
mentation of this method is rapid enough for practical
use and has been made freely available on the web at
www.ee.surrey.ac.uk/personal/n.dowson.

The remainder of the paper is organised as follows. The
details of the proposed NP windowing method are presented
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in Section 2. Section 3 describes the experiments and dis-
cussed the results obtained, before concluding in Section 4.

2. MI from NP windowed PDFs
This section describes the proposed NP windowing

method used to obtain a PDF, and hence an MI value. To
begin with, we recall from standard probability theory [6]
that a function of a random variable creates another ran-
dom variable whose distribution may be determined by the
transformation formula between the two.

To illustrate, consider a group of adjacent pixel values in
a template image (e.g. c1, a1 + c1 etc. in Fig. 1d). In a
registration application, the pixel values have correspond-
ing values in a second reference image (e.g. c2, a2 + c2

etc. in Fig. 1a). The combined groups are referred to as a
neighbourhood.

Intensity y at any point x = (x1, x2) may be computed
using an interpolation method. In Fig. 1 colour is used to
indicate the half bi-linear interpolated intensity. The neigh-
bourhood size varies with the interpolation method e.g. the
size for bi-cubic interpolation is 2 images x 16 points and
for full bi-linear interpolation is 2 images x 4 points.

The position of the lattice points relative to the world is
arbitrary, so x is treated as a random variable with bounded
uniform distribution: 0 ≤ x1, x2 < 1, as shown in Fig. 1c.
The bounds arise naturally from the lattice spacing. This
implies that y is also a random variable, with a distribu-
tion that may be found using a transformation formula. The
bounds on fx are also transformed to form bounds on fy as
shown in Fig. 1b. The bounded region of intensity proba-
bilities is called the intensity polygon.

This leads to an algorithm which in outline consists of
four steps. 1. Obtain all neighbourhoods in image 1 and 2
for a given warp and interpolation method. 2. Calculate the
intensity polygon for each set of samples. 3. Render these
to a histogram, or alternatively locate all polygon intersec-
tions and generate a new list of intensity polygons with no
overlap. 4. Calculate the MI.

Step 1 is standard and is not discussed further except
to mention that interpolation methods will in general only
approximate the true band-limited signal and hence the
true PDF. Better approximations may be obtained by prior
knowledge of the sampling pre-filter or using empirical
estimation [10]. For nearest neighbour interpolation this
method breaks down to standard sampling.

For illustrative purposes step 2 is first discussed for the
case of a single linear interpolated 1D signal. The neigh-
bourhood is of size two. Each pair of adjacent samples
uniquely defines a straight line, denoted as

y = ax + b | 0 ≤< 1 (1)

where x and y are simply the scalar forms of spatial position
x and intensity y.
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Figure 1. (d) & (a Half Bi-linear interpolated intensities for two
images: respectively y1(x), and y2(x). (c) The position of the lat-
tice points is random but bounded with distribution fx. (b) Using
a transformation formula we obtain the distribution of intensities
fy. Note how the vertices of the two triangles in (b) correspond to
pixel values in images 1 and 2 respectively in (a) and (d).

As discussed x is treated as a uniformly distributed ran-
dom variable: fx(x) = 1, 0 ≤< 1. The PDF of y, fy(y)
is simply a transformation of fx using the inverse function
x(y) = y−b

a .

fy(y) = |J(y)|fx(x(y)) (2)

where |J | = |∂x
∂y | i.e. the determinant of the Jacobian of x

with respect to y. Conveniently in this case |J(y)| = |a|,
which is constant, so

fy(y) =
{ 1

|a| y ∈ [a; a + b)
0 elsewhere

(3)

fx acts as a bounding function, giving the y bounds shown.
Compared to single 1D case above, the derivation of

|J | and the subsequent evaluation of the PDF is rather
more complex for pairs of 2D images. Initially the sim-
plest useful 2D interpolation method is considered: half bi-
linear interpolation (BLI). Half-BLI uses neighbourhoods
of three values from each image: interpolating within two
triangular areas. Fig. 1 shows two such neighbourhoods
where Half-BLI is used. This yields equations of the form
yi = aix1 + bix2 + ci, where i is the index of each image.
The pair of inverse functions is:

