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Optical matrix element in InAs/GaAs quantum dots: Dependence on
quantum dot parameters

A. D. Andreev
Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom

E. P. O’Reilly
Tyndall National Institute, Lee Maltings, Cork, Ireland

�Received 13 May 2005; accepted 3 October 2005; published online 15 November 2005�

We present a theoretical analysis of the optical matrix element between the electron and hole ground
states in InAs/GaAs quantum dots �QDs� modeled with a truncated pyramidal shape. We use an
eight-band k·p Hamiltonian to calculate the QD electronic structure, including strain and
piezoelectric effects. The ground state optical matrix element is very sensitive to variations in both
the QD size and shape. For all shapes, the matrix element initially increases with increasing dot
height, as the electron and hole wave functions become more localized in k space. Depending on the
QD aspect ratio and on the degree of pyramidal truncation, the matrix element then reaches a
maximum for some dot shapes at intermediate size beyond which it decreases abruptly in larger
dots, where piezoelectric effects lead to a marked reduction in electron-hole overlap. © 2005
American Institute of Physics. �DOI: 10.1063/1.2130378�
Semiconductor quantum dots �QDs� have been widely
studied because of their unique fundamental properties and
also because they are considered to be promising candidates
for a new generation of semiconductor laser.1 One of the
main advantages initially proposed for QDs was the atomic-
like �zero-dimensional� density of states, which should pro-
vide a relatively large optical gain at a reduced carrier
density.2 In real QD structures the gain is, however, signifi-
cantly reduced due both to inhomogeneous broadening of the
atomic-like density of states and also because of a reduced
optical matrix element. This can even prohibit lasing from
the ground state in some QD structures.3–5 Previous theoret-
ical studies6,7 suggested that the low gain arises because the
built-in piezoelectric field leads to the ground state hole
wave function being elongated, with the matrix element then
reduced due to lower overlap between the electron and hole
wave functions. We show here that this is not the only reason
for low optical matrix element. The QDs in Refs. 6 and 7
were assumed to be pyramidal with a base to height aspect
ratio of 2. In real structures the typical QD shape is markedly
different, strongly influencing the electron and hole wave
functions,8 and thereby modifying the optical matrix ele-
ment. Previous theoretical studies of InAs/GaAs QDs either
do not contain calculations of the optical matrix element8,9 or
consider only one specific QD shape.10

The aim of this letter is to identify the factors determin-
ing the ground state optical matrix element in QDs, and its
dependence on QD shape and size. In a bulk semiconductor
the optical matrix element decreases for transitions away
from the Brillouin zone center, and also depends on the wave
vector direction with respect to the light polarization. This
fundamental property of semiconductors, as well as the pi-
ezoelectric effect, causes the matrix element in QDs to be
very sensitive to variations in the QD geometrical param-
eters, leading to a lower optical matrix element in QDs com-
pared to the maximum “ideal” band edge value of a bulk
semiconductor.

To calculate the electronic structure of the QDs we use a

plane-wave expansion method, assuming a periodic array of
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widely separated QDs.11. The wave function of each electron
or hole is described by a linear combination of bulk states

��r� = �
k,�

Ck,��k,�� , �1�

where �k ,���exp�ikr� is an eigenstate of the bulk 8
�8 k·p Hamiltonian given in Ref. 12, and � denotes elec-
tron, heavy-, light-, or spin-split-off holes �including spin�.
The electron and hole energies in the QDs and the coeffi-
cients Ck,� are found by diagonalizing a large matrix, whose
matrix elements depend on the Fourier transform of the QD
shape, strain, and piezoelectric field distribution.8,11,13 For a
given light polarization, the optical matrix element Meh be-
tween an electron and hole state in a QD is given by

Meh = �
k,�,�

�Ck,�
�e� �*Ck,�

�h� M���k� , �2�

where M���k� is the optical matrix element between two
bulk states � and � at wave vector k, and Ck,�

�e� and Ck,�
�h� are

the coefficients defined by Eq. �1� describing the electron
and hole QD states. Since the coefficients in Eq. �1� are
normalized, �k,��Ck,�

�e,h��2=1, we immediately conclude from
Eq. �2� that the squared optical matrix element in a QD is
always smaller than that at k=0 in a bulk or quantum well
material.

