A breakup model for transient Diesel fuel sprays

M. R. Turnera,1,*, S. S. Sazhina, J. J. Healeyb, C. Cruaa, S. B. Martynovc

aSir Harry Ricardo Laboratories, School of Computing, Engineering and Mathematics, University of Brighton, Lewes Road, Brighton BN2 4GJ
bDepartment of Mathematics, Keele University, Keele, Staffs ST5 5BG
cDepartment of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE

Abstract

In this paper a breakup model for analysing the evolution of transient fuel sprays characterised by a coherent liquid core emerging from the injection nozzle, throughout the injection process, is proposed. The coherent liquid core is modelled as a liquid jet and a breakup model is formulated. The spray breakup is described using a composite model that separately addresses the disintegration of the liquid core into droplets and their further aerodynamic breakup. The jet breakup model uses the results of hydrodynamic stability theory to define the breakup length of the jet, and downstream of this point, the spray breakup process is modelled for droplets only. The composite breakup model is incorporated into the KIVA II Computational Fluid Dynamics (CFD) code and its results are compared with existing breakup models, including the classic WAVE model and a previously developed composite WAVE model (modified WAVE model) and in–house experimental observations of transient Diesel fuel sprays.

The hydrodynamic stability results used in both the jet breakup model and the WAVE droplet breakup model are also investigated. A new velocity profile is considered for these models which consists of a jet with a linear shear layer in the gas phase surrounding the liquid core to model the effect of a viscous gas on the breakup process. This velocity profile changes the driving instability mechanism of the jet from a surface tension driven instability for the currently used plug flow jet with no shear layers, to an instability driven by the thickness of the shear layer. In particular, it is shown that appreciation of the shear layer instability mechanism in the composite model allows larger droplets to be predicted at jet breakup, and gives droplet sizes which are more consistent with the experimental observations. The inclusion of the shear layer into the jet velocity profile is supported by previous experimental studies, and further extends the inviscid flow theory used in the formulation of the classic WAVE breakup model.

*Corresponding author: m.turner@surrey.ac.uk
1Present address: Department of Mathematics, University of Surrey, Guildford, Surrey. GU2 7XH.
1. Introduction

It is well established that accurate multi-dimensional modelling of the processes within Diesel engines, and similar environments, is important for various engineering applications [1, 2, 3, 4, 5, 6]. This modelling must take into account many complicated processes, such as heat and mass transfer, combustion and fluid dynamics. This typically leads to relatively simple models for each of these individual processes. These models are then combined together into a Computational Fluid Dynamics (CFD) code, such as the KIVA II code [7], which is an open-source non-commercial code, widely used as a basis for the analysis of sprays [8]. This code uses a Lagrangian particle tracking approach to spray modelling, which has been shown to be advantageous compared to the Eulerian approach [9, 10, 11, 12, 13].

One of the most important elements of modelling Diesel fuel injections is the accurate modelling of both jet and droplet breakup. These processes are particularly important due to the sensitivity of the droplet heating, evaporation [14] and combustion processes to the droplet position and size distribution. The liquid Diesel fuel emerging from the nozzle firstly goes through a primary breakup process, where the jet breaks up into liquid sheets, ligaments and droplets, and then in the spray far field where the fuel is dispersed in the gas phase, a secondary breakup process occurs, where large droplets breakup into smaller ones [15]. In practical applications unified models are used to model both these breakup processes [16]. In these unified models, the initial jet is assumed to consist of a continuous string of injected droplets with radii equal to that of the nozzle. These large droplets then undergo breakup due to the normal and tangential stresses on their surface [17]. In most CFD codes this process is described using either the Taylor Analogy Breakup (TAB), WAVE breakup or stochastic breakup models. In the TAB model [18], which is the default breakup model in the KIVA II code, the breakup of fuel droplets is described using an analogy with a spring-mass system, while the WAVE model [19] uses the linear stability analysis of perturbation waves on the liquid-gas interface. These approaches and their modifications [20, 21], have been widely used on fuel spray computations [8, 22]. In the WAVE model it is assumed that the droplets created after breakup have a predetermined size while the TAB model takes into account the distribution of droplets by radii [6, 18]. The model suggested by Gorokhovski & Savelyev [23] is based on the assumption that the breakup of parent droplets, at large Weber numbers, into secondary droplets, does not depend on the instantaneous size of the parent droplets [24]. In this process the specific mechanism of atomisation and the breakup length scale cannot be clearly defined, therefore the model uses stochastic approaches to model breakup rather than deterministic ones. This model has been further developed in [25, 26, 27, 28] (also see the recent review [29]).
A simplified spray penetration model, taking into account the effects of turbulence was suggested by Pozorski et al. [30], while the effects of droplet breakup, described by the WAVE model, on the initial stages of penetration were discussed by Sazhin et al. [31, 32].

Using the unified breakup models to predict the spray penetration of Diesel fuel sprays, leads to results where the model, under–predicts penetration by around 30 – 50% at early times [6, 33, 34]. Sazhin et al. [6] attributed this difference to the neglected transient effects of the jet from the current models, which only model the jet in a quasi–steady manner. These unsteady effects are included in Sazhin et al. [6] through an ad hoc process where one of the model constants is reconstructed as a function of time and the newly defined constants in this function are adjusted to fit the penetration results to the experimental data. While this approach gives more accurate penetration length agreement with the experiments, the inclusion of the acceleration effects needs to be more rigorously justified and, in particular, the values of the newly defined constants need to be related to physical features of the flow. Turner et al. [35] found that for planar liquid jets, the magnitude of the acceleration seen in Diesel jet experiments is only expected to increase the breakup length of a fully unsteady jet by approximately 5%, when compared to a jet which is assumed to be quasi–steady. If a similar result holds for axisymmetric jets, which it is believed to, then this suggests that the observed difference between the CFD simulations and the experiments is unlikely to be attributed to the neglected transient effects alone.

One important feature neglected by many CFD models, is the contribution of the coherent liquid core emerging from the nozzle on the penetration length of the spray. The detailed structure within the dense spray region is not yet fully understood, and one widely referred to structure of the dense spray region is that it includes an intact liquid core and a multiphase mixing layer surrounding the core [15]. In this paper we model the intact liquid core, which is made up of a jet, ligaments and connected blobs of fuel, as a jet for simplicity, to determine whether or not this approach will improve the comparison with the Diesel jet experiments. The effect of this liquid core was included in the transient calculations of Sazhin et al. [6], by assuming that the core moves as a solid body until its diameter is halved, compared with the diameter of the nozzle. The motivation for considering this liquid core, and modelling this region as a jet, comes from Sakaguchi et al. [36] who showed, using a micro–probe Laser 2–Focus velocimeter, that the core of the spray has a heterogeneous structure throughout the steady part of the injection. It was shown that the mean axial velocity remains practically constant at downstream positions for most injection times, with these velocity values decreasing very slowly downstream in the spray.

The work of Crua et al. [37] shows, using high speed photography, a coherent liquid Diesel jet emerging from the nozzle, with small droplets being stripped from the edge of the jet, which ultimately runs into the liquid core of the spray. This agrees with the experiments of Yule & Filipovic [38], who calculate the breakup length of Diesel jets, as well as those of Badock et al. [39]. Yule & Filipovic [38] have measured the penetration length of the coherent intact
liquid core into the spray, by using a crosswind to blow the spray droplets out of the way, revealing the core. They claim that this is a coherent jet, but the subsequent work of Smallwood et al. [40] showed that conductivity probe measurements can infer a coherent jet even when the core really consists of ligaments and very dense arrays of droplets.

Following Yi & Reitz [11], the jet model approach described in the current paper uses wave packet linear stability analysis to define a jet breakup length from which we inject droplets and run droplet breakup calculations, using one of the current spray breakup models, producing spray penetration results that agree well with in house experiments at the University of Brighton facilities. In contrast to [11] our model takes into account the transient nature of the jet.

We also investigate the effect of a liquid–gas viscous shear layer on the onset of instabilities in the jet, by performing the linear stability analysis of a velocity profile with a finite thickness shear layer in the gas phase. The review paper by Lin & Reitz [41] notes that this development is important in understanding jet breakup by making the velocity profile more realistic compared with the currently used plug flow velocity profile [19].

The paper is laid out as follows. In §2 we discuss the current spray breakup models in more depth before formulating the proposed jet breakup model in §3. Section 4 gives details of the experimental data which will be used to validate our model, with the results of this validation given in §5. Linear stability analysis of a jet velocity profile with a viscous gas phase is examined in §6. The results of this analysis and the analysis of how this profile improves the composite breakup model are discussed in §7. Our concluding remarks and discussions are given in §8.

2. Spray breakup models

To describe the dynamics of liquid sprays in CFD simulations, spray breakup models, which model the breakup of droplets, are used to model the process of atomisation in a Lagrangian approach. This atomisation process is complex, and depends upon features such as the injection velocity, turbulence and cavitation effects. However, it is generally accepted that this breakup process is driven by aerodynamic stripping of smaller droplets from larger droplets (Kelvin–Helmholtz instability) or disintegration of larger droplets into smaller ones due to the effect of normal stresses (Rayleigh–Taylor instability). In Diesel sprays, these effects have been incorporated into CFD simulations using various approaches (see Stiesch [10] for a detailed review). In this paper we focus mainly on the WAVE model approach, although we also discuss the TAB and stochastic approaches as these models also has a place in CFD modelling. Below we briefly summarise these three models as well as the modified WAVE model of Sazhin et al. [6]. The reader is referred to the cited texts from each section for more information.
2.1. The classic WAVE model

The WAVE breakup model was originally developed by Reitz [19] and is based upon the temporal stability analysis of the Kelvin–Helmholtz instability for a liquid jet (density \(\rho_1 \)) with an inviscid outer gas phase (density \(\rho_2 \)). The velocity profile for this jet is given in figure 1. This Kelvin–Helmholtz instability causes ‘child’ droplets to be stripped from the liquid core of the jet, which is approximated by ‘parent’ droplets which have the same radius, \(R \), as the injecting nozzle. The main problem with this approach is addressed in §6 where we examine a modification of the velocity profile in figure 1 which makes the jet more realistic, by incorporating a viscous gas phase.