x1 =
c1b2 − b1c2 − b2y1 + b1y2

b1a2 − a1b2
x2 =

c1a2 − a1c2 − a2y1 + a1y2

−b1a2 + a1b2
(4)

|J | =

∣∣∣∣∣ ∂x1
∂y1

∂x2
∂y1

∂x1
∂y2

∂x2
∂y2

∣∣∣∣∣ =

∣∣∣∣∣ b2
a1b2−b1a2

−a2
a1b2−b1a2

−b1
a1b2−b1a2

a1
a1b2−b1a2

∣∣∣∣∣
=

1
a1b2 − b1a2

(5)



is the result, which is twice the inverse of the area of the
intensity polygon (triangle) defined by the points (c1 +
a1, c2 +a2), (c1 +b1, c2 +b2), (c1, c2). This is exactly what
is expected for a constant |J |, since each triangle represents
half a sample and each sample integrates to one.

Having obtained the intensity polygon for each neigh-
bourhood, we now proceed to step 3: obtaining the PDF
estimate for the entire image. This simply consists of sum-
ming the distributions for each neighbourhood together:

ρy(y) =
1

Nn

Nn∑
n=1

1
|Jn(y)|

fxn(xn(y)) (6)

where n indexes each neighbourhood. Nn is the number of
neighbourhoods and is used to normalise the values so that
the the PDF integrates to one.

Two methods for evaluating (6) were considered. First,
we considered intersecting and summing the list of poly-
gons to obtain a new list of non-overlapping polygons. Even
in the relatively simple cases of constant distributions for
half-BLI this is time consuming. In the case of varying dis-
tributions this becomes an intractable problem.

The second option, favoured here, is to use existing poly-
gon drawing methods to “render” each polygon to an a ap-
proximate PDF: i.e. a histogram. The drawing routine sums
rather than replaces “pixel” values. The loss in accuracy is
only slight if sufficient bins are used. Distributions that vary
within a polygon may be represented as “texture”.

Special cases where polygons collapse to lines or points
are easily detectable because their area is zero. Points also
have a perimeter of zero. Points are modelled as unit im-
pulses in the PDF. Since the intensity distribution is con-
stant, lines are normalised by their length and split into seg-
ments wherever they intersect bin boundaries. Bins are in-
cremented by the proportion of each line’s length they con-
tain. Non-varying distributions use the same procedure but
require explicit integration over each segment.

The cost of evaluating the histogram is dependent on the
number of neighbourhoods and the average image gradient,
i.e. approximately O(∂y

∂xNn). The costs are relatively con-
stant since intensity polygons are added to the histogram
using a standard polygon drawing routine with flood filling
at the polygon centre and (precise intersection based) anti-
aliasing at the edges.

MI may be obtained directly from the PDF estimate us-
ing the standard equation:

I =
∫
∀y

ρy(y) log
(

ρy(y)
ρy1(y)ρy2(y)

)
dy (7)

where ρy1 =
∫

ρydy2 and ρy2 =
∫

ρydy1. Of course in
this case since the PDF estimate is actually a histogram, the
integrals convert to sums.

Due to the finite size of the bins and the limited number
of samples, MI is generally under-estimated. The residual
error was found by Moddemeier to be approximately pro-
portional to the square of the bin size [5] and inversely pro-
portional to the number of samples. The error due to finite
number of samples is eliminated by NP windowing. Accu-
rate PDFs may obtained even when there are few samples
e.g. for small image patches.

The residual error due to bin size may also be eliminated
by estimating MI directly from ρy i.e. without constructing
a histogram. However as already discussed this would re-
quire a polygon intersection routine. Polygon intersection
was implemented and works for simple cases, but became
intractable for even small numbers of triangles (50).

2.1. Varying distributions

As alluded to earlier, for some kinds of interpolation
the distributions in histogram space are not constant within
each polygon. One such example is considered here: full
bi-linear interpolated images. These distributions are more
difficult to deal with, since they require explicit integration
over their area to obtain a PDF.