We consider InAs QDs with a truncated pyramidal
shape.8 The QD size and shape can be described by three
independent parameters; namely the QD height h, the aspect
ratio �=bb /h, and the truncation degree �=bt /bb �the QD
bottom and top are bb�bb and bt�bt squares, respectively�;
for a full pyramid we have �=0, while �=1 for a QD box.
For the QDs under consideration the ground state matrix
element is much larger for light polarized in the QD x-y
plane than it is for light polarized along the growth direction
z. We therefore set the light polarization vector along the x
axis. Keeping in mind the main application of the present
study for gain calculations, we consider the quantity �Mtot�2,

which is the modulus squared of the optical matrix element
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for the electron-hole ground state transition summed over
degenerate spin states. Figure 1 shows the calculated varia-
tion of �Mtot�2 with dot height for five different shapes. �Mtot�2
initially increases with dot height, in four of the five cases
reaching a peak value beyond which it decreases rapidly. We
also note that in each case the value of �Mtot�2 is noticeably
smaller than the maximum value of unity which might be
expected for an “ideal” QD. The main aim of this letter is to
identify the causes of this behavior.

It can be seen from Eq. �2� that the magnitude of the
optical matrix element is determined by two factors: �i� the
dependence of the bulk matrix element M�� on k, and �ii�
how the coefficients Ck,�

�e� and Ck,�
�h� overlap in k space with

each other and with M���k�. This overlap is very sensitive to
the QD size and shape. The hole wave function consists of
mainly two components: a heavy-hole �HH� contribution and
a light-hole �LH� contribution �each is represented by a sum-
mation in Eq. �1� over the corresponding set of bulk states�.
For the hole ground state, the admixture of LH bulk states is
typically about 10%–20%, depending on the QD geometry.
We therefore concentrate our analysis on the electron-HH
component. The dependence of the bulk matrix element
�M���2 on k for the electron-heavy-hole transition is illus-
trated in Figs. 2�a� and 2�b� The optical matrix element is
calculated following the method developed in Ref. 14. For
the electron-heavy-hole bulk states, the maximum matrix el-
ement is achieved for a given �k� when k is perpendicular to
the light polarization vector e=ex �see Fig. 2�b��. In addition,
the bulk matrix element �ME-HH�2 decreases quite rapidly as
�k� increases �Fig. 2�a��. For example when ky=0.46 nm−1

�which corresponds to a distance in real space of 2� /k
�13.7 nm�, the InAs bulk matrix element summed over spin
states is only 0.5 of its maximum value at k=0. This reduc-
tion is due predominantly to band-mixing effects, and so is
best described in a k·p model that includes both the conduc-
tion and valence bands, along with corrections due to other
bands.14 The effect of decreasing matrix element with the
in-plane momentum k	 is well-known in quantum well
structures.15 For example, the calculated optical matrix ele-
ment for E-HH transitions in an InGaAs quantum well de-

FIG. 1. Variation with dot height, h, of the modulus squared of the optical
matrix element �Mtot�2 for the ground state electron-hole transition in
InAs/GaAs QDs of truncated pyramidal shape, summed over degenerate
spin states. The value of �Mtot�2 is given in units of P0

2 �where P0 is the
interband momentum matrix element, P0= �� /m0�
s�px�x�, see Ref. 11�. The
light polarization vector is taken along the x direction.
creased by more than a factor of three when k	 increased
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from 0 to 1 nm−1.16 The significant decrease of �ME-HH� in
Fig. 2�a� at relatively large wave vectors occurs when the
kinetic energy of the electron approaches the band gap en-
ergy. This effect is therefore considerably more pronounced
here than would be the case for bulk materials with larger
band gap. The described properties of the E-HH bulk matrix
element have important consequences for the matrix element
in QDs. As the QD height decreases, the characteristic size of
the electron and hole wave function in k space becomes
larger �compare Figs. 2�c� and 2�d� with Figs. 2�e� and 2�f��
and the overlap in k space between Ck,�

�e� , Ck,�
�h� , and M���k�

becomes smaller: this can be clearly seen by comparing Fig.
2�b� with Figs. 2�c�–2�f�. The terms with larger �k� �and con-
sequently a smaller average M�� in Eq. �2�� play a more
important role in small QDs, leading to a reduction in the
QD optical matrix element as the QD height decreases. Thus,
the trend of increasing �Mtot�2 with h is a direct consequence
of the k dependence of �ME-HH�2 in a bulk semiconductor. We
discuss later how this trend is interrupted for some QD
shapes by piezoelectric effects, which lead to a sharp de-
crease in �Mtot�2 beyond a critical value of h, see Fig. 1.