![Figure 1: Plot of the axial velocity profile \(U(r) \) used in the classic WAVE model. This profile assumes an inviscid gas phase outside of the jet, and hence the profile has a discontinuity in velocity at the fluid interface \(r = R \).](image)

The radius of the injected droplets, \(r_d \), is assumed to continuously decrease in size during the breakup process, as described by the equation

\[
\frac{dr_d}{dt} = -\frac{r_d - r_s}{\tau_{bu}},
\]

where \(\tau_{bu} \) is the characteristic breakup time of the droplet, and \(r_s \) is the radius of stable droplets, given by a temporal stability analysis for the velocity profile in figure 1. The value of \(r_s \) is given by

\[
r_s = \begin{cases}
B_0\Lambda & \text{if } B_0\Lambda \leq r_d, \\
\min \left(\frac{3\pi r_d^2 U_m}{2\Omega}, \frac{3\pi^2 \Lambda}{4} \right)^{0.33} & \text{if } B_0\Lambda > r_d,
\end{cases}
\]

where \(B_0 = 0.61 \) is the model constant and \(\Lambda \) and \(\Omega \) are the wavelength and growth rate of the fastest growing wave on the surface of the liquid jet. An
approximation of these quantities for \(q = \rho_2 / \rho_1 \lesssim 1/10 \) are given by the expressions

\[
\Lambda = 9.02 R \left(\frac{1 + 0.45 Z^{1/2}}{1 + 0.87 \text{We}_{2}^{3/3}} \right)^{3/5},
\]

\[
\Omega = \left(\frac{\sigma}{\rho_1 R^3} \right)^{1/2} \left(\frac{0.34 + 0.38 \text{We}_{2}^{3/2}}{1 + Z} \right)^{1/2} \left(\frac{1 + 1.4 T^{3/5}}{1 + 1.4 T^{3/5}} \right),
\]

where \(Z = \text{We}_{1}^{1/2} / \text{Re}_1 \), \(T = Z \text{We}_{2}^{1/2} \) and \(\text{We}_{1,2} = \rho_{1,2} U_m^2 R / \sigma \) are the corresponding liquid and gas Weber numbers respectively [19]. The quantity \(\text{Re}_1 = U_m R / \nu_1 \) is the liquid Reynolds number. The breakup time, \(\tau_{\text{bu}} \), is given by

\[
\tau_{\text{bu}} = 3.7626 \frac{B_1 R}{\Lambda \Omega},
\]

where \(B_1 \) is an adjustable model constant which varies approximately between \(\sqrt{3} \) and 20 [8, 19] depending upon the type of injector being used. Equation (2.1) with \(\tau_{\text{bu}} \) defined by (2.5) has been shown to be consistent with the experiments of Reinecke & Waldman [42].

This model was extended by Patterson & Reitz [20] who incorporated the Rayleigh–Taylor instability of droplets, which mainly accounts for the secondary breakup of droplets, while the stripping Kelvin–Helmholtz instability mainly accounts for the primary breakup process [21]. This model was modified to incorporate transient effects by Sazhin et al. [6], see §2.4. The classic WAVE model will be the main droplet breakup model used in our composite breakup model in §5 and §7.

\[\text{2.2. The TAB model} \]

The Taylor Analogy Breakup (TAB) model is the default breakup model used in the KIVA II code, and it describes the droplet breakup process in terms of the critical deformation of the oscillating droplet [18]. The normalised radial droplet deformation is given by \(y = 2 e / r_d \), where \(e \) is the extension of the droplet radius from its equilibrium position and \(r_d \) is the droplet radius. The time evolution of this quantity is described by the forced, damped linear harmonic oscillator

\[
\frac{d^2 y}{dt^2} = \frac{2 \rho_2 U_m^2}{3 \rho_1 r_d^3} - \frac{8 \sigma}{\rho_1 r_d^3} y - \frac{5 \mu_1}{\rho_1 r_d^3} \frac{dy}{dt},
\]

where the external forcing comes from the relative motion of the drop, the restoring force is surface tension and the damping force is the fluid dynamic viscosity, \(\mu_1 \). The solution for \(y(t) \) can be found analytically, and breakup is modelled by assuming that \(y = 1 \) at the moment of breakup.

The Sauter Mean Radius (SMR), \(S \), of the droplets at the moment directly after breakup can be found from the conservation of droplet energy during breakup

\[
S = \frac{r_p}{\frac{7}{3} + \rho_1 r_p^3 \left(\frac{dy}{dt} \right)_{\text{bu}}^2 / 8 \sigma},
\]
where \(r_p \) is the radius of the parent droplet and \((dy/dt)_{\text{bu}}\) is the value of \(dy/dt\) at breakup, i.e. when \(y = 1 \). Unlike the WAVE model, the TAB model produces a distribution of droplet sizes after breakup, given by

\[
f(r_d) = \frac{3}{S} \exp \left(-\frac{3r_d}{S} \right).
\]

(2.7)

The results predicted by the TAB model in O’Rourke & Amsden [18], for modelling fuel sprays, agree well with the experimental results of Hiroyasu & Kadota [43]. This model, however, over–predicts the rate of breakup and tends to under–predict the droplet size close to the injector. It was modified by Tanner [44] to enable it to describe breakup at larger Weber numbers, which is the dominating mechanism in the primary breakup region of liquid jets.

2.3. The stochastic model

The WAVE model described in §2.1 is essentially a deterministic model where the radii of the droplets formed at breakup are determined by (2.1). The TAB model in §2.2 contains a stochastic element by assuming that the sizes of the product droplets are given by the predetermined distribution (2.7). The approach laid out in Gorokhovski & Saveliev [23] is different to the two previous methods because it is focused on the analysis of the time evolution of the distribution of droplets by radii. It assumes that the breakup of a parent droplet into secondary droplets does not depend upon the size of the parent droplet at breakup (Kolmogorov hypothesis [24]). This approach is appealing in high pressure injection sprays where the Weber number is large, and breakup is due to the Kelvin–Helmholtz instability, but turbulent fluctuations in the problem make the specific breakup mechanism and the scale of the breakup hard to define.

Gorokhovski & Saveliev [23] showed that in the large time limit, \(t \to \infty \), the equation for the droplet number distribution function for parent droplets, \(F(r_d) \), which gives \(F(r_d)dr_d \) droplets in the interval \(dr_d \), can be represented by a Fokker–Planck type equation

\[
\frac{\partial F}{\partial t} = \left(-3\langle \ln \xi \rangle - \frac{9}{2} \langle \ln^2 \xi \rangle - \frac{\partial}{\partial r_d} r_d \langle \ln \xi \rangle + \frac{1}{2} \frac{\partial}{\partial r_d} r_d \frac{\partial}{\partial r_d} \langle \ln^2 \xi \rangle \right) \nu F(r_d),
\]

(2.8)

where

\[
\langle \ln^n \xi \rangle = \int_0^1 \ln^n \xi \chi(\xi)d\xi.
\]

The parameter \(\xi = r_d/r_0 \in [0,1] \) links the radius of the product droplets \(r_d \) to the parent droplets \(r_0 \), \(\chi(\xi)d\xi \) is the normalised probability that the radius of each product droplet is in the range \([\xi r_d (\xi + d\xi) r_d] \) and \(\nu = \nu_0 \chi_0 \), where \(\nu_0 \) is the breakup frequency of an individual droplet and \(\chi_0 \) is the average number of droplets produced after each breakup mechanism.

The two unknown constants in (2.8), \(\langle \ln \xi \rangle \) and \(\langle \ln^2 \xi \rangle \), can be thought of as fitting parameters. In order to get an agreement with the experimental results
of Hiroyasu & Kadota [43] they were taken to be \(-1/2\) and 1 respectively. The frequency of the breakup \(\nu\) was then estimated as

\[
\nu = \frac{|U_m|}{C \sqrt{\frac{\rho_2}{\rho_1}}},
\]

where the constant \(C = \sqrt{3}\) was chosen to match experimental data on the stripping breakup regime. Further developments of this model are discussed in [25, 26, 27, 28]. See [29] for further details.

The three models described in §2.1–2.3 have mainly been validated on sprays which are injected at either a constant or a slowly varying velocity. However, when comparing the results of these models to transient Diesel jet injection measurements, it has been found that the CFD simulations underestimate the observed spray penetration length at early times [6]. In this paper we produce results which show that the inclusion of a liquid core, that penetrates a certain distance into the spray before it begins to break up into ligaments and droplets, leads to predictions that agree well with the experiments. This approach is similar to that of Sazhin et al. [6], who modified the WAVE model to include this coherent core, as discussed in the next section, but many important details are different from those described in [6].

