University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Probabilistic Methods for Service Clustering

Barnaghi, P, Cassar, G and Moessner, K Probabilistic Methods for Service Clustering In: SMR2 2010, 2010-11-08 - 2010-11-08, Shanghai, China.

Available under License : See the attached licence file.

Download (213kB)
Text (licence)

Download (33kB)


This paper focuses on service clustering and uses service descriptions to construct probabilistic models for service clustering.We discuss how service descriptions can be enriched with machine-interpretable semantics and then we investigate how these service descriptions can be grouped in clusters in order to make discovery, ranking, and recommendation faster and more effective. We propose using Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA) (i.e. two machine learning techniques used in Information Retrieval) to learn latent factors from the corpus of service descriptions and group services according to their latent factors. By creating an intermediate layer of latent factors between the services and their descriptions, the dimensionality of the model is reduced and services can be searched and linked together based on probabilistic methods in latent space. The model can cluster any newly added service with a direct calculation without requiring to re-calculate the latent variables or re-train the model.

Item Type: Conference or Workshop Item (Conference Paper)
Divisions : Faculty of Engineering and Physical Sciences > Electronic Engineering > Centre for Communication Systems Research
Authors :
Barnaghi, P
Cassar, G
Moessner, K
Contributors :
ContributionNameEmailORCID, A, P, M, M
Additional Information : Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.
Depositing User : Symplectic Elements
Date Deposited : 09 May 2012 12:44
Last Modified : 31 Oct 2017 14:33

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800