It can be seen in Fig. 2�b� that the unstrained bulk matrix
2

FIG. 2. �a� Modulus squared of the optical matrix element for electron-
heavy hole transitions �ME-HH�2 in bulk unstrained InAs �summed over de-
generate spin states�; units are the same as in Fig. 1, the light polarization
vector is along the x direction. �b� Contour plot of �ME-HH�2 in the kx-ky plane
for bulk InAs; �c�–�f� Contour plot of the wave function coefficients �Ck,�

�e� �2

and �Ck,�
�h� �2 in the kx-ky plane for QDs with �=5, �=0.75, and h=3 nm �c�,

�d� and h=9 nm �e�,�f�. Five grades of grey color correspond to the values of
0%–20%; 20%–40%; 40%–60%; 60%–80% and 80%–100% of the maxi-
mum value, respectively.
element �ME-HH� has a strong angular dependence. This
 AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp
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arises due to the change in the relative contribution of the
valence �x�, �y�, and �z� states to the unstrained bulk HH band
along different directions. Interband optical transitions with
ex polarization require valence states with �x� character. In
the unstrained bulk material, the HH state has no �x� charac-
ter along the kx direction: therefore giving zero matrix ele-
ment, see Fig. 2�b�. The anisotropy is reduced in quantum
well and in biaxially strained structures. The reduction in
symmetry splits the degeneracy of the HH and LH states at
the valence band maximum, thereby reducing the ability to
mix �z�-like character from the LH states into the uppermost
HH band. The relative contribution to the highest hole state
of the �z� Bloch components can then provide a quantitative
measure of the anisotropy effect displayed in Fig. 2�b�.17

When the unstrained bulk HH band is averaged over all di-
rections, the valence states have equal contributions of about
33% from each of �x�, �y�, and �z�. The anisotropy observed
in Fig. 2�b� is eliminated for a bulk material which is biaxi-
ally strained in the z direction, with the valence �z� compo-
nent then making nearly zero contribution to the uppermost
valence states. For the various QDs we considered the situ-
ation is between these two extreme cases and the �z� terms
account for 7%–20% of the ground state hole wave function.
This is a significant contribution to the overall reduction in
matrix element, although not as large as might be expected
based on the bulk matrix elements presented in Fig. 2�b�.

The piezoelectric field has previously been considered as
the main cause of a reduced matrix element in pyramidal
QDs.6 Due to this field, the hole wave function becomes
elongated and asymmetric in the x-y plane, leading to a de-
crease of the electron-hole overlap in real space. This situa-
tion is illustrated in Fig. 3�a�. To demonstrate that the piezo-
electric field need not be the prime cause of a reduced matrix
element in medium-sized QDs �with h�5.5–6.5 nm�, we set
the piezoelectric constants to zero in a test calculation on the
QD of Fig. 3�a�. The hole wave function is indeed more
symmetric without the piezoelectric field �Fig. 3�b��, which
visually increases the overlap between the electron and hole

FIG. 3. Surfaces of constant probability density �equal to 35% of the maxi-
mum value� for the QD ground electron states �left-hand side� and ground
hole states �right-hand side� for QDs of the following sizes: �a� h=5.5 nm,
�=2.9, �=0.25; �b� the same shape and size as �a�, but without piezoelectric
field; �c� h=9 nm; �=5, �=0.75; and �d� h=9 nm; �=5, �=0.5.
wave functions. However, the calculated total matrix element
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�Mtot�2 increases only from 0.447 to 0.471 �in units of P0
2, see

caption to Fig. 1�. The situation changes, however, when the
dot size is increased. Depending on the dot shape, the hole
wave function either remains nearly symmetric �Fig. 3�c�� or
becomes strongly localized in two potential pockets �Fig.
3�d��. This localization leads to a steep drop in the matrix
element �Mtot�2 beyond a critical dot size for some QD shapes
�see Fig. 1�. The piezoelectric field creates two potential
pockets for holes, with the size and depth of these pockets
determined by the QD geometry. In InAs QDs we find that
the piezoelectric potential pockets lose their ability to bind a
hole for flat QDs ��=5, ��0.75�, and the hole wave func-
tion remains almost symmetric even for quite large QDs �h
=10 nm�. The effect of the piezoelectric field on the optical
matrix element in large QDs then depends on the QD shape.
For many shapes this leads to a steep decrease of �Mtot�2
beyond a critical QD height �Fig. 1�; however, for other
shapes �with a large aspect ratio � and truncation factor ��,
the piezoelectric field has little effect on the QD ground state
matrix element.

In summary, we have analyzed theoretically the ground
state optical matrix element in QDs. For many dots the k
dependence of the bulk optical matrix element contributes to
a reduction in matrix element compared to that initially ex-
pected in an ideal QD. The magnitude of the matrix element
is very sensitive to variations in QD size and shape. It should
therefore be possible to engineer the size and shape of QDs
with the aim to optimize the optical gain in QD lasers and
optical amplifiers. In particular, “flat” QDs with a large as-
pect ratio have a larger matrix element. We conclude that,
depending on the QD geometry, the piezoelectric field may
either have little effect on the ground state matrix element or
else will markedly reduce it, effectively switching off the
ground state optical transition in some QDs.
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