2.4. The modified WAVE model

The WAVE model described in §2.1 has been modified in [6] to account for the transient nature of the Diesel jet injection. This transient effect was incorporated by modifying the parameters from the classic WAVE model to control the rate of spray disintegration. It was assumed that an acceleration effect due to the injection process would lead to a decrease in the value of \(\Omega\), while leaving the wavelength of the critical instability \(\Lambda\) unchanged. The decrease in the value of \(\Omega\), with increasing acceleration was thought to mimic the observed relaminarisation of the flow and the thickening of the boundary layer in the gas phase surrounding the jet [45]. The thickening of the shear layer is expected to stabilise the fluid interface [46]. As the WAVE breakup time \(\tau_{bu} \sim \frac{1}{\Omega}\) the effect of the transient injection is included into the model by multiplying the model constant \(B_1\) in (2.5) by a function of jet velocity and acceleration. It is suggested that

\[
B_{1}^{\text{mod}} = B_1 \left(1 + c_1 (a^+)^{c_2}\right),
\]

(2.9)

where

\[
a^+ = 2\sqrt{\text{Re}_2} \frac{r_d}{U_{\text{inj}}^2} \frac{dU_{\text{inj}}}{dt},
\]

is the acceleration parameter, \(c_1\) and \(c_2\) are adjustable model constants and \(\text{Re}_2\) is the gas Reynolds number. This acceleration parameter is constructed in analogy with the local pressure gradient parameter suggested by Cebeci and Smith [47] assuming a laminar dependence of the local skin friction coefficient on the Reynolds number.
This model also incorporates a coherent liquid core along with the stabilizing of the disturbance growth. This core is incorporated into the model by assuming that droplet parcels in the liquid core do not experience any drag from the gas phase, and, as the injection velocity U_{inj} varies, then every parcel in the liquid core has their velocity instantaneously modified to equal U_{inj}. This is incorporated into KIVA II by using a modified version of the collision algorithm of Nordin [48] for droplets in the liquid core and the conventional algorithm by O’Rourke [49] away from the core. The radius of this liquid core is allowed to decrease due to stripping of droplets from its surface. This process continues until its radius becomes half the radius of the nozzle. After this, the modified WAVE model is activated.

Other models such as those of [11], [50] and [51] use the classic WAVE breakup model from a predetermined jet breakup length to calculate spray penetration results, but this core breakup length is estimated assuming the injection velocity is constant. In the next section we formulate a jet breakup model to approximate the liquid core which can be combined with one of the spray breakup models in §2.1–2.3 to generate predictions for the penetration length of transient Diesel sprays.

In this paper we assume that the explicit effect of viscosity on the breakup process is small enough, so that we can consider it as inviscid. Therefore, the effect of viscosity in the above four models is neglected, so $Z = T = 0$ in (2.3) and (2.4) and $\mu_1 = 0$ in (2.6). This assumption is justified later in the paper.

3. Jet breakup model for primary breakup

Computational Fluid Dynamics simulations using the droplet breakup models described in §2.1–2.3, give good agreement with experimental observations when the spray is assumed to emanate directly from the nozzle and when the injection velocity is constant or slowly varying [18, 19, 23]. But for Diesel jet experiments, the agreement is less good at early injection times [6, 33, 34]. The experiments of Crua et al. [37] and Badock et al. [39] show that these Diesel injections have a coherent liquid jet emerging from the nozzle, at least for early injection times, and these jets do not behave as a continuous string of injected droplets as is employed currently in most spray models. In this section we model the primary breakup of these jets into droplets and incorporate this model into the KIVA II code to simulate the effect of the liquid core of the spray. A similar approach was incorporated into the KIVA II code by Sazhin et al. [6]. Their model, however, was based on the introduction of two extra model constants, with no clear physical meanings, to damp the Kelvin–Helmholtz instability by jet acceleration. These constants had to be adjusted to generate the agreement with experimental data. In the model described below we only have one undetermined constant which is related to the primary breakup time of the jet.

At early injection times the experimental results of Karimi [52] show that the injection velocity of the jet, estimated from the mass flow rate, is approximately equal to velocity of the jet tip (see figure 2(b)). This suggests that at early times the jet can be approximately modelled as a rigid cylindrical body.
This assumption is supported by the experiments of Sakaguchi et al. [36] and Schugger et al. [53] who indicate that there is a conservation of momentum in the liquid core of the spray. In this case the penetration length of the solid jet, \(L_s \), is given by

\[
L_s = \int_0^t U_m(t') \, dt',
\]

where \(U_m \) is the jet velocity (see figure 1). We assume that this approximation is valid until the time when the jet first begins to break up.

Turner et al. [35] show that the breakup length of an accelerating planar jet can be well approximated by considering the integral of the group velocity of the fastest growing disturbance wave packet on the surface of the jet, from the time it is released from the nozzle, \(t - \tau_b \), to the point at which it breaks up \(t \), where \(\tau_b \) is the breakup time. Here it is assumed that disturbance waves of all frequencies are generated at the nozzle due to the injection process. This is a reasonable assumption to make because there are various mechanisms in the injection process that can induce disturbances in the jet. These mechanisms include the vibration of the injector nozzle, the vibration of the injector needle, cavitation effects within the nozzle, and fuel pressure oscillations due to the high pressure pump. The assumption that disturbances of all frequencies are generated at the nozzle is widely used in the linear stability analysis of jets and wakes [54, 55, 35], as well as being a fundamental assumption in the WAVE breakup model in §2.1. The jet breakup length, \(L_{bu} \) is determined by solving

\[
L_{bu} = \int_{t-\tau_b(U_m)}^t c_g(t') \, dt',
\]

where \(c_g \) is the group velocity of the fastest growing disturbance. This equation is valid for \(t - \tau_b(U_m) > 0 \), and for times before this, the jet has yet to breakup. Therefore, by making this coherent jet assumption for modelling the liquid core, we are assuming that the disturbance wave propagates downstream even if the liquid core is not a coherent jet, but is made up of a highly dense spray. In agreement with the WAVE model theory in §2.1, we assume that the jet has a plug flow velocity profile, with an inviscid gas phase, for all injection times, as in figure 1. For Diesel jets, a typical value for the Weber number is \(\text{We}_2 = O(10^3) \), so we can assume we are in the stripping regime for the jet breakup [19]. Therefore, \(c_g/U_m \) is solely a function of \(\text{We}_2 \), where \(c_g/U_m \) is a constant between 0.91 and 0.99 for \(q = \rho_2/\rho_1 \) between 1/10 and 1/100 in the large Weber number limit. In this study we assume that the breakup time for the jet \(\tau_b \) is identical to that of the WAVE model, \(\tau_{bu} \), given by (2.5). In the large \(\text{We}_2 \) stripping breakup limit with \(\text{Re}_1 \gg 1 \), \(\tau_b \) becomes

\[
\tau_b = B'_{1} R \frac{R}{U_m} q^{-1/2},
\]

by using (2.3) and (2.4), where \(B'_{1} \) is a model constant which should be in the same value range as \(B_1 \) in §2.1. This stripping breakup time was estimated by
fitting curves to experimental data [19, 56], and is widely used in the literature and CFD codes, such as in [18] and [32] for example. As \(\tau_b \) is a function of the jet velocity \(U_m(t) \), (3.1) cannot be solved analytically because variations in \(t \) occur in both the integrand and the upper limit of the integral, thus \(L_{bu} \) is determined numerically once \(U_m(t) \) is determined from the experimental data. The breakup length of the jet, \(L \), is then found to be

\[
L = \min(L_s, L_{bu}),
\]

at each time \(t \).

This jet breakup model is incorporated into the KIVA II code to predict the penetration length of the spray when used with one of the classic droplet breakup models from §2.1–2.3. This is achieved by releasing droplet parcels from the leading edge of the jet for \(t > \tau_b(t) \) of radius \(r_s \), which is the stable droplet radius generated by the jet in (2.2) with \(r_d = R \) and \(U_m = U_{inj} \) (Note, however, that once these droplets are released from the core their breakup characteristics are changed through (2.3)–(2.5) and so their size will continue to reduce over time and further secondary breakups of the droplet will occur). The secondary breakup of these droplets can then be determined by using one of the classic breakup models in §2.1–2.3. The WAVE model will be used in our analysis, and we make this choice because the WAVE model is a hydrodynamic stability model, as is our jet breakup model. In §5 we use this composite breakup model approach to analyse the experimentally observed results described in §4.

4. Experimental observations

In this paper we compare the results of our composite breakup model against Diesel spray experiments conducted at the University of Brighton in the Sir Harry Ricardo Laboratories. The spray visualisations were carried out using a reciprocating rapid compression machine based around a Ricardo Proteus single cylinder engine converted to liner ported, 2 stroke cycle operation [57]. The removal of the valve train allowed the fitting of an optical chamber of 80 mm in height and 50 mm diameter into the cylinder head. The optical access to the combustion chamber was provided by three removable sapphire glass windows. Due to the increased volume of the combustion chamber, the compression ratio was reduced to 9:1. The intake air was conditioned to simulate a modern Diesel engine with a compression ratio of 19:1. For the present experiments the peak in-cylinder pressures and temperatures were intentionally kept low in order to reduce the evaporation rate and inhibit autoignition. No swirl was generated, and the air was quiescent at the time of injection.

The fuel was a low sulphur reference Diesel representative of automotive Diesel fuel. It was delivered by a 2nd generation Bosch common–rail system, comprising a high–pressure pump rated at 160 MPa. The rail pressure, timing and duration of the injection were independently controlled by a custom–built fuel injection controller.
Two injectors were used for the present study. The first was a Delphi DFI1.3 injector fitted with a 7-hole valve-covered orifice (VCO) nozzle. The nozzle orifices were cylindrical with a diameter of 0.135 mm and a length of 1 mm. This injector was extensively characterised on a macroscopic scale by high-speed video and laser diagnostics [52], and was used with an injection pressure of 60 MPa into an in-cylinder pressure of 2 MPa and temperature of 410 K (\(q \approx 0.0227\)). The second injector was a Bosch VCO nozzle, with a single cylindrical orifice with a diameter of 0.2 mm and a length of 1 mm. This injector was used with an injection pressure of 160 MPa into an in-cylinder pressure of 4 MPa and temperature of 580 K (\(q \approx 0.0360\)).