Considering the example just given, the equations for a
bi-linearly interpolated pair of images have the following
shape: yi = aix1x2+bix1+cix2+di, where i indicates the
image index (i.e 1 or 2). This yields two sets of inverse func-
tions of form xi(y1, y2) = P (y1, y2, 1) +

√
P (y1, y2, 2),

where P (..., d) indicates a polynomial of degree d. We use
this concise form because of the limited space available.
Both sets of solutions give the same solution for |J |:

|J(y1, y2)| =
[
(b2c1 − b1c2 + a2(d1 − y1)− a1(d2 − y2))2

−4(a2c1 − a1c2)(b2(d1 − y1)− b1(d2 − y2))
]− 1

2 (8)

As for the half bi-linear case, the valid region is bounded by
a polygon with vertices corresponding to the pixel values
of the neighbourhood: (d1, d2), (d1 + b1, d2 + b2), (d1 +
c1, d2 + c2) and (d1 + c1 + b1 + a1, d2 + c2 + b2 + a + 2).

Evaluating
∫
|J |dy2dy1 between such complicated

boundaries is difficult, because multiple geometric cases
must be considered. This can be avoided by splitting the
quadrilateral into two simple polygons (triangles) and using
Green’s Theorem to re-parameterise the problem.

Green’s Theorem states
∫ ∫

R
(∂J′

1
∂y1

− ∂J′
2

∂y2
)dA =∮

C
J ′

2dy1 + J ′
1dy2, where C defines the curve around a

region R. Letting J ′
2 = 0 and J ′

1 =
∫
|J(y1, y2)|−1dy2

yields:

ρ =
∮

C

J ′
1(y1, y2)ds (9)

We now substitute y′(s) = (mjs + cj , s) for y =
(y1, y2), where mj and cj are respectively the gradient and



y-intercept defining line segment j of the polygon. Apply-
ing the rules of integration by substitution (9) becomes:

ρ =
∮

C

J ′
1(y1, y2)ds =

∮ s1

s0

J ′
1(y

′(s))
∣∣∣∣dy′(s)

ds

∣∣∣∣ ds

=
∮ s1

s0

J ′
1(mjs + cj , s)

√
1 + m2

jds (10)

The result of the above (double) integration is an equa-
tion containing more than 100 terms and factors. For the
sake of interest the form of the equation is displayed here.

ρ = k1

√
P (s, 2) + P (s)(k2 + log[P (s) + k3

√
P (s, 2)]

+k4 log[P (s) + k5

√
P (s, 2)] + k6 log[

P (s) + k7

√
P (s, 2)

P (s)
] (11)

Clearly the implementation of (11) although giving a
precise result would be too slow for practical use. Several
hundred operations would be required just to initialise the
constants for each polygon. In addition a few tens of opera-
tions would be required to calculate every bin overlapped by
the polygon. Contrast this with half bi-linear interpolation.
Nine operations (4 subtractions, 2 multiplies, 3 additions)
are required to calculate the area of each triangle. A flood
fill routine (one add per bin) is used over most of the over-
lapped region, i.e. Half BLI is about two orders of magni-
tude faster than Full BLI. Since the potential improvement
in accuracy comes at such a great cost, an implementation
for full BLI is left for future work.

Using bi-cubic interpolation (BCI) in an NP window-
ing framework turns out to be even more problematic. The
intensity equations for BCI have form yi = P (x1, x2, 3),
which are not invertible.

3. Experiments and Results
To demonstrate the superiority of NP windowing when

estimating MI it was compared to the current state of the
art MI registration methods. In all, four methods were com-
pared: NP windowing, standard sampling (One sample per
pixel), third order partial volume estimation [1] and sec-
ond order B-spline Parzen windowing [9]. Since derivatives
were not directly available in some cases, optimisation was
performed using Powell’s Direction Set method [8]. In all
cases MI was maximised for translation warps only. BLI
was used to obtain reference image values corresponding to
template lattice points.

