University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Affordance mining: Forming perception through action

Ellis, L, Felsberg, M and Bowden, R (2011) Affordance mining: Forming perception through action In: ACCV 2010, 2010-11-08 - 2010-11-12, Queenstown, New Zealand.

Available under License : See the attached licence file.

Download (2MB)
Text (licence)

Download (33kB)


This work employs data mining algorithms to discover visual entities that are strongly associated to autonomously discovered modes of action, in an embodied agent. Mappings are learnt from these perceptual entities, onto the agents action space. In general, low dimensional action spaces are better suited to unsupervised learning than high dimensional percept spaces, allowing for structure to be discovered in the action space, and used to organise the perceptual space. Local feature configurations that are strongly associated to a particular ‘type’ of action (and not all other action types) are considered likely to be relevant in eliciting that action type. By learning mappings from these relevant features onto the action space, the system is able to respond in real time to novel visual stimuli. The proposed approach is demonstrated on an autonomous navigation task, and the system is shown to identify the relevant visual entities to the task and to generate appropriate responses.

Item Type: Conference or Workshop Item (Conference Paper)
Divisions : Faculty of Engineering and Physical Sciences > Electronic Engineering > Centre for Vision Speech and Signal Processing
Authors :
Ellis, L
Felsberg, M
Bowden, R
Date : 2011
DOI : 10.1007/978-3-642-19282-1_42
Contributors :
Additional Information : The original publication is available at
Depositing User : Symplectic Elements
Date Deposited : 12 Jun 2012 11:56
Last Modified : 31 Oct 2017 14:33

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800