The injection velocity and the discharge coefficient were measured using the long-tube rate of injection technique, and derived from the instantaneous measurements of the rate of injection [52]. The high-speed camera used for spray visualisation featured an 8-bit monochromatic CMOS sensor, and a global electronic shutter with exposures down to 2 \(\mu\)s. Compromise between acquisition rate and resolution was obtained with a frame rate of 34,300 frames per second, with a corresponding maximum resolution of 128 x 320 pixels. The processing of the video frames for measurement of the spray penetration was performed by purpose-developed software [57]. Suitable thresholding was carried out in order to pick out the tip of unbroken portion of the spray outline furthest from the nozzle on the spray axis, from the background.

From the measured mass flow rate information, we estimate the injection velocity of the jet at each nozzle as

\[
U_{\text{inj}} = \left(\rho_1 A_0 n\right)^{-1} \frac{dm}{dt},
\]

where \(A_0\) is the cross-sectional area of each nozzle and \(n\) is the number of nozzles. Therefore, for the 7-hole injector, we are only considering the spray propagation from one of the seven holes. There is little experimental information showing how the velocity profile in the jet evolves in the streamwise direction, but Sakaguchi et al. [36] shows that the mean axial velocity in this direction is approximately constant, with a slow decrease at larger downstream distances. Therefore, in our model we assume that \(U_m = U_{\text{inj}}\) for all times. For this 7-hole nozzle, the experimental spray penetration length, injection velocity and spray tip velocity are plotted in figure 2.

In the current study we assume that the liquid jet fills the nozzle completely as it injects into the cylinder, i.e. we assume no cavitation effects. This means that the injection velocity calculated from (4.1) is assumed to be the injection velocity seen in the experiment. Cavitation effects are beyond the scope of this paper, but could be incorporated into this study [22, 58], and this would correspond to modifying the injection velocity by

\[
U_m = U_{\text{inj}}/C_c,
\]

where \(C_c \leq 1\) is the contraction coefficient, which can reach a minimum of approximately 0.62 for super-cavitating flows [59].
Figure 2: Plot of (a) the experimentally observed spray penetration length for a 7–hole injector where the fuel was injected with an injection pressure $p_{inj} = 60$ MPa into stagnant air at a pressure $p_g = 2$ MPa and temperature 410 K. The temperature of the fuel was approximately 410 K and the vertical lines indicate the 20% error bars of the data. Panel (b) plots the injection and spray tip mean velocities for the same conditions.

For the single hole injector results, the spray penetration length and injection velocity is plotted in figure 3. For this injector there was initially a hesitation period in the injection (not shown) where the fluid was partially injected, and then the injection stopped, before the remaining fluid was injected without any further delay [52]. This initial hesitation period, caused by a non–axisymmetric pressure distribution on the tip of the injector’s needle, gave a non–zero penetration length caused by the initial injection of fluid. The remaining fluid then injects through on the main part of the injection. In this paper we are only interested in the second injection period as this is the main injection of the fuel, hence the hesitation time period is subtracted from the results.

For both sets of experimental data plotted in figures 2(b) and 3(b), cluster shedding was observed from the tip of the spray. This leads to fluctuations of the observed penetration length at around 40 mm, for both sets of data. This phenomenon has not been addressed in the present study. We also anticipate that the experimentally observed penetration length will be longer than that documented here, due to the spray extending beyond the windows of the optical rapid compression machine.

5. Results of the composite spray breakup model

In this section we compare results for the composite spray breakup model with the data for the 7–hole injector from §4. The composite model is incorporated into the KIVA II CFD code, and simulations are performed on a two–dimensional axisymmetric uniform mesh covering a closed engine cylinder domain, 20 mm in the radial direction and 100 mm in the axial direction. The
Figure 3: Plot of (a) the experimentally observed spray penetration length for a single hole injector where the fuel was injected with an injection pressure $p_{inj} = 160$ MPa into stagnant air at a pressure $p_g = 4$ MPa and temperature 580 K. The temperature of the fuel was approximately 490 K and the vertical lines indicate the 20% error bars of the data. Panel (b) plots the mean injection velocity for the same conditions.

Throughout the rest of this paper, all the breakup processes are assumed to be inviscid, except in figure 5 where we analyse our inviscid breakup assumption. However, viscous effects are still considered in the spray model, through the droplet/gas interaction algorithm of the KIVA II code. Before we investigate the composite breakup model, we first examine the results of the three classic spray breakup models, outlined in §2. These results are plotted in figure 4(a).

The results for the existing classic models show that each model underpredicts the penetration length of the spray for early injection times, in agreement with the results of the single hole injector presented in Sazhin et al. [6]. Curve 1 shows the result with no breakup model included. This result gives the penetration of droplets of a fixed radius, $r_d = R$, which slow down due to air resistance, and are advected in the gas phase due to the induced velocities in the gas phase caused by the droplet/gas interaction. We see that the other four results, which include breakup effects, have penetration lengths similar to curve 1 at very early times, before deviating from it as breakup occurs. The breakup causes the droplets to reduce in size and slow down more rapidly compared to the no breakup result. The two WAVE model results (curves 2 and 3) give the best approximations to the experimental penetration length, i.e. give the minimum
Figure 4: Plot of (a) the spray penetration length as a function of time for the 7-hole injector using the classic breakup models of §2. The results correspond to 1– no breakup model, 2– the classic WAVE model with $B_1 = 10$, 3– the classic WAVE model with $B_1 = 1.73$, 4– the TAB model and 5– the stochastic model. In each breakup model viscosity is neglected and the circles give the upper and lower limits of the error bars for the experimental observations. Panel (b) plots the penetration length for 1– the classic WAVE model with $B_1 = 10$, 2– the modified WAVE model, 3– the modified WAVE model only incorporating the rigid core model and 4– the modified WAVE model without taking into account the effect of acceleration on the rigid core. In each modified WAVE model result the model constants are $B_1 = 10$, $c_1 = 1$ and $c_2 = 0.2$.

error between the experimental data and the simulation at early times. Note that the circles give the upper and lower bounds for each experimental measurement. The TAB and stochastic models on the other hand, underestimate the experimental data more than the WAVE model. The maximum percentage difference between the model result and the observed data points for $t < 0.5$ ms is approximately 35 – 40%.

In figure 4(b) we examine the result of the modified WAVE model from §2.4 with $B_1 = 10$, $c_1 = 1$ and $c_2 = 0.2$. The results show that the modified WAVE model result (curve 2) gives a much better penetration length agreement with the experiment than the classic WAVE model result (curve 1). However, if we incorporate only the rigid core part (curve 3) or the effect of damped Kelvin–Helmholtz instability due to acceleration (see equation (2.9)) (curve 4) part of the modified WAVE model then, the agreement with the experiment is lost and both results have penetration lengths similar to the classic WAVE model result. This suggests that both parts of the modified WAVE model are needed to gain agreement with the experiment. However, the results of our composite model in the remainder of this section will show that only the inclusion of the liquid core is required to gain good agreement with the experiments.

For the remaining results in this paper we focus on the classic WAVE breakup model to model the secondary breakup of droplets in our composite breakup model. However, we do investigate composite models using the other two classic
breakup models later in this section as a comparison. In figure 5 we show that the inviscid assumption made on the breakup models earlier in this section is valid, and the effect of viscosity in the WAVE breakup model, with $B_1 = 10$, is to increase the penetration length slightly. In this figure viscosity is included by giving the Reynolds number for the Diesel jet, Re_1, its actual value from the experimental data, rather than assuming it is infinite. Thus, the breakup properties (2.3) and (2.4) are adjusted accordingly. The observed increase in the penetration length is due to the radius of the droplets at breakup being about 20% larger than the inviscid result, as shown in the SMR results, measured at $x = 30$ mm and $r = 0$ mm, in figure 5(b).

The effect of the coherent jet is incorporated into the KIVA II droplet model, by fixing droplets of radius $r_d = R$ in the region from $x = 0$ to $x = L(t)$. These droplets are placed a distance of $R/100$ apart and each is given the velocity U_{inj}, parallel to the jet axis. This then represents the coherent jet, which updates the gas phase velocities accordingly, via the viscous interaction with the gas phase. To make sure we have conservation of mass in our model, we take the mass of fuel injected at a time t, subtract off any fuel which remains in the coherent core (this is possible because we know $L(t)$) and the remaining mass is then assumed to be droplets which have been stripped off the coherent core.