Testing was performed using eight sets of high resolution
data (2560x1920): shown in Fig. 2. In each case the full im-
age was used as a reference and two small sub-regions were
selected as templates to be matched to the original. All the
images were then blurred with a normalised 12x12 top hat
function and down-sampled by 12 times. The two templates
extracted from each image differed in that the first template

Figure 2. The eight sets of data used for testing

was chosen to align exactly with the lattice of the down-
sampled reference, while the second template was offset
from the first by (+ 1

3 ,+ 1
3 ) of a (down-sampled) pixel.

The methods were compared using two error measures:
bias and convergence. It is well known that different sam-
pling methods create artefacts in the cost function surface
of MI [7]. These artefacts can cause the maximum to shift
away from its “true” position. This is referred to as bias.
Bias was measured by performing a hierarchical brute-force
search to locate the position of the maximum and comput-
ing its distance from the ground truth.

In addition, local maxima also exist, which optimisa-
tion methods may erroneously converge to. Convergence
was measured by finding the mean distance from the points
of convergence to the biased global maximum. The tests
were performed by initiating convergence from 1000 ran-
dom starting positions at 5 preset distances. The starting
points were offset by the same amount from the global max-
imum for all the methods tested. The distance to the biased
global maximum, rather than the ground truth, was used to
decouple the effects of bias and local maxima.

Two sets of analyses were performed. Firstly, perfor-
mance was measured as the number of bins in the joint his-
togram was varied from 162 to 2562 bins in multiples of
four. Secondly, the size of the template was varied in size
from 92 to 172 pixels.

The results for bias while varying the number of bins is
given for both lattice aligned and non-lattice aligned tem-
plates in Fig. 3a and b, respectively. Not unexpectedly
the bias was very low for the lattice aligned templates (if
non-zero). Overall NP windowing performed the best in
this case. However, lattice alignment is unusual and these
results are given to contrast them with results from a non-
lattice aligned template. As demonstrated there is a large
difference in bias in these two cases.

In the non-lattice aligned case notice that NP window-
ing is again the best performer and unlike the other meth-
ods is almost completely unaffected by the number of bins
in the joint histogram. For the other methods performance
steadily drops with increasing histogram sizes due to the
lack of samples. Surprisingly, PVE performed the worst in
terms of bias. This could be due to data blur induced by
the large spatial support. Blur would effectively lower the
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Figure 3. Bias for (a) Lattice & (b) Non-Lattice Aligned Templates
for varying no. bins. Bias is low for lattice aligned templates
but lattice alignment seldom occurs in real applications. In (b)
performance degrades as the number of bins increases due to lack
of samples. The exception is NP windowing, which is unaffected
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Figure 4. Convergence Error for Lattice Aligned Templates for
varying no. bins.

significance of each sample speeding up the onset of perfor-
mance loss due to limited samples.

Similar conclusions may also be drawn from the con-
vergence results in Fig. 4 and 5. The number of bins has
much less influence on NP windowing than other methods.
For the other methods, at nearby starting points (to the bi-
ased global maximum) there is similarly good performance
whatever the histogram bin-size. Likewise at distant start-
ing points the performance is similarly poor. At intermedi-
ate distances however, there is generally a range of perfor-
mance. It is at these distances where success or failure are
similarly likely, that the influence of the algorithm’s param-
eters are clearest.

PVE was the second best performer in terms of conver-
gence, because of a larger basin size arising from extended
spatial support. Apart from PVE though, it appears that the
basin of convergence is neither affected by the number of
histogram bins, nor by the sampling method used.

The results for bias while varying template size is given
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Figure 5. Convergence Error for Non-Lattice Aligned Templates
for varying no. bins. NP windowing gives the best performance
and is virtually unaffected by no. bins. Generally, at nearby and
distant starting points convergence is similarly likely and unlikely,
respectively. At intermediate points a threshold of success/failure
exists and algorithm parameters have the most influence.
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Figure 6. Bias for (a) Lattice & (b) Non-Lattice Aligned Templates
for varying template size. In general performance improves as the
number of pixels (samples) increases. The exception is NP win-
dowing, which maximises the use of available data and is almost
unaffected by no. samples. (On B/W printouts (a) appears to have
2 lines, since standard sampling and NP windowing had zero bias.)

for both lattice aligned and non-lattice aligned templates in
Fig. 6a and b, respectively. Only the convergence results
for non-lattice aligned template are given in Fig. 7, since
lattice aligned solutions are unusual and space is limited.