This approximation of the coherent liquid core is cruder than that of Sazhin et al. [6] as its radius is assumed to remain constant in this study, while Sazhin et al. allowed their core radius to reduce. However, allowing this core to thin would require information about how it thins both spatially and temporally, which would introduce new parameters into this model, and besides, the only difference this would make to the current model is to allow more fuel to be dispersed as droplets rather than being held within the liquid core.
In figure 6(a) we plot both the solid jet tip position, \(L_s \), (curve 5) and the jet breakup length \(L_{bu} \) with \(B'_1 = 3, 4, 5 \) and 6, numbered 1–4 respectively, for the jet breakup model. As the value of \(c_g/U_m \) for the plug flow jet with an inviscid air layer is close to unity for this density ratio \((q \approx 1/44) \), we set it equal to one for all the results in this figure to simplify the analysis. This is acceptable at this stage as we are exploring the validity of the composite model. The results show that \(L_s \) (solid line) gives good agreement with the experimental data for \(t \leq 0.15 \text{ ms} \), which agrees with the time range where \(U_{inj} = U_{tip} \) in figure 2. The results for \(L_{bu} \) (dashed lines) can then be seen to emerge from \(L_s \) (because we have set \(c_g/U_m = 1 \)) at different times which depend on the value of \(B'_1 \) chosen. The time at which each dashed line first appears (i.e. is separated from the solid line) in figure 6(a) is the initial breakup time of the jet, which corresponds to the time where \(t = \tau_b \) in (3.1). This initial breakup time increases as the model constant \(B'_1 \) is increased. The breakup length of the jet, \(L \), is then found by taking the minimum value of \(L_s \) and \(L_{bu} \) for each time value. The results in figure 6(a) show that the breakup length of the jet follows the leading edge of the jet up to the point at which the jet initially breaks up. It then increases more slowly, and eventually levels out to a constant breakup length which is less than the penetration length of the observed spray. This leveling off of \(L_{bu} \) is due to the injection velocity \(U_{inj} \) becoming approximately constant in figure 2(b).

When we include the classic WAVE spray model of the KIVA II code to act on this breakup length, with \(B_1 = B'_1 \), we generate the predicted penetration lengths of the spray which are given in figure 6(b), where again curves 1–4 show the results for \(B'_1 = B_1 = 3, 4, 5 \) and 6 respectively. These penetration results follow the jet breakup results from figure 6(a) initially and then once the breakup length of the jet levels off, the penetration length increases at a slower
rate which is similar to the rate of increase seen in the classic WAVE model results in figure 4(a). The results in figure 6(b) show that there is a small range of B'_1 values where the composite model results lie within the error bars of the experimental results. For this particular example this range is approximately $B'_1 \in [4, 6]$, and the agreement is generally good for $t \lesssim 0.5$ ms.

![Graphs showing tip penetration vs. time](image)

Figure 7: Plot of (a) $L_s(t)$ (curve 3) and L_{Lev}^{bu} for the 7-hole injector with $C_L = 4.91$ (curve 1) and 3.91 (curve 2). Panel (b) plots the penetration length of the spray by the composite model with $B_1 = 5$ in the classic WAVE breakup model. The circles give the upper and lower limits of the error bars for the experimental observations.

This composite breakup model approach can also be implemented using the classical Levich breakup length formula \cite{61} for an injecting jet at a constant velocity. This formula states that

$$L_{Lev}^{bu} = C_L R q^{-1/2},$$

where C_L is an adjustable model constant. Figure 7(a) plots $L_{Lev}^{bu}(t)$ for $C_L = 4.91$ (curve 1) and 3.91 (curve 2) and figure 7(b) plots the corresponding penetration length with $B_1 = 5$. The result with $C_L = 4.91$ has a jet breakup length which is approximately equal to that of the quasi–steady approach with $B'_1 = 5$, and we see that the penetration length slightly over–estimates the experimental results around $t = 0.2$ ms. However, the agreement can be improved by by reducing the value of C_L, which like B'_1 is nozzle dependent, to 3.91 (curve 2). While using L_{Lev}^{bu} instead of the quasi–steady L_{bu} may be acceptable in certain cases, the benefit of the quasi–steady result is that the transient behaviour of the injection is taken into account. Therefore, we recommend the use of the quasi–steady break–up length (3.1) in numerical simulations.

In figure 8 we plot the breakup length and penetration results, as in figure 6, except for the single hole injector. This is to demonstrate that the composite model predicts accurate results for a range of different injection conditions. As for the 7–hole case, we find good agreement for the jet breakup length for
Figure 8: Plot of (a) $L_s(t)$ (curve 5) and $L_{bu}(t)$ for the single hole injector with $B'_1 = 2$, 2.5, 3 and 3.5 represented by curves 1–4 respectively. Panel (b) plots the penetration length of the spray predicted with with $B_1 = B'_1$ in the classic WAVE breakup model. The circles give the upper and lower limits of the error bars for the experimental observations.

t ≤ 0.15 ms, but here the values of B'_1 chosen to gain the agreement with the experimental data are less than in the 7–hole case, and so these results give a slightly shorter breakup length. This result agrees qualitatively with the experiments of Yule & Filipovic [38], who show that the breakup length of the liquid core decreases with both an increased value of p_{inj} and p_g. When we include the WAVE spray breakup model with these jet breakup length predictions in figure 8(b), we again see that we get penetration results that agree well with the experiment. Here, however, the agreement is only good for $t \lesssim 0.35$ ms, which is a shorter time range than for the 7–hole injector. But this is to be expected, because at these high injection pressures (and thus velocities) we expect effects such as cavitation to be important [62]. Hence the fact that this approach gives agreement even for this small time range should be considered as encouraging.

In figure 9 we plot the composite model results and the modified WAVE model results for (a) the 7–hole and (b) the single hole injectors. These results show that the jet composite model produces penetration length results which agree well with the experiments and with the corresponding modified WAVE model results. In §7 we find that our composite model results agree even better with the experiments after we modify the model to give a spray shape that agrees better with experiments. The corresponding values of B^mod_1 for each modified WAVE model result is plotted in panel (c). This panel shows that the modified WAVE model damps the Kelvin–Helmholtz instability, for each data set, by increasing the value of B^mod_1 in comparison to the value of B_1. This increase remains even at later injection times, with $B^\text{mod}_1 \approx 16$, and returns to $B^\text{mod}_1 = 10$ when $a^+ < 0$ due to $0 < c_2 < 1$. This larger value of B^mod_1 means the droplets reduce in size slower from (2.1), so they are larger with more momentum at later times, thus the penetration length is longer. At very
Figure 9: Plot of the penetration length for both the composite model (curve 1) and the modified WAVE model (curve 2) for (a) the 7-hole injector and (b) the single hole injector. In panel (a) $B'_1 = B_1 = 5$ for the composite model and $B_1 = 10$, $c_1 = 1$ and $c_2 = 0.2$ for the modified WAVE model, while in panel (b) $B'_1 = B_1 = 2.5$ for the composite model and $B_1 = 10$, $c_1 = 0.5$ and $c_2 = 0.2$ for the modified WAVE model. Panel (c) plots the value of B_1^{mod} for each of the modified WAVE model results. The circles in (a) and (b) give the upper and lower limits of the error bars for the experimental observations.
early times, the value of B_{1}^{mod} is a factor of 3 or 4 times larger than the value of B_{1}, which would be the value of this constant in the steady jet case. This would correspond to an unsteady breakup time 3 or 4 times longer than the quasi–steady result from (3.2). However, the work of Turner et al. [35] does not support this four fold increase in the jet breakup time, which suggests that the composite model in this paper is more physically correct than the modified WAVE model.

Figure 10: Plot of (a) the penetration length and (b) the SMR, at $x = 30$ mm and $r = 0$ mm, for the composite breakup model with each of the three classic droplet breakup models WAVE (solid line), TAB (dashed line) and stochastic (dotted line) for modelling the secondary breakup process, with $B_{1}^{'} = 5$ in the jet breakup model. This result is for the 7–hole injector with the results of all three models practically indistinguishable from one another in each panel. The circles give the upper and lower limits of the error bars for the experimental observations.

Figure 10 replots the composite WAVE model result for the 7–hole injector of figure 6(b) with $B_{1}^{'}, = 5$, along with composite model results using the TAB and stochastic breakup models. This figure shows that penetration length results, which are in good agreement with the experimental observations, can be generated via composite models using any of the classic spray breakup models in §2.1–2.3. Here we find that all three results are practically indistinguishable from one another. This uniformity of the results is because we have removed the need for the unified droplet models to predict the primary breakup of the jet, and as such, the spray models here are only modelling the secondary breakup process. This agreement between the three models makes the inclusion of the jet breakup model even more convincing, and preferable to the modified WAVE model, because the secondary breakup can be described by any model without the need to damp the breakup process in these models.

The composite breakup model in its current form does need some improvements made, because the current shape of the spray does not agree well with the experimental data (see figure 17). This is because, although we have adjusted
the total mass of fluid injected as droplets to take into account the mass of remaining fuel in the coherent core, we only release parcels of droplets with radius
\(r_d = r_s (\text{calculated with } U_m = U_{\text{inj}} \text{ and } r_d = R) \) from the end of the jet and with a velocity vector parallel to the axial direction of the jet. Therefore, there is no randomised droplet velocities at breakup, unlike in the classic breakup models. The correction for this issue is addressed in §7. However, another issue which needs to be addressed for both the jet breakup model and the WAVE spray model is the form of the velocity profile on which the linear stability analysis is performed. In the literature to date, the profile used is a plug flow jet shown in figure 1, and this profile has a velocity discontinuity at the fluid interface. However, in the actual experiments, the gas phase is viscous and so there exists a finite thickness shear layer in the gas phase. In §6 we examine the stability of such a profile, and investigate how it affects the results generated in §5.

6. Stability analysis of a liquid jet in a viscous gas phase

The velocity profile used in the stability analysis for the classic WAVE model assumes that the gas phase surrounding the jet is inviscid and therefore there is a discontinuity in velocity between the liquid and gas phases at the fluid interface, see figure 1 [63, 64]. This velocity discontinuity means that, in the absence of viscosity, the growth rate properties of the instability waves generated by small disturbances in the jet, are determined solely by the surface tension of the liquid jet. This can be seen in expressions (2.3) and (2.4). However, in experiments the gas phase is viscous and so, due to the continuity of viscous stress at the fluid interface, there exists a finite thickness shear layer in the gas phase, as is schematically shown in figure 11. In this section we examine the stability properties of this type of velocity profile, and we show that the properties of the instability waves for this profile are not determined by the surface tension at large Weber numbers, but instead are determined by the thickness of the shear layer. This instability is known as the Rayleigh instability [65, 66].

The major difference between the profile in figure 11, with a non–zero shear layer, and that in figure 1, is that no analytical dispersion relation can be derived, and therefore the stability properties, such as the form of \(\Lambda \) and \(\Omega \), have to be determined numerically. In this study we use a piecewise linear velocity profile with a linear profile in the shear layer, because we wish to determine whether or not the existence of such a shear layer is significant to the breakup properties. The approach suggested in this paper could also be used to investigate the stability properties of more realistic shear layer profiles, but we expect these results to be qualitatively similar to those produced in this paper. The piecewise linear profile in figure 11 has discontinuities in velocity gradient at \(r = R \) and \(r = (1 + \delta)R \), but the works of Esch [67] and Alabduljalil & Rangel [68] show that the properties of the fastest growing disturbance are very similar for both a piecewise linear profile and the smoothed version of the same profile.

To determine the stability equation for the velocity profile in figure 11 we first consider the Euler equations for an incompressible inviscid flow in cylindrical polar coordinates. The Euler equations are the usual Navier–Stokes equations
Figure 11: Plot of the piecewise linear axial velocity profile $U(r)$ which incorporates a viscous gas phase outside of the jet, giving a continuous velocity profile at $r = R$. The thickness of the shear layer in the gas phase is δR.

with the viscous terms neglected. To determine whether or not the velocity profile in figure 11 is useful to the composite model, we consider an inviscid stability analysis, but viscous effects could be included by incorporating the viscous diffusion terms into the analysis below. Therefore, we do not explicitly consider the effect of viscosity in the breakup process, but we consider the effect of viscosity implicitly by the inclusion of the shear layer in the gas phase.

Assuming that the velocity components $(\tilde{u}, \tilde{v}, \tilde{w})$ are in the (x, θ, r) directions respectively where x is the axial coordinate, the Euler equations take the form

\begin{align*}
\frac{1}{r} \frac{\partial (r \tilde{w})}{\partial r} + \frac{1}{r} \frac{\partial \tilde{v}}{\partial \theta} + \frac{\partial \tilde{u}}{\partial x} &= 0, \quad (6.1) \\
\frac{\partial \tilde{w}}{\partial t} + \tilde{w} \frac{\partial \tilde{w}}{\partial r} + \frac{\tilde{v}}{r} \frac{\partial \tilde{w}}{\partial \theta} + \frac{\tilde{u}}{r} \frac{\partial \tilde{w}}{\partial x} - \frac{\nu^2}{r} &= -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial r}, \quad (6.2) \\
\frac{\partial \tilde{v}}{\partial t} + \tilde{w} \frac{\partial \tilde{v}}{\partial r} + \frac{\tilde{v}}{r} \frac{\partial \tilde{v}}{\partial \theta} + \frac{\tilde{u}}{r} \frac{\partial \tilde{v}}{\partial x} - \frac{\nu^2}{r} &= -\frac{1}{\rho r} \frac{\partial \tilde{p}}{\partial \theta}, \quad (6.3) \\
\frac{\partial \tilde{u}}{\partial t} + \tilde{w} \frac{\partial \tilde{u}}{\partial r} + \frac{\tilde{v}}{r} \frac{\partial \tilde{u}}{\partial \theta} + \frac{\tilde{u}}{r} \frac{\partial \tilde{u}}{\partial x} &= -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x}. \quad (6.4)
\end{align*}

We assume that the jet has a velocity vector which consists of a basic flow $(U(r), 0, 0)$, which only depends upon the radial coordinate, and a small perturbation which consists of disturbance waves with streamwise wavenumber α, azimuthal wavenumber n and angular frequency ω. Therefore, the velocity and
pressure components take the form

\[\tilde{w}(r, x, t) = \epsilon w(r) \exp \left[i(\alpha x + n\theta - \omega t) \right], \tag{6.5} \]

\[\tilde{v}(r, x, t) = \epsilon v(r) \exp \left[i(\alpha x + n\theta - \omega t) \right], \tag{6.6} \]

\[\tilde{u}(r, x, t) = U(r) + \epsilon u(r) \exp \left[i(\alpha x + n\theta - \omega t) \right], \tag{6.7} \]

\[\tilde{p}(r, x, t) = P(r) + \epsilon p(r) \exp \left[i(\alpha x + n\theta - \omega t) \right], \tag{6.8} \]

where \(\epsilon \ll 1 \) and the lower case letters give the radial dependence of the perturbation.

These expressions are substituted into the Euler equations and linearized about \(\epsilon \). Therefore, retaining only terms of \(O(\epsilon) \) we have

\[\frac{1}{r} \frac{\partial (rw)}{\partial r} + \frac{iv}{r} + i\alpha u = 0, \tag{6.9} \]

\[-i\omega w + i\alpha Uw = -\frac{1}{\rho} \frac{\partial p}{\partial r}, \tag{6.10} \]

\[-i\omega v + i\alpha Uv = -\frac{inp}{\rho}, \tag{6.11} \]

\[-i\omega u + i\alpha Uu + \frac{dU}{dr} w = -\frac{i\alpha p}{\rho}. \tag{6.12} \]

As in [69, 70, 71], we focus our analysis in this section on axisymmetric disturbances \((n = 0) \), and neglect any contribution to the breakup process by non-axisymmetric disturbances. We make this assumption because we are considering the inviscid stability of the profile in figure 11, and [69] and [70] show that the disturbance wave with the largest growth rate is the axisymmetric mode, at large Weber numbers, in the inviscid and small viscosity cases respectively.

Eliminating \(u, v \) and \(p \) from the above four equations leads to the Rayleigh equation for \(w \)

\[(\alpha U - \omega) \left(\frac{d^2 w}{dr^2} + \frac{1}{r} \frac{dw}{dr} - (1 + \alpha^2 r^2) \frac{w}{r^2} \right) + \alpha \left(\frac{1}{r} \frac{dU}{dr} - \frac{d^2 U}{dr^2} \right) w = 0. \tag{6.13} \]

This equation is solved for the temporal eigenvalue \(\omega \) for a fixed value of \(\alpha \), where the eigenmode \(w \) satisfies the homogeneous boundary conditions

\[w(r = 0) = 0, \quad \text{and} \quad w(r \to \infty) = 0. \]

The velocity profile given in figure 11 can be split into three distinct regions given by

\[U(r) = \begin{cases}
U_m & 0 < r \leq R \\
U_m \left(1 - \frac{r - R}{\delta r} \right) & R < r < R + \delta R \\
0 & R + \delta R < r
\end{cases}, \tag{6.14} \]

where \(U_m \) gives the jet velocity magnitude, and \(\delta \) is the dimensionless thickness of the shear layer. The Rayleigh equation (6.13) is solved along with two
supplementary equations which describe the continuity of both pressure and tangential stress forces at the free surface, \(r = R \). These equations are

\[
\begin{align*}
\frac{w_1}{\alpha U_1 - \omega} &= \frac{w_2}{\alpha U_2 - \omega}, \\
\rho_1(\alpha U_1 - \omega) &\left(\frac{dw_1}{dr} + \frac{w_1}{r} \right) - \rho_1 \alpha \frac{dU_1}{dr} w_1 \\
-\rho_2(\alpha U_2 - \omega) &\left(\frac{dw_2}{dr} + \frac{w_2}{r} \right) + \rho_2 \alpha \frac{dU_2}{dr} w_2 = -\frac{\sigma \alpha^2 (1 - \alpha^2 r^2) w_1}{r^2 (\alpha U_1 - \omega)},
\end{align*}
\]

(6.15)

(6.16)

where \(\sigma \) is the surface tension and the subscripts 1 and 2 refer to the solutions in \(0 < r \leq R \) and \(R < r < R(1 + \delta) \) respectively. As we are using a piecewise linear velocity profile in this study, we also need to use the conditions (6.15) and (6.16) at \(r = R(1 + \delta) \) to jump over the discontinuity in the velocity gradient. However, as this discontinuity occurs in the same fluid phase, these equations are used with \(\sigma = 0 \).

The Rayleigh equation (6.13) is solved for a complex \(\omega \) for each real value of \(\alpha \) using a shooting method technique \cite{72}. We start by guessing an initial value for the eigenvalue \(\omega \) for a given value of \(\alpha \), and begin integrating radially outwards from \(r = 0 \). At this point we have the boundary condition \(w = AI_1(\alpha r) \), and \(dw/dr = A(\alpha I_0(\alpha r) - I_1/r) \), where \(I_0 \) and \(I_1 \) are modified Bessel functions of the first kind. These conditions are determined by solving (6.13) at small \(r \), where \(U = U_m \). We integrate (6.13) up to the fluid interface at \(r = R \), where we use (6.15) and (6.16) to jump over the interface, by giving the change in \(w_2 \) and \(dw_2/dr \) across the interface, and we then continue integrating to large \(r \) values.