In Fig. 6 the bias generally decreases as the number of
available samples increases, because the statistics represent
the data better and tends to dominate over the local blurring
effects of the kernel (if one is used). This is particularly
evident for PVE. The decrease in bias is negligible for NP
windowing, which it makes maximal use of available infor-
mation. Additional pixels add mainly redundant data.

In Fig. 7 showing the convergence tests the point of in-
flexion shifts rightwards as the template size increases. This
indicates that additional data can increase the size of the
basin of convergence despite adding only redundant infor-
mation. Parzen windowing seems to be least affected by the



0.5 1 2 4 8
0

5

10

15
NP windowing

C
on

ve
rg

en
ce

 E
rr

or
 (

pi
xe

ls
)

92 pixels

112 pixels

132 pixels

152 pixels

172 pixels

0.5 1 2 4 8
0

5

10

15
Standard Sampling

0.5 1 2 4 8
0

5

10

15
PVE (3rd order)

Initial Dist from Biased Maximum

C
on

ve
rg

en
ce

 E
rr

or
 (

pi
xe

ls
)

0.5 1 2 4 8
0

5

10

15
Parzen (2nd order)

Initial Dist from Biased Maximum

Figure 7. Convergence Error for Non-Lattice Aligned Templates
when varying template size. Again a spread of performance at in-
termediate starting distances is observed. Parzen windowing has
the lowest range at intermediate points and PVE has the best con-
vergence for 17x17 templates. But NP windowing has the best
mean performance at intermediate values.

number of samples (lowest range at intermediate values),
and PVE gives best performance for the 17x17 template due
to its wide spatial support. However, NP windowing gives a
better mean performance than either method and performs
the best in the most difficult case (9x9 template).

4. Conclusion
In this paper the NP windowing method for obtaining the

joint distribution of a pair of images was introduced. Unlike
existing methods the proposed approach does not assume
sample independence or identical distribution. Moreover,
the method does not require arbitrary parameters like kernel
size to be chosen. NP windowing effectively eliminated the
error caused by overly sparse sampling.

NP windowing for half bilinear and bi-linear interpola-
tion schemes were developed theoretically. Because of its
simplicity and speed the half bi-linear approach was imple-
mented. The implementation utilised standard polygon ren-
dering routines to generate joint histograms.

The histograms obtained using NP windowing were used
in registration applications to maximise the Mutual Infor-
mation between a reference image and a template with re-
spect to some warp parameters. The registration accuracy
was compared to existing state of the art methods using
MI. Performance was measured in terms of bias and con-
vergence using eight test sets.

In general NP windowing had less bias than any of the
methods it was compared to (> 40% less than nearest
competitor in some cases). In addition the number of his-
togram bins and sample size hardly affected NP window-

ing, implying that it makes maximal use of available data.
NP windowing usually had the best convergence proper-
ties, although the increased spatial support of 3rd order
PVE gave it a slightly improved convergence properties
over NP windowing. However NP windowing tolerates
decreasing sample size better. The radius of the basin of
convergence increases with sample size, but is unaffected
by histogram bin-size. The test data and binaries used for
this work have been made freely available on the web at
www.ee.surrey.ac.uk/personal/n.dowson.

In general NP windowing is recommended for applica-
tions where bin-size should be a non-critical choice and
where the number of samples is limited or unknown. More-
over in domains where the bias (shift in true global max-
imum) must be kept to a minimum we would recommend
the use of NP windowing.

In future work NP windowing using more sophisticated
interpolation methods, with varying distributions, will be
implemented. In addition the authors are looking at ways
to eliminate the intermediate step of forming a histogram
and instead evaluate Mutual Information directly. Finally,
extensions to 3D voxel data sets should be investigated.
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