In the large \(r \) limit we expect

\[w = BK_1(\alpha r), \]

where \(B \) is a constant and \(K_1 \) is the modified Bessel function of the second kind. We can now check if \(w \) behaves in this manner, else we update \(\omega \) and repeat the integration process until \(w \) behaves in the correct manner. The value of \(\omega \) is updated using Newton iterations by noting that

\[
\frac{1}{w} \left(\frac{d}{dr} \left(w \frac{dw}{dr} \right) \right) \sim -\alpha K_0(\alpha r)/K_1(\alpha r) - \frac{1}{r},
\]

for large \(r \).

In figure 12 we plot the stability analysis results for \(\delta = 0.025, 0.05, 0.1, 0.2 \) and 0.3 numbered 1–5 in each panel. We plot these results for \(We_1 = 10^5 \), to give the case for large Weber numbers, but these results are identical for \(We_1 \) down to \(10^3 \). As typical Weber number values for Diesel injections lie in the range \(We_1 \in [10^3, 10^5] \), these results are valid for this entire range. Panel (a) plots the non–dimensional wavenumber \(R\delta \alpha_m \) of the fastest growing wave as a function of \(q \). We choose to plot the quantity \(R\delta \alpha_m \) because for these values of \(\delta \) the results almost collapse onto one single result for \(q \in [1/100, 1/10] \). For a single planar shear layer, where the only length scale is the shear layer thickness,
Figure 12: Plot of (a) the non-dimensional wavenumber $R\delta \alpha_m$ of the fastest growing wave, (b) the maximum growth rate $R\Omega/U_m$ at $R\alpha = R\alpha_m$ and (c) the wave speed c_g/U_m at $R\alpha = R\alpha_m$, all as a function of q, for $We_1 = 10^5$. In each panel the results are plotted for $\delta = 0.025$, 0.05, 0.1, 0.2 and 0.3, numbered 1–5 respectively, and the solid lines in panels (a) and (b) are the approximations $R\delta \alpha_m \approx 1.1q^{0.45}$ and $R\Omega/U_m \approx 0.55q^{0.95}$ respectively.
Marmottant & Villermaux [66] showed that the results for $\hat{\delta}\alpha_m$ were solely a function of the quantity δWe^2, i.e. independent of δ, where δ is the dimensional shear layer thickness. The problem here, however, is more complicated because we have a second length scale in the problem, that of the jet radius, so the results do not collapse exactly onto one single result. However, the results do collapse quite well in the range of q values that we are interested in ($q \in [1/100, 1/10]$), and in fact in this region $R\delta\alpha_m \approx 1.1q^{0.45}$, which is the estimate given by the solid line. The result for the maximum growth rate $R\delta\Omega/U_m$ in panel (b) however, is more sensitive to having two length scales in the problem, but we still find a reasonable collapse of the results for $q \in [1/100, 1/10]$. As the value of δ increases this agreement becomes less visible as can be seen for the $\delta = 0.2$ and 0.3 results. However, as we have no experimental results to determine an exact value for δ, we make the approximation for the results in panel (b) of $R\delta\Omega/U_m \approx 0.55q^{0.95}$ (solid line) so that we can illustrate the effect of a viscous gas phase in the composite breakup model. The thickness of the shear layer is also likely to vary for different injection pressures and different nozzle types. The results of Turner et al. [35, 73] show that $\delta \in [0.1, 0.3]$ by using CFD simulations to model the Diesel injection process. Panel (c) shows that there is no way to easily collapse the value of the group velocity of the wave packet onto one solution, so we just note that in the range $q \in [1/100, 1/10]$ the group velocity $c_g/U_m \in [0.7, 0.95]$. The effect of this group velocity, being lower than the group velocity of the Kelvin–Helmholtz problem, on the model will be discussed in §7.

In figure 13 we plot (a) $R\omega_i/U_m(\alpha)$ for $We_2 = 0.2, 0.4$ and 1 numbered 1 − 3 respectively and (b) $R\alpha_m(We_2)$ for $\delta = 0.1$ and $q = 1/50$. This figure shows the transition from the Kelvin–Helmholtz instability to the Rayleigh instability as We_2, and hence the influence of the shear layer, increases.

In figure 13 we plot (a) $R\omega_i/U_m(\alpha)$ and (b) $R\alpha_m(We_2)$ for $\delta = 0.1$ and $q = 1/50$ showing the transition from the zero thickness shear layer Kelvin-Helmholtz instability to the finite thickness shear layer Rayleigh instability.

Figure 13: Plot of (a) $R\omega_i/U_m(\alpha)$ for $We_2 = 0.2, 0.4$ and 1 numbered 1 − 3 respectively and (b) $R\alpha_m(We_2)$ for $\delta = 0.1$ and $q = 1/50$. This figure shows the transition from the Kelvin–Helmholtz instability to the Rayleigh instability as We_2, and hence the influence of the shear layer, increases.
Panel (a) shows the non-dimensional growth rate curve which is initially dominated by a peak around $R\alpha = 0.5$ but as W_{e2} is increased, i.e. the influence of the shear layer is increased, a second peak appears around $R\alpha = 2$ and rapidly increases in magnitude over a very short range of W_{e2} values. This is illustrated in panel (b) which shows the rapid transition of the value of R_{α_m}. For these values of δ and q the transition occurs around $W_{e2} = 1$, and for Diesel jet injections $W_{e2} = W_{e1}q \in [20, 2000]$ so we can clearly see that we are in the regime where the thickness of the shear layer is significant to the stability characteristics of the jet. Thus using the stability results (2.3) and (2.4) is not the correct approach for this case. We propose the following alternative approximation for these values from the best fit lines in figure 12:

$$\Lambda \approx 5.71q^{-0.45}\delta R, \quad (6.17)$$

$$\Omega \approx \frac{0.55q^0.95U_m}{\delta R}, \quad (6.18)$$

for $q \in [1/100, 1/10]$ and for values of $\delta \in [0.025, 0.3]$.

These new results can be incorporated into the WAVE model in the droplet stripping regime by defining the new break up time and stable droplet radius as

$$\tau_{bu} = 3.141 \frac{B_1R}{\Lambda \Omega^2}, \quad (6.19)$$

$$r_s = \frac{0.39\Lambda}{W_{e1}^{0.45}\delta}. \quad (6.20)$$

These variables are determined using the same conditions as were used to derive (2.5) and (2.2). Notably, the constant 3.141 in (6.19) is found such that (6.19) reduces to (3.2) for high speed flows, and (6.20) is determined using the threshold for bag breakup $W_{e2} = 6$ [19], and rearranging (6.17) to solve for $R \equiv r_s$, noting that $q = W_{e2}/W_{e1}$. By examining the forms of r_s in the large W_{e1} limit, from the first equation of (2.2) (with $Z = T = 0$) and (6.20), we find

$$r_{sKH}^R = \frac{5.98R}{W_{e2}},$$

$$r_{sR}^R = \frac{2.23R}{W_{e2}0.45},$$

which shows that the droplets formed at breakup by the Rayleigh instability are larger than those of the Kelvin–Helmholtz instability. This fact turns out to be significant for the results in the next section.

The form of (6.17) and (6.18), which have been chosen to approximate the linear stability data, means that the results in §7 are independent of the value of δ, as can be seen above. But for the values of q we are interested in, we expect the small deviations from these approximations in figure 12 to only make a small difference to our results. The reason for making the approximations we did in (6.17) and (6.18) is to allow this new profile to be easily incorporated into existing spray and jet breakup models without the need to re-solve the Rayleigh
equation. This will benefit those who wish to incorporate this velocity profile into these breakup models, and have little experience of solving the Rayleigh equation.

![Graphs](image)

Figure 14: Plot of the classic WAVE model result with $B_1 = 10$ from figure 4 (solid curve) and the corresponding result for the velocity profile with a finite thickness shear layer in the gas phase (dashed curve) for (a) the penetration length and (b) the SMR at $x = 30$ mm and $r = 0$ mm.

7. Results of the composite spray breakup model with a viscous gas phase

In this section we examine results for the composite breakup model which uses the stability theory of the piecewise linear velocity profile with the viscous gas phase from §6. We also examine the shape of the sprays to see whether or not the shapes predicted by the viscous gas model agree with experimental observations. However, before we investigate the composite model, we briefly investigate how the new model parameters (6.17) and (6.18) modify the results of the classic WAVE model in figure 14. These results show that the viscous gas velocity profile with the shear layer in the gas phase makes no significant difference to the penetration result for the classic WAVE model. However, panel (b) shows that the radius of the droplets produced by the stripping process are increased by approximately 25% on average. The significance of this is seen later in this section.

In figure 15(a) we plot the penetration length of the spray for the single hole injector, comparing the composite model incorporating both the WAVE breakup model with the inviscid gas phase profile and the WAVE model with the viscous gas phase profile and the classic WAVE model, which has no coherent jet, with $B'_1 = B_1 = 2.5$. These results show that the two composite models give very similar penetration lengths and both these differ greatly from the classic WAVE model. Figure 15(b) shows the SMR at $x = 30$ mm and $r = 0$
Figure 15: Comparison for the single hole nozzle experiment of the composite model incorporating the WAVE model with an inviscid gas phase velocity profile (result 1), the composite model incorporating the WAVE model with a viscous gas phase velocity profile (result 2) and the classic WAVE model result (result 3) each with $B_1' = B_1 = 2.5$ for (a) the penetration length and (b) the SMR at $x = 30$ mm and $r = 0$ mm. The SMR results are averaged over 4 data points to smooth the results and make them more informative. The experimental data points in (b) come from [74].

mm for the three models, and the solid circles give experimental data points of the average SMR taken in the vicinity of this point [74]. It is clear from panel (a) that the two composite model results are going to agree better with the first data point than the classic model because the penetration length is well predicted by these composite models. The two composite model results are also in good agreement with the experimental data points for $t > 0.3$ ms, which shows that this composite model produces correct droplet sizes in the spray. As both composite models produce a similar level of agreement with the experimental points, it appears that the modification of the WAVE model in §6 is not required. However, when we look at the shape of the generated spray and the droplet size distribution in the spray, we see that this modification does make a difference.

Figure 16 shows an image of one of the sprays from the experiment for the 7–hole injector taken at 0.5 ms after injection. It shows that the spray near the nozzle has a conical shape, where droplets are expected to be stripped off the side of the coherent core, but the main part of the core is masked by the droplets (as found in the experiments of Yule & Filipovic [38]). This figure shows a very dense central region of droplets for $x \lesssim 23$ mm which we expect to behave as an intact liquid core (cf. the experimental results of Sakaguchi et al. [36]). When we examine the spray shape from the different breakup models in figure 17 we see similarities between these results and the experimental result in figure 16.

The spray shape results in figure 17 show that the classic WAVE model (panel (a)) gives a good overall spray shape but with a poor penetration length
prediction at early times (see figure 4(a)). This classic model also has a string of droplets for $x < 10$ mm, which approximate the coherent liquid core, which decreases in radius before thickening out at the point of primary breakup. However, the experimental result in figure 16 shows a dense spray region which has a radius that increases slightly for $x < 10$ mm. The composite WAVE model result with the inviscid velocity profile (panel (b)) gives a good penetration length prediction for $t < 0.5$ ms but a poor spray shape. This is due to the missing random droplet velocity direction at primary breakup which the classic WAVE model has included in its formulation. In panels (c) and (d) we consider the composite WAVE model with the instability data from the inviscid gas phase velocity profile and the viscous gas phase velocity profile respectively. For these two results we have randomised our droplet velocities by introducing a cone angle of 20° in which the droplets can leave both the end and the side of the jet. This value was used because it was measured in the experiments of Karimi [52] for this injection nozzle. We have also allowed the injected droplets, at each time value, to be randomly released from the side of the jet, and not just from the tip, in the range $[0.25, 1] \times L_{bu}$. This is possible without violating mass conservation, because we are still stripping the same, N say, droplets from the core, but they are now allowed to leave the side of the core as well as from the tip. However, at this stage we still allow the core to remain cylindrical. This approach is taken because experiments, such as those of Yule & Filipovic [38], show an intact column of fluid surrounded by droplets which have been stripped off the side of the column. In this study we use the value of 0.25 but this will depend upon the type of injector used, and possibly on the values of p_{inj} and p_g. This value is chosen because the observed spray shown in figure 16 appears to have a region for $x \lesssim 10$ mm where the main part of the spray remains approximately cylindrical, before spreading out for $x \gtrsim 10$ mm where there is a
Figure 17: Plot of the spray shapes for the 7-hole injector at $t = 0.5$ ms for (a) the classic spray model, (b) the composite model with the inviscid gas phase profile and zero spray angle, (c) the composite model with the inviscid gas phase profile and 20° spray angle and (d) the composite model with the viscous gas phase profile and 20° spray angle, all with $B_1 = B'_1 = 5$. In panel (a) all the droplets are 10 times actual size, in panels (b) and (c) the droplets are 20 times actual size, the jet is 2 times actual size and in panel (d) the droplets are 10 times actual size, and the jet is 2 times actual size. See figure 18(b) for droplet sizes.

dense region of droplets, and this value also gives results which agree with this behaviour (figures 17(c) and 17(d)).

In panels (c) and (d) we note that the predicted shape of the sprays is closer to the observed one for the case where the viscous gas phase is considered. This is because this model produces droplets with larger radii as they are stripped off the coherent jet. These larger droplets have greater momentum than the smaller droplets in panel (c), and hence are distributed wider into the gas phase. If we were also to include viscosity explicitly into our breakup mechanism then the droplets would be larger still, allowing them to penetrate further into the gas phase which is likely to give a shape which agrees better with that of the experimental spray in figure 16. The effect of viscosity, however, is not considered in this paper as we are focused on understanding how to generate more accurate penetration length results whilst still predicting droplet distributions and spray shapes which give reasonable agreement with experiments. By introducing the cone angle to the simulation we slightly reduce the penetration length of the spray, which can be seen in figure 18(a), but the results still fall within the error bars of the experimental data up to $t \approx 0.6$ ms. Figure 18(b) shows the droplet size distribution function, $f(r_d) = F(r_d)/N$, for 0.1 µm intervals found in the spray, where $F(r_d)$ is the droplet number distribution defined in §2.3 and N is the total number of droplets. This figure shows that the two spray results 17(b) and 17(c), which both use the inviscid velocity profile, contain smaller droplets on average compared to the classic WAVE model and the viscous gas phase velocity profile model. The classic WAVE and viscous gas phase models both
contain a peak droplet radius of approximately 3 \(\mu m\). The classic WAVE model obviously contains regions of larger droplets due to the way primary breakup is implemented through (2.1), but the range of most frequent droplet sizes is very similar to the composite model.

Figure 18: Plot of (a) the penetration lengths for the results plotted in figure 17 and (b) the size distribution, \(f(r_d)\), of droplets for 0.1 \(\mu m\) intervals about \(r_d\). The labels correspond to the individual panel labels.

From figure 12(c) we observe that the value of \(c_g/U_m\) for Diesel jets with a finite thickness shear layer is usually less than 1, whereas we have assumed it to be exactly 1 so far in this paper. However, considering a more realistic value of \(c_g/U_m\) does not affect the results presented in this paper, as we see in figures 19 and 20. In these figures we consider the 7-hole injector experiment and assume that \(\delta = 0.1\), and thus \(c_g/U_m = 0.81\) from figure 12(c) for \(q = 0.0227\). In figure 19(a) we see that this value of \(c_g/U_m\) means that the \(L_{bu}\) curves no longer join onto the \(L_s\) curve, and there is a discontinuity in the breakup length at this point. In figure 19(b) we observe what effect this has on the penetration lengths generated using the KIVA II code. We find that the calculated penetration length is reduced slightly from the \(c_g/U_m = 1\) result, because the breakup lengths themselves are slightly reduced, and the discontinuity in \(L_s\) and \(L_{bu}\) can be seen in figure 19(a) between 0.1 ms \(\leq t \leq 0.2\) ms. The reduction in the breakup length can be overcome by increasing the model constant \(B'_1 = B_1\), where we now find that \(B'_1 = B_1 = 7\) gives better results rather than \(B'_1 = B_1 = 5\), but \(B'_1 = B_1 = 7\) still lies within the range of acceptable values discussed earlier.

We can eliminate the discontinuity between \(L_s\) and \(L_{bu}\) by relaxing our assumption that the velocity throughout the core, in particular at the tip of the core, is constant and equal to \(U_{inj}\). This approach is more realistic and is supported by the experiments of Sakaguchi et al. [36], who find a slow decrease in the velocity within the core in the streamwise direction, i.e. the tip velocity.
Figure 19: Plot of (a) $L_s(t)$ (curve 4) and $L_{bu}(t)$ for the 7-hole injector with $B'_1 = 5, 6$ and 7 represented by curves 1 – 3 respectively with $c_g/U_m = 0.81$ in the jet breakup model. Panel (b) plots the penetration length of the composite model with $B_1 = B'_1$ in the WAVE breakup model.

is less than the injection velocity. A similar example of this streamwise velocity variation can be seen for a planar jet in Söderberg & Alfredsson [75]. Here we aim for qualitative agreement with the behaviour seen in [36], so we assume that

$$U_{tip} = U_{inj}(1 - U't),$$

(7.1)

where U' is a constant which is adjusted to ensure that L_s (curve 3) meets the curve L_{bu} (curve 2) as shown in figure 20(a). This occurs for $U' \approx 1625$ s$^{-1}$. This is solely an aesthetic change to the penetration length we calculate, as we have not assumed that any droplet parcels have been released from the jet before this time, as we are in the region $t < \tau_b(t_b)$. The resulting penetration length can be seen in figure 20(b). In theory one could then adjust the velocities (and thus the size) of the droplets leaving the core, but this would require a spatio-temporal evolution of the core, which is not available at this time. All the sprays shown in figures 19 and 20 have shapes and size distributions very similar to that in figure 17(d), so this different value of c_g/U_m does not affect the spray characteristics.

8. Conclusions

This paper describes a composite breakup model for the analysis of transient sprays, such as those found in Diesel engines. The core of the spray, consisting of a jet, ligaments and densely packed droplets, was modelled as a coherent liquid jet which undergoes primary breakup. The characteristic breakup time and length of the core were defined using linear stability analysis of a liquid jet. This model was composed with the classic WAVE breakup model and incorporated into the CFD package KIVA II to produce spray penetration results which
agreed well with the experimental observations for transient Diesel fuel sprays [52]. In comparison with the spray breakup model of Sazhin et al. [6], who incorporated the effect of the coherent liquid core, the present model does not require empirical parameters to control the viscous damping of the Kelvin–Helmholtz instability due to jet acceleration, to obtain agreement with experiments.

We also investigated the linear stability of a velocity profile which incorporated a finite thickness shear layer in the gas phase, which is more realistic than the plug flow profile assumed in the derivation of previous models of jet breakup [19, 63]. The inclusion of the viscous velocity profile predicted that larger droplets are stripped from the core at primary breakup in the large Weber number stripping regime compared to the inviscid velocity profile. This gave spray shapes which agreed better with the experimental observations.

Acknowledgments

This work is supported by the EPSRC under grants EP/F069855/1 and EP/G000034/1